• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal evolution of aliphatic and aromatic moieties of asphaltenes from coals of different rank:possible implication to the molecular architecture of asphaltenes

    2015-01-17 09:26:02AminuBayawaMuhammad
    Acta Geochimica 2015年3期

    Aminu Bayawa Muhammad

    Thermal evolution of aliphatic and aromatic moieties of asphaltenes from coals of different rank:possible implication to the molecular architecture of asphaltenes

    Aminu Bayawa Muhammad1

    The compositional and structural changes that coal asphaltenes undergo with increasing thermal maturation were investigated using solid-state13C NMR and Fourier transform infrared spectroscopy.The results show a gradual increase in the relative proportion of carbon content with a concomitant decrease in the hydrogen,sulphur and oxygen content.The amount of aromatic carbon also increases while the aliphatic carbon decreases with increasing maturity.Ester and carboxylic groups are particularly sensitive to maturation and decrease in relative abundance with increasing maturity while the amount of aromatic carbonyl groups increases.In general,the asphaltenes were observed to evolve towards a more thermally stable structure with increasing amounts of aromatic moieties and relatively lower amounts of aliphatic moieties.The results are in agreement with the ultimate dominance of the island molecular architecture(the Yen–Mullins model)in asphaltenes.

    Asphaltenes·Coals·FTIR· Solid-state13C NMR·Thermal maturation

    1 Background

    Asphaltenes are complex mixture of carbonaceous macromolecular substances that have been associated with many problems including obstruction of reservoirs,plugging of wellsandpipelinesaswellasfoulingandstabilisationofoil–water emulsions in the petroleum industry(Galoppini 1994; Kokal and Sayegh 1995;Khadim and Sarbar 1999;Shedid andZekri2006;Maetal.2008).Althoughthetermismainly applied to the heaviest components of petroleum,its functionalsolubility-baseddefnitionallowsextensiontoinclude similar substances from coals and bitumens(Behar et al. 1984;William 1985;Solli and Leplat 1986)and compositionally the two are quite similar(Badre et al.2006).

    The composition of asphaltenes has been a subject of many investigations(Bunger and Li 1981;Peters 1986; Sheu and Mullins 1995;Sheu 2002;Sabbah et al.2011; Mullins et al.2012;Muhammad and Abbott 2013;Wu et al.2013).In general asphaltenes macromolecules are considered to consist of aliphatic side-chains linked to aromatic moieties via C–C,C–O and C–S bonds(Yen 1974;Peng et al.1997).The aromatic moieties consist largely of condensed pericyclic sheets of 4 and 20 rings (Groenzin and Mullins 1999;Badre et al.2006)while the alkyl moieties have been shown to average at C3to C7in size(Calemma et al.1995),although homologues in range of C1to over C32have observed(del Rio et al.1995;Peng et al.1999;Muhammad and Abbott 2013).Furthermore, the aliphatic moieties have been found to consists of both acyclic(n-alkyl and iso-alkyl)and cyclic(hopanoids, steroids etc.)alkyl groups(Mojelsky et al.1992;Triflieff et al.1992;Peng et al.1999;Strausz et al.1999; Muhammad and Abbott 2013).A more complex structure in which the aromatic moieties in the asphaltenes are further interconnected by aliphatic bridges(i.e.the so called polymeric structure)has been subject of intense debate (Bunger and Li 1981;Hammami et al.1995;Speight 2004; Badre et al.2006;Strausz et al.2008;Mullins 2009).

    The effect of thermal stress on the molecular composition of aliphatic moieties and stereochemistry of the alicyclic moieties has been reported(Muhammad and Abbott2013).However,the destructive effect of ruthenium oxide oxidation on aromatic moieties prohibits obtaining a complete picture of the thermal evolution of the asphaltenes.In this paper,NMR and FTIR were employed to reveal the changes undergone by the aromatic moieties,as well as aliphatic moieties,of the asphaltenes with possible consequence on the molecular architecture of these enigmatic complex substances.

    2 Materials and methods

    2.1 Samples

    Four pulverised coal samples,namely North Sea Brent coals C04,C56,C69[with vitrinite refectance(R0)values of 0.40%,0.56%,0.69%,respectively]and C15(R0value of 1.50%)from Harvey Beaumont seam,County Durham, United Kingdom,were used in this investigation.The samplescover thethermalmaturationrangefromlatediagenesis (R0=0.2%–0.450%)throughcatagenesis(R0=0.6%–0.9%)into metagenesis(R0=0.9%–2.0%)stages of transformation of sedimentary organic matter.

    2.2 Extraction of bitumen

    Known weights of the coal samples were extracted for 72 h with DCM/MeOH mixture(93:7,v/v)using Soxhlet extraction method.The solvent was removed from the extracts by rotary evaporation(30°C,25 mmHg)followed by drying under nitrogen stream until a constant weight was obtained.

    2.3 Precipitation of asphaltenes and elemental analysis

    The coal bitumen,dissolved in 1 cm3of DCM,was treated with 40 cm3of n-hexane.The mixture was stirred for 2 h and allowed to equilibrate for 24 h.The asphaltenes were recovered by centrifugation(3500 rpm,15 min)and redissolved in 1 cm3DCM followed by re-precipitation with 40 cm3of n-hexane.After stirring for 30 min,the asphaltenes were recovered.This was repeated two more times.The dry asphaltenes were extracted with n-hexane for 10 days using the Soxhlet method to remove co-precipitated maltene(Alboudwarej et al.2002).After drying, carbon,hydrogen,nitrogen and sulphur composition of the asphaltenes were determined using a Carlo Erba 1108 Elemental Analyser.The oxygen content was obtained by difference.

    2.4 FTIR measurements and curve-ftting of the spectra

    About 1%(w/w)mixture of the asphaltenes in KBr powder(99.5%IR spectroscopic grade,Sigma-Aldrich) was prepared with an agate mortar and pestle.13 mm pellets were prepared from about 200 mg of the homogenised sample/KBr powder using a Specac 15 Ton Manual Hydraulic Press.

    Thermo Nicolet Nexus 870 FTIR spectrometer(Thermo Nicolet Corp.),with DTGS KBR detector and XT-KBr beam splitter,was used to acquire the IR spectra in the mid-infrared region(400–4000 cm-1)by co-adding 70 scans at a resolution of 4 cm-1.

    Prior to curve-ftting with GRAMS/AI(Thermo Scientifc,Inc.),each spectrum was:(i)normalised to the concentration of the asphaltene in the pellets,(ii)baseline corrected using multipoint option,and(iii)smoothened using Savitzky-Golay algorithm to reduce noise.Curveftting of relevant spectral regions and assignment of bands were done as described in the literature(Maddams 1980; Painter et al.1981;Yen et al.1984;Ibarra et al.1996). Model trend with best ft(from R2values)was adopted in plotsofareasofabsorption bandsagainstvitrinite refectance.

    2.5 Solid-state13C NMR measurements

    The Soxhlet extracted asphaltene samples were used without further preparation.The solid-state13C NMR spectra were obtained on a Varian VNMRS 400 spectrometer using a double-resonance(H–X)MAS probe equipped with a 4 mm rotor.All the spectra were obtained at 100.56 MHz with 700 scans.The rotor was spun at 12 kHz.A pulse repetition delay of 2 s and a cross polarization(CP)contact time of 0.50 ms were applied for all the experiments.Modulated(TPPM)decoupling was carried out at a nutation frequency of 76 kHz.Dipolar dephasing(DP)delay was set at 40.0 μs.Spectral referencing is with respect to external neat tetramethylsilane.

    The data obtained was used to estimate(Eqs.1–5):the fractions of the aromatic carbon that is protonated(i.e. tertiary aromatic carbon)and nonprotonated(quaternary aromatic carbon,);fraction of the total carbon that is protonatedand nonprotonatedas well as the fraction of the total hydrogen present in the aromatic systems(Ha)(Wilson et al.1984;Wilson and Vassallo 1985).

    3 Results and discussion

    3.1 Elemental composition

    The percentage carbon content of the asphaltenes increases with increasing maturity of the coals of the coals(Fig.1a), while atomic O/C and S/C ratios decrease with increase in maturity(Fig.1).These are similar to observations of Rouxhet et al.(1980)in coals and kerogens.Unlike other elements,however,the relative nitrogen content(N/C ratio)increases with increasing maturity of the coals (Fig.1d).This might be due to two dynamic processes occurring during the diagenesis of the organic matter. Firstly,relative to carbon,the loss of oxygen and sulphur might occur more rapidly(Fig.1b,c)than nitrogen (Fig.1d)as suggested by the stiffness of the gradients of the respective plots of the element against maturity (Fig.1).Secondly,a signifcant proportion of the total nitrogen might be fxed in or transformed into functionalities (e.g.aromatic pyridinic and pyrrolic nitrogen(Baxby et al. 1994))that are relatively more stable than sulphur and oxygen functional groups.Therefore,although the absolute amounts of the nitrogen might be decreasing with increasing maturity,the overall observable effect is its relative enrichment in the residual organic matter with increasing maturity(Fig.1d).In general,however all the trends(Fig.1)appear to stabilise as higher maturity level is approached suggesting the transformation proceeds towards a more stable carbon-rich equilibrium structure.

    3.2 Distribution and evolution of carbon in asphaltenes

    The solid-state13C NMR spectra of the asphaltenes revealed two broad peaks between 0–60 and 100–150 ppm (Fig.2a)which are generally assigned to aliphatic and aromatic carbons,respectively(Weinberg et al.1983; Wilson and Vassallo 1985)although they can be deconvolved into many peaks assignable to different types of aromatic and aliphatic carbons,respectively(Dutta Majumdar et al.2013).The values of the aromaticity factor (fa)obtained(Table 1)are similar to reported carbonaromaticity of petroleum asphaltenes(Andrews et al.2011; Dutta Majumdar et al.2013)although much lower than those of coal asphaltenes(Andrews et al.2011)possibly due to the effect of thermal liquefaction of the coals(see Sect.3.4).In general,the aromaticity factor increases with increasing maturity(Table 1)suggesting aromatisation of aliphatic(naphthenic)structures with increasing maturity although dealkylation may also occur simultaneously (Rouxhet et al.1980;Buch et al.2003).However,the former is further supported by increase in both the fraction of aromatic hydrogen(Ha)and the fraction of the total carbon that is protonated(tertiary)aromatic carbonwith maturity(Table 1).

    Fig.1 Plots of(a)%C,(b)O/C,(c)S/C,and(d)N/C against vitrinite refectance showing the evolution of the relative amounts of elements in the asphaltenes with increasing maturity

    Fig.2 Molecular illustration showing evolution of aromatic and aliphatic moieties of asphaltene macromolecule with increase in thermal stress

    Table 1 Structural parameters calculated from theasphaltenes’solid-state13C NMR spectra

    Furthermore,the distribution of the aromatic carbon shows that over 50%of the carbon is in the form of nonprotonated(i.e.quaternary)carbon as refected byalthough itappearsto be independentofmaturity (Table 1).It should however be noted that the relatively high value ofof C04 asphaltene does not necessarily mean it has more condensed aromatic moieties than the more matured asphaltenes;rather,it may be a refection of positive contributions tofrom alkylated(therefore nonprotonated)carbons which are more abundant in less mature samples.Thus,as the alkyl groups are replaced with hydrogens following dealkylation with increasing maturity, the apparent proportion of the quaternary carbonfalls and aromatic hydrogen(Ha)rises(Table 1).In general, increase in the aromaticity of the asphaltene with increasing maturity is mainly due to aromatisation of aliphatic carbon and possibly increasing condensation of the aromatic structures.These observations are consistent with results obtained by Wilson and Vassallo(1985)in their study of distributions of carbon in coals with increasing thermal stress.

    3.3 Thermal evolution of functional groups in the asphaltenes

    The absorption bands obtained from curve-ftting of the asphaltenes IR spectra are assigned to various functional groups as outlined in Table 2.The O–H/N–H band of the asphaltenes is prominent irrespective of the maturity of the coals suggesting the functionalities are not signifcantly affected by increase in maturity until at much higher maturation levels(Rouxhet et al.1980)not covered in this study.

    The total absorption due to the fve aliphatic C–H stretching vibrations (3000–2800 cm-1)indicative of aliphatic moieties decreases with increase in maturity (Fig.3a).Furthermore,the intensities of the two alkyl bands at 1455 and 1346 cm-1decrease with increasing maturity (Fig.3b)indicating dealkylation as the asphaltenes areexposed to increasing thermal stress.All these are in agreement with decrease in aliphatic carbon with increasing maturityasobservedfrom13CNMRresults(Sect.3.2).Thisisa furtherindicationthatbothdealkylationandaromatisationof aliphatic unitsoccur simultaneously asmaturity increasesas illustrated in Fig.2.However,the two other bands at 1424 and 1375 cm-1,also commonly assigned to aliphatic moietiesappeartobeindependentofmaturityofthecoalswithin the maturity region under investigation.

    Table 2 List and assignment of infrared absorption bands obtained from the curve-ftting of the FTIR spectra of the asphaltenes from the coal samples

    ThearomaticC–Hstretchingvibrations(3000–3100 cm-1) are barely detectable in the immature C04 asphaltenes but increase with increasing maturity with the strongest absorption observed in C15 asphaltene(Fig.3a).The evolution of the aromatic structures is further revealed by increase in the intensities of the nine bands between 900 and 700 cm-1with increase in maturity(Fig.3c,d).These bands are indicative of aromatic C–H out-of-plane deformations(Yen et al.1984; Ibarraetal.1996)fromdifferentenvironments(Table 2).Note however that although the bands at 838 and 723 cm-1are respectively commonly assigned to cyclic methylene(–CH2–) andC5+methyleneunits(Guilianoetal.1990),thefactthatthe intensities of the bands increase with increasing maturity (Fig.3d)suggesttheyaremorelikelytobeduetoaromaticC–H deformation in agreement with Ibarra et al.(1996).The differences in the slopes of the plots in Fig.3d suggest that the different aromatic C–H evolve at different rates during maturation.

    The carbonyl (C=O) functionalities from ester (1768 cm-1)and carboxyl group(1698 cm-1)(Guiliano et al.1990;Ibarra et al.1996)decrease with increasing maturity while the highly conjugated carbonyl group of the quinone-type (1654 cm-1) increases with maturity (Fig.3e)in agreement with observations of Rouxhet et al. (1980)in coals.Lost of the ester and carboxyl groupsappear to precede loss of hydroxyl groups even in coals (Rouxhet et al.1980).This indicates both the quinone-type carbonyl group and hydroxyl group are thermally more stable than ester and carboxyl groups in asphaltenes.

    Fig.3 The normalised areas of the absorption bands between 3000 and 700 cm-1,obtained from curve-ftting of the FTIR spectra of the asphaltenes, plotted against vitrinite refectance showing evolution of the different chemical functionalities with increasing maturity

    Although the bands at 1607 and 1497 cm-1are commonly assigned to aromatic C=C stretching vibrations (Guiliano et al.1990;Ibarra et al.1996),in this study both bands decrease with increasing maturity(Fig.3f)and correlate positively with O/C ratio(R2>0.80;p<0.05) and thus might be due to oxygen functional groups possibly carboxylate ion(Nakanishi 1962).

    Intensities of the six bands obtained from curve-ftting the spectral region between 1300 and 1000 cm-1decrease with increasing maturity(Fig.3g,h).Although these bands are quite diffcult to assign due to the many functional groups that absorb in the region(Socrates 1980;Painter et al.1981),the stiffness with which they decrease with increasing maturity suggests they might be due to variousC–O functionalgroupsfrom differentenvironments (Table 2).

    Fig.4 Simplifed diagram illustrating thermal evolution of archipelago-type asphaltene molecules into island-type molecules with increasing thermal maturation

    3.4 Possible implication to the molecular model of asphaltenes

    The molecular structure of asphaltenes has been subject of intense investigations(Badre et al.2006;Sabbah et al. 2010,2011;Mullins et al.2012;Alvarez-Ram?′rez and Ruiz-Morales 2013).Consequently,it has now been shown that the dominant molecular architecture is the Yen–Mullins model,which consider asphaltenes to have the socalled island structure consisting of a condensed heteroaromatic core with alkyl side chains(Mullins et al. 2012).

    The observed structural evolution of asphaltenes with increase in thermal maturation may have a fundamental implication in asphaltene chemistry.First,asphaltene molecules from relatively immature sedimentary organic matter may be dominated by aliphatic moieties relative to aromatic moieties.Second,even if thermally immature asphaltene contain relatively signifcant archipelago-type molecular architecture,at higher degree of thermal maturity most of the inter-aromatic aliphatic linkages,as well as aliphatic side chains(Buch et al.2003),would be lost to thermal dealkylation.This will ultimately generate complex,albeit more aromatic,molecular units dominated by island molecular architecture(the Yen–Mullins model)as illustrated in Fig.4 in agreement with the observed dominant molecular architecture of asphaltenes from petroleum and artifcially matured coal(Badre et al.2006; Sabbah et al.2011;Wu et al.2013).It worth noting that thermal liquefaction of coal could result in its artifcial thermal maturation and this could partly be the reason why coal asphaltenes have been reported to have higher relative carbon content and lower hydrogen content(and thus lower H/C atomic ratio)than the petroleum asphaltenes(Andrews et al.2011).This therefore buttresses the need to investigate thermally immature asphaltenes(e.g.extracted from virgin immature coal)and particularly to determine the relative signifcance of the archipelago structures in them.

    4 Conclusion

    Thermal maturity was observed to affect the composition of asphaltenes from coals of different ranks.With increasing thermal stress,asphaltenes were observed to evolve towards an equilibrium structure or composition in which aromatic moieties become dominant over aliphatic moieties as a result of increasing aromatisation and dealkylation.Distribution of alkyl moieties shifts towards increasing proportions of the lower molecular weight homologues with increasing thermal maturity.The thermal stress also results in loss of oxygen functionalities from ester and carboxyl groups while hydroxyl groups appear to be more stable.The results are in agreement with the ultimate dominance of the island structure(the Yen–Mullins model)in petroleum asphaltenes.

    AcknowledgmentsThe author is grateful to Dr.Geoff Abbott, Newcastle University,for supervising the work,Dr.Claire Fialips formerly School of Civil Engineering&Geosciences,Newcastle University,UK for technical assistance and Dr.David Apperley and Mr.Fraser Markwell of Solid-state NMR Service at Durham University,UK for solid-state13C NMR analysis.The author would like to thank Petroleum Technology Development Fund(PTDF), Nigeria for Ph.D scholarship.

    Alboudwarej H,Beck J,Svrcek WY,Yarranton HW,Akbarzadeh K (2002)Sensitivity of asphaltene properties to separation techniques.Energy Fuels 16(2):462–469

    Alvarez-Ram?′rez F,Ruiz-Morales Y(2013)Island versus archipelago architecture for asphaltenes:polycyclic aromatic hydrocarbon dimer theoretical studies.Energy Fuels 27(4):1791–1808

    Andrews AB,Edwards JC,Pomerantz AE,Mullins OC,Nordlund D, Norinaga K(2011)Comparison of coal-derived and petroleum asphaltenes by13C nuclear magnetic resonance,DEPT,and XRS.Energy Fuels 25(7):3068–3076

    Badre S,Goncalvesa CC,Norinagab K,Gustavsona G,Mullins OC (2006)Molecular size and weight of asphaltene and asphaltene solubility fractions from coals,crude oils and bitumen.Fuel 85:1–11

    Baxby M,Patience RL,Bartle KD(1994)The origin and diagenesis of sedimentary organic nitrogen.J Pet Geol 17(2):211–230

    Behar F,Pelet R,Roucache J(1984)Geochemistry of asphaltenes. Org Geochem 6:587–595

    Buch L,Groenzin H,Buenorostro-Gonzalez E,Andersen SI,Lira-Galeana C,Mullins C(2003)Effect of hydrotreatment on asphaltene fractions.Fuel 82:1075–1084

    Bunger JW,Li NC(eds)(1981)Chemistry of Asphaltenes,Advances in chemistry series 195,American Chemical Society,Washington D.C,p 260

    Calemma V,Iwanski P,Nali M,Scotti R,Montanari L(1995) Structural characterization of asphaltenes of different origins. Energy Fuels 9(2):225–230

    del Rio JC,Martin F,Gonzalez-Vila FJ,Verdejo T(1995)Chemical structural investigation of asphaltenes and kerogens by pyrolysis-methylation.Org Geochem 23(11–12):1009–1022

    Dutta Majumdar R,Gerken M,Mikula R,Hazendonk P(2013) Validation of the Yen-Mullins model of athabasca oil-sands asphaltenes using solution-state 1H NMR relaxation and 2D HSQC spectroscopy.Energy Fuels 27(11):6528–6537

    Galoppini M(1994)Asphaltene deposition monitoring and removal treatments:an experience in ultra deep wells.In:SPE Paper 27622 p 10

    Groenzin H,Mullins OC(1999)Asphaltene molecular size and structure.J Phys Chem A 103(50):11237–11245

    Guiliano M,Mille G,Doumenq P,Kister J,Muller JF(1990)Study of various rank french demineralized coals and maceral concentrates:band assignment of FTIR spectra afetr resolution enhancement using fourier deconvolution.In:Charcosset H (ed)advanced methodologies in coal characterisation(coal science and technology).Elsevier,Amsterdam,pp 399–417

    Hammami A,Chang-Yen D,Nighswander JA,Stange E(1995)An experimental study of the effect of paraffnic solvents on the onset and bulk precipitation of asphaltenes.Fuel Sci Technol Int 13(9):1167–1184

    Ibarra JV,Mun?oz E,Moliner R(1996)FTIR study of the evolution of coal structure during the coalifcation process.Org Geochem 24(6–7):725–735

    Khadim M,Sarbar M(1999)Role of asphaltene and resin in oil feld emulsion.J Pet Sci Eng 23:213–221

    Kokal SL,Sayegh SG (1995)Asphaltenes:the cholesterol of petroleum.In:SPE paper 29787.pp 169–81

    Ma A,Zhang S,Zhang D(2008)Ruthenium-ion-catalyzed oxidation of asphaltenes of heavy oils in Lunnan and Tahe oilfelds in Tarim Basin,NW China.Org Geochem 39(11):1502–1511

    Maddams WF(1980)The scope and limitations of curve ftting.Appl Spectrosc 34:245–267

    Mojelsky TW,Ignasiak TM,Frakman Z,McIntyre DD,Lown EM, Montgomery DS,Strausz OP(1992)Structural features of Alberta oil sand bitumen and heavy oil asphaltenes.Energy Fuels 6(1):83–96

    Muhammad AB,Abbott GD(2013)The thermal evolution of asphaltene-bound biomarkers from coals of different rank:a potential information resource during coal biodegradation.Int J Coal Geol 107:90–95

    Mullins OC(2009)Rebuttal to Strausz et al.regarding time-resolved fuorescence depolarization of asphaltenes.Energy Fuels 23:2845–2854

    Mullins OC,Sabbah H,Eyssautier J,Pomerantz AE,Barre′L, Andrews AB,Ruiz-Morales Y,MostowfF,McFarlane R,Goual L,Lepkowicz R,Cooper T,Orbulescu J,Leblanc RM,Edwards J,Zare RN(2012)Advances in asphaltene science and the yenmullins model.Energy Fuels 26(7):3986–4003

    Nakanishi K(1962)Infrared absorption spectroscopy.Nankodo Co Ltd,Tokyo,p 233

    PainterPC,SnyderRW,StarsinicM,ColemanMM,KuehnDW,Davis A(1981)ConcerningtheapplicationofFT-IRtothestudyofcoal: a critical assessment of band assignments and the application of spectral analysis programs.Appl Spectrosc 35:475–485

    Peng P,Morales-Izquierdo A,Hogg A,Strausz OP(1997)Molecular structure of athabasca asphaltene:sulfde,Ether,and Ester Linkages.Energy Fuels 11(6):1171–1187

    Peng P,Fu J,Sheng G,Morales-Izquierdo A,Lown EM,Strausz OP (1999)Ruthenium-ions-catalyzed oxidation of an immature asphaltene:structural features and biomarker distribution.Energy Fuels 13(2):266–277

    Peters KE(1986)Guidelines for evaluating petroleum source rock using programmed pyrolysis.AAPG Bull 70:318–329

    Rouxhet PG,Robin PL,Nicaise G(1980)Characterization of kerogens and their evolution by infrared spectroscopy.In: Durand B(ed)Kerogen:Insoluble organic matter from sedimentary rocks.Technip,Paris,pp 163–190

    Sabbah H,Morrow AL,Pomerantz AE,Mullins OC,Tan X,Gray MR,Azyat K,Tykwinski RR,Zare RN(2010)Comparing laser desorption/laser ionization mass spectra of asphaltenes and model compounds.Energy Fuels 24(6):3589–3594

    Sabbah H,Morrow AL,Pomerantz AE,Zare RN(2011)Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels 25(4):1597–1604

    Shedid SA,Zekri AY(2006)Formation damage caused by simultaneous sulfur and asphaltene deposition.In:SPE paper 86553. pp 58–64

    Sheu EY(2002)Petroleum asphaltene-propertiesm,characterization, and issues.Energy Fuels 16(1):74–82

    Sheu EY,Mullins OC(eds)(1995)Asphaltenes:fundamentals and applications.Plenum Press,New York,p 245

    Socrates G(1980)Infrared characteristic group frequencies:tables and charts,2nd edn.Wiley,Chichester,p 249

    Solli H,Leplat P(1986)Pyrolysis-gas chromatography of asphaltenes and kerogens from source rocks and coals–a comparative structural study.Org Geochem 10(1–3):313–329

    Speight JG(2004)Petroleum asphaltenes—Part 1:asphaltenes,resins andthestructureofpetroleum.OilGasSciTechnol59(5):467–477

    Strausz OP,Mojelsky TW,Lown EM,Kowalewski I,Behar F(1999) Structural features of boscan and duri asphaltenes.Energy Fuels 13(2):228–247

    Strausz OP,Safarik I,Lown EM,Morales-Izquierdo A(2008)A critique of asphaltene fuorescence decay and depolarizationbased claims about molecular weight and molecular architecture. Energy Fuels 22(2):1156–1166

    Triflieff S,Sieskind O,Albrecht P(1992)Biological markers in petroleum asphaltenes:possible mode of incorporation.In: Moldowan JM,Albrecht P,Philp RP(eds)Biological markers in sedimentsand petroleum.Prentice Hall,New Jersey, pp 350–369

    Weinberg VA,Yen TF,Murphy PDB,Gerstein BC(1983)Hypothetical average structures of two coal liquid asphaltenes from solid state 13 C nuclear magnetic resonance and 1 H nuclear magnetic resonance data.Carbon 21(2):149–156

    William S(1985)Coal asphaltenes:a review.Fuel Process Technol 10(3):209–238

    Wilson MA,Vassallo AM(1985)Developments in high-resolution solid-state13C NMR spectroscopy of coals.Org Geochem 8(5):299–312

    Wilson MA,Pugmire RJ,Karas J,Alemany LB,Woolfenden WR, Grant DM,Given PH(1984)Carbon distribution in coal and coal macerals by cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance spectroscopy.Anal Chem 56(933):43

    Wu Q,Pomerantz AE,Mullins OC,Zare RN(2013)Laser-based mass spectrometric determination of aggregation numbers for petroleum-and coal-derived asphaltenes.Energy Fuels 28(1): 475–482

    Yen TF(1974)Structure of petroleum asphaltene and its signifcance. Energy Sources 1:447–463

    Yen TF,Wu WH,Chilingar GV(1984)A study of the structure of petroleum asphaltenes and related substances by infrared spectroscopy.Energy Sources Part A 7(3):203–235

    Received:17 August 2014/Revised:7 January 2015/Accepted:21 January 2015/Published online:29 May 2015

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    ? Aminu Bayawa Muhammad

    ambayawa@yahoo.co.uk

    1Civil Engineering&Geosciences,Newcastle University, Newcastle upon Tyne,NE1 7RU,UK

    国产精品一区二区三区四区免费观看| 又粗又爽又猛毛片免费看| 国产精品综合久久久久久久免费| 日日撸夜夜添| 18禁裸乳无遮挡免费网站照片| 能在线免费观看的黄片| 国产精品野战在线观看| 寂寞人妻少妇视频99o| 精品久久久久久电影网 | 久久精品国产亚洲网站| 国产高清三级在线| 欧美区成人在线视频| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 久久精品国产99精品国产亚洲性色| 精品国内亚洲2022精品成人| 成人毛片a级毛片在线播放| 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 亚洲一区高清亚洲精品| 亚洲精华国产精华液的使用体验| 久久99精品国语久久久| 九九热线精品视视频播放| 亚洲四区av| 国产精品永久免费网站| 少妇的逼水好多| 精品少妇黑人巨大在线播放 | 少妇丰满av| 国产老妇女一区| 天天躁夜夜躁狠狠久久av| 国产三级中文精品| 国产熟女欧美一区二区| 成人欧美大片| 中文字幕av在线有码专区| 亚洲在久久综合| 国产极品精品免费视频能看的| 亚洲自拍偷在线| 国国产精品蜜臀av免费| 久久韩国三级中文字幕| 午夜激情福利司机影院| 男人狂女人下面高潮的视频| 精品久久久久久成人av| 久久久精品大字幕| 亚洲在线自拍视频| 国产中年淑女户外野战色| 精品久久久久久久久久久久久| 啦啦啦韩国在线观看视频| 色5月婷婷丁香| 久久久久久九九精品二区国产| 色综合亚洲欧美另类图片| 一边亲一边摸免费视频| 免费观看性生交大片5| 麻豆成人午夜福利视频| 毛片女人毛片| 精品人妻熟女av久视频| 亚洲四区av| 欧美极品一区二区三区四区| 麻豆精品久久久久久蜜桃| 中文字幕精品亚洲无线码一区| 久久久久性生活片| 午夜精品国产一区二区电影 | 人体艺术视频欧美日本| 欧美一区二区精品小视频在线| 欧美日韩在线观看h| 亚洲国产精品专区欧美| 亚洲av福利一区| 两个人视频免费观看高清| 18禁在线无遮挡免费观看视频| 亚洲av熟女| 国产v大片淫在线免费观看| 熟妇人妻久久中文字幕3abv| 日韩精品有码人妻一区| 久久6这里有精品| 18禁动态无遮挡网站| 亚洲国产精品合色在线| 七月丁香在线播放| 99久国产av精品国产电影| 日本一本二区三区精品| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 色视频www国产| 91狼人影院| 国产午夜精品久久久久久一区二区三区| av在线天堂中文字幕| 国产视频内射| 白带黄色成豆腐渣| 精品午夜福利在线看| 1024手机看黄色片| 人人妻人人看人人澡| 2022亚洲国产成人精品| 亚洲av熟女| 国产精品熟女久久久久浪| 热99re8久久精品国产| 国产成人aa在线观看| 欧美3d第一页| 秋霞在线观看毛片| 日韩一区二区三区影片| 久久精品国产鲁丝片午夜精品| 国产淫语在线视频| 九草在线视频观看| 男的添女的下面高潮视频| 久久这里只有精品中国| 久久久久久国产a免费观看| 色播亚洲综合网| 久久精品夜色国产| 极品教师在线视频| 免费人成在线观看视频色| 亚洲在久久综合| 亚洲av中文av极速乱| 97超视频在线观看视频| 91久久精品国产一区二区成人| 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 精品不卡国产一区二区三区| 国产一区二区亚洲精品在线观看| 99在线视频只有这里精品首页| 欧美潮喷喷水| 亚洲成人中文字幕在线播放| 午夜老司机福利剧场| 级片在线观看| 国产三级中文精品| 欧美xxxx黑人xx丫x性爽| 十八禁国产超污无遮挡网站| 午夜福利网站1000一区二区三区| 一级毛片电影观看 | 精品熟女少妇av免费看| 国产高清国产精品国产三级 | 日韩精品有码人妻一区| 精品人妻熟女av久视频| 网址你懂的国产日韩在线| 国产成人免费观看mmmm| 简卡轻食公司| 免费看光身美女| 精品一区二区免费观看| av女优亚洲男人天堂| 少妇的逼水好多| av播播在线观看一区| 久久韩国三级中文字幕| 免费一级毛片在线播放高清视频| 日韩中字成人| 久久久久网色| 一个人看视频在线观看www免费| 久久这里只有精品中国| 午夜精品在线福利| 91精品一卡2卡3卡4卡| av免费观看日本| 亚洲高清免费不卡视频| 亚洲在线自拍视频| 日本午夜av视频| 美女内射精品一级片tv| 日韩一区二区视频免费看| 2021天堂中文幕一二区在线观| 久久99热这里只频精品6学生 | 村上凉子中文字幕在线| 亚洲综合精品二区| 亚洲国产日韩欧美精品在线观看| 99久久精品热视频| 麻豆精品久久久久久蜜桃| 成年版毛片免费区| 免费电影在线观看免费观看| 久久久久性生活片| 伦理电影大哥的女人| 美女黄网站色视频| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 国产一区二区亚洲精品在线观看| 国产精品久久久久久久久免| 国产免费福利视频在线观看| 狠狠狠狠99中文字幕| 精品久久久久久久久久久久久| 久久久久久九九精品二区国产| 午夜亚洲福利在线播放| 国产免费又黄又爽又色| av国产免费在线观看| 国产精华一区二区三区| 免费看光身美女| 亚洲精品乱久久久久久| 美女高潮的动态| 国产精品一区二区在线观看99 | 淫秽高清视频在线观看| 亚洲不卡免费看| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 大又大粗又爽又黄少妇毛片口| 亚洲真实伦在线观看| 日韩av在线大香蕉| 亚洲三级黄色毛片| 成人国产麻豆网| 久久久色成人| 白带黄色成豆腐渣| 亚洲最大成人av| 欧美成人免费av一区二区三区| 久久精品91蜜桃| 美女xxoo啪啪120秒动态图| av线在线观看网站| 日韩av不卡免费在线播放| 69人妻影院| 久久久a久久爽久久v久久| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| 波多野结衣巨乳人妻| 免费看a级黄色片| 99九九线精品视频在线观看视频| 国产日韩欧美在线精品| 神马国产精品三级电影在线观看| 国模一区二区三区四区视频| 中文字幕av在线有码专区| 免费播放大片免费观看视频在线观看 | 日本猛色少妇xxxxx猛交久久| 国产精品国产三级国产专区5o | 久久久国产成人免费| 免费看光身美女| 亚洲av福利一区| 如何舔出高潮| 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 亚洲天堂国产精品一区在线| 免费观看a级毛片全部| 好男人在线观看高清免费视频| 欧美+日韩+精品| 国产精品,欧美在线| 99热全是精品| 日韩欧美 国产精品| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 日韩大片免费观看网站 | 午夜福利网站1000一区二区三区| 一边摸一边抽搐一进一小说| 九草在线视频观看| 超碰av人人做人人爽久久| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 国产精品熟女久久久久浪| 日韩,欧美,国产一区二区三区 | 国产精品99久久久久久久久| 色哟哟·www| 99热这里只有精品一区| 亚洲精品,欧美精品| 插阴视频在线观看视频| 亚洲国产精品合色在线| 久久综合国产亚洲精品| 午夜免费男女啪啪视频观看| 精品午夜福利在线看| 欧美成人精品欧美一级黄| 人妻夜夜爽99麻豆av| 91精品伊人久久大香线蕉| 免费一级毛片在线播放高清视频| 精品午夜福利在线看| 欧美极品一区二区三区四区| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产| 国产精品一区二区在线观看99 | 欧美性感艳星| 亚洲av中文字字幕乱码综合| 欧美精品国产亚洲| 国产在视频线在精品| 国产真实伦视频高清在线观看| 大香蕉97超碰在线| 亚洲成色77777| 久久久精品欧美日韩精品| 观看免费一级毛片| 精品一区二区免费观看| 内地一区二区视频在线| av播播在线观看一区| av女优亚洲男人天堂| av天堂中文字幕网| 亚洲av熟女| 亚洲成av人片在线播放无| 五月玫瑰六月丁香| 久久久a久久爽久久v久久| 日韩中字成人| 蜜桃亚洲精品一区二区三区| 蜜臀久久99精品久久宅男| 99久国产av精品国产电影| 看十八女毛片水多多多| 久久6这里有精品| 亚洲精华国产精华液的使用体验| 久久精品综合一区二区三区| 欧美潮喷喷水| 天堂√8在线中文| 欧美成人午夜免费资源| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产| 午夜福利在线观看免费完整高清在| 69人妻影院| 亚洲精华国产精华液的使用体验| 色综合站精品国产| 国产淫语在线视频| 久久人人爽人人爽人人片va| 久久久a久久爽久久v久久| 久久久久精品久久久久真实原创| 免费看日本二区| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 免费av不卡在线播放| 美女xxoo啪啪120秒动态图| 可以在线观看毛片的网站| www.色视频.com| 亚洲av不卡在线观看| 亚洲精品自拍成人| 午夜爱爱视频在线播放| 国内精品美女久久久久久| 久久午夜福利片| 人妻制服诱惑在线中文字幕| 日本免费a在线| 久久这里有精品视频免费| 色吧在线观看| 国产亚洲av片在线观看秒播厂 | 久久人人爽人人爽人人片va| 日韩视频在线欧美| 国产亚洲91精品色在线| 欧美97在线视频| 亚洲综合色惰| 老师上课跳d突然被开到最大视频| 久久精品久久久久久噜噜老黄 | 久久99热这里只有精品18| 如何舔出高潮| 少妇被粗大猛烈的视频| 欧美极品一区二区三区四区| 少妇丰满av| 成人二区视频| 亚洲自拍偷在线| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久 | 亚洲国产精品sss在线观看| 能在线免费观看的黄片| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| 岛国在线免费视频观看| 日本熟妇午夜| 亚洲av熟女| 特级一级黄色大片| 在线观看美女被高潮喷水网站| 免费一级毛片在线播放高清视频| 久久精品综合一区二区三区| 久久久久久久久中文| 又粗又硬又长又爽又黄的视频| 精品人妻一区二区三区麻豆| 丰满人妻一区二区三区视频av| 九九爱精品视频在线观看| 日韩中字成人| 亚洲人成网站在线播| 国产 一区精品| 日韩一区二区三区影片| 村上凉子中文字幕在线| 一级av片app| 久久99蜜桃精品久久| 99热全是精品| 亚洲自拍偷在线| 久久99热6这里只有精品| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 人体艺术视频欧美日本| 男插女下体视频免费在线播放| 黄色日韩在线| 亚洲av熟女| 久久久久国产网址| 欧美zozozo另类| 一个人看视频在线观看www免费| 一级毛片久久久久久久久女| 国产成人一区二区在线| 免费观看人在逋| 特级一级黄色大片| 日日摸夜夜添夜夜爱| 黄色配什么色好看| 日韩av在线大香蕉| 国产老妇女一区| 丰满少妇做爰视频| 日本免费在线观看一区| 国产片特级美女逼逼视频| 成年女人看的毛片在线观看| 啦啦啦啦在线视频资源| 2022亚洲国产成人精品| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄 | 国产亚洲91精品色在线| 国产精品野战在线观看| 舔av片在线| 亚洲无线观看免费| 成人午夜高清在线视频| 成年版毛片免费区| 一本久久精品| 纵有疾风起免费观看全集完整版 | 国产视频内射| 五月伊人婷婷丁香| 亚洲精品一区蜜桃| 亚州av有码| 观看免费一级毛片| 麻豆国产97在线/欧美| 青春草视频在线免费观看| 国产高清视频在线观看网站| 国产在线男女| 国产精品精品国产色婷婷| 国产午夜精品论理片| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 69人妻影院| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 亚洲第一区二区三区不卡| 2021少妇久久久久久久久久久| 欧美三级亚洲精品| 亚洲国产精品成人久久小说| 亚洲av中文av极速乱| 国产精品一二三区在线看| 少妇人妻一区二区三区视频| 久久久久久久国产电影| 国产成人91sexporn| 国产色爽女视频免费观看| 久久久久久久久久黄片| 麻豆一二三区av精品| 综合色av麻豆| 国产伦在线观看视频一区| 观看美女的网站| 黄色一级大片看看| 国模一区二区三区四区视频| av在线蜜桃| 亚洲人与动物交配视频| 深夜a级毛片| 极品教师在线视频| 国产成人免费观看mmmm| 一级毛片aaaaaa免费看小| 亚洲精品国产成人久久av| 亚洲性久久影院| 亚洲欧美日韩卡通动漫| 熟女电影av网| 亚洲国产精品成人久久小说| 国产三级在线视频| 欧美高清性xxxxhd video| 亚洲av.av天堂| 日本一本二区三区精品| 九九热线精品视视频播放| 国产伦在线观看视频一区| 成人午夜高清在线视频| 高清午夜精品一区二区三区| 日韩 亚洲 欧美在线| 亚洲乱码一区二区免费版| 女人被狂操c到高潮| 91av网一区二区| 亚洲人成网站在线播| 我的女老师完整版在线观看| 联通29元200g的流量卡| 深爱激情五月婷婷| 女人久久www免费人成看片 | 又粗又爽又猛毛片免费看| 欧美丝袜亚洲另类| 日本色播在线视频| 别揉我奶头 嗯啊视频| 国产精品一及| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清| 国产精品.久久久| videossex国产| 人妻夜夜爽99麻豆av| 久久久久性生活片| 亚洲av成人精品一二三区| 国产一区有黄有色的免费视频 | 日日摸夜夜添夜夜爱| 国产熟女欧美一区二区| 热99re8久久精品国产| 亚洲精品日韩av片在线观看| 国产综合懂色| 综合色av麻豆| 免费无遮挡裸体视频| 性色avwww在线观看| 日本免费一区二区三区高清不卡| 亚洲一区高清亚洲精品| 美女国产视频在线观看| a级一级毛片免费在线观看| 综合色丁香网| 老女人水多毛片| 九九久久精品国产亚洲av麻豆| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 亚洲在久久综合| 97热精品久久久久久| 身体一侧抽搐| 又爽又黄无遮挡网站| 免费av毛片视频| av专区在线播放| 一级二级三级毛片免费看| 久久久久久久久久久免费av| 一本一本综合久久| 亚洲精品久久久久久婷婷小说 | 午夜福利在线在线| 欧美极品一区二区三区四区| 国产男人的电影天堂91| 国产亚洲精品av在线| av卡一久久| 边亲边吃奶的免费视频| 国产精品蜜桃在线观看| 亚洲国产欧美在线一区| 熟妇人妻久久中文字幕3abv| 午夜福利视频1000在线观看| 自拍偷自拍亚洲精品老妇| 国产91av在线免费观看| 国产av不卡久久| 日韩成人伦理影院| 日韩欧美精品免费久久| 国产乱人视频| 老司机福利观看| 最近最新中文字幕免费大全7| 中文字幕av在线有码专区| 丝袜美腿在线中文| 国内精品美女久久久久久| 麻豆av噜噜一区二区三区| 久久婷婷人人爽人人干人人爱| 美女被艹到高潮喷水动态| 国产黄片视频在线免费观看| 亚洲av日韩在线播放| 成人二区视频| 亚洲自偷自拍三级| 欧美激情国产日韩精品一区| 国产精华一区二区三区| 中文欧美无线码| 国产亚洲av片在线观看秒播厂 | 亚洲五月天丁香| 精品人妻偷拍中文字幕| 午夜福利成人在线免费观看| 国产黄a三级三级三级人| 成人高潮视频无遮挡免费网站| 男人的好看免费观看在线视频| 蜜臀久久99精品久久宅男| 国产精品永久免费网站| 男女边吃奶边做爰视频| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 亚洲精品成人久久久久久| 国产色婷婷99| 久久6这里有精品| 纵有疾风起免费观看全集完整版 | 国产成人精品一,二区| av在线天堂中文字幕| 美女脱内裤让男人舔精品视频| 韩国av在线不卡| 久久亚洲精品不卡| 日韩一区二区视频免费看| 少妇猛男粗大的猛烈进出视频 | 亚洲中文字幕日韩| 麻豆精品久久久久久蜜桃| av免费在线看不卡| 麻豆成人av视频| 一本久久精品| 国产真实伦视频高清在线观看| 一级爰片在线观看| 少妇裸体淫交视频免费看高清| av.在线天堂| 成年免费大片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩东京热| 国产亚洲精品久久久com| 亚洲国产精品sss在线观看| 天堂网av新在线| 91在线精品国自产拍蜜月| 日本黄大片高清| 女的被弄到高潮叫床怎么办| 久久人人爽人人爽人人片va| 欧美不卡视频在线免费观看| 久久精品夜色国产| 国产成人免费观看mmmm| 久久久久久久久久成人| 日韩精品青青久久久久久| 国产在线一区二区三区精 | 国产成人精品一,二区| 日本免费a在线| 1000部很黄的大片| 免费黄网站久久成人精品| 精品久久国产蜜桃| 波野结衣二区三区在线| 99热6这里只有精品| 色综合亚洲欧美另类图片| 日日摸夜夜添夜夜添av毛片| 日本欧美国产在线视频| 97人妻精品一区二区三区麻豆| 免费人成在线观看视频色| 国产成人a∨麻豆精品| 久久精品人妻少妇| 久久久久久久久久久丰满| 国产视频首页在线观看| 精品国产一区二区三区久久久樱花 | 久久这里有精品视频免费| 性插视频无遮挡在线免费观看| 国产极品天堂在线| 国产大屁股一区二区在线视频| 美女xxoo啪啪120秒动态图| 大话2 男鬼变身卡| 蜜桃久久精品国产亚洲av| 激情 狠狠 欧美| 在线天堂最新版资源| 如何舔出高潮| 一级毛片电影观看 | 亚洲aⅴ乱码一区二区在线播放| 久久久亚洲精品成人影院| 久久久久久久久久久丰满| 免费看美女性在线毛片视频| 国产女主播在线喷水免费视频网站 | 亚洲人成网站高清观看| 久久6这里有精品| 欧美又色又爽又黄视频| 国产成人精品一,二区| 色播亚洲综合网| 亚洲av中文av极速乱| 最近最新中文字幕大全电影3| 综合色丁香网| 久久热精品热| 日本三级黄在线观看| 欧美一区二区国产精品久久精品| 高清午夜精品一区二区三区| 老司机福利观看| 噜噜噜噜噜久久久久久91| 大话2 男鬼变身卡| 色尼玛亚洲综合影院| 国产黄色小视频在线观看| 国产精品综合久久久久久久免费|