• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A large carbon pool in lake sediments over the arid/semiarid region,NW China

    2015-01-17 09:25:37JianghuLanHaiXuBinLiuEnguoShengJiangtaoZhaoKekeYu
    Acta Geochimica 2015年3期

    Jianghu Lan?Hai Xu?Bin Liu,2?Enguo Sheng,3?Jiangtao Zhao?Keke Yu,3

    A large carbon pool in lake sediments over the arid/semiarid region,NW China

    Jianghu Lan1?Hai Xu1?Bin Liu1,2?Enguo Sheng1,3?Jiangtao Zhao1?Keke Yu1,3

    Carbon burial in lake sediments is an important component of the global carbon cycle.However,little is known about the magnitude of carbon sequestered in lake sediments over the arid/semiarid region of China(ASAC). In this study,we estimate both organic and inorganic carbon burial since~AD1800 based on nine lakes in ASAC, and discuss the most plausible factors controlling carbon burial.Our estimates show that the annual organic carbon burial rate(OCBR)ranges from 5.3 to 129.8 g cm-2year-1(weightedmeanof49.9g cm-2year-1),leadingtoastanding stock of 1.1–24.0 kg cm-2(weighted mean of 8.6 kg cm-2) and a regional sum of~108 Tg organic carbon sequestered since~AD1800.The annual inorganic carbon burial rate (ICBR)ranges from 11.4 to 124.0 g cm-2year-1(weighted mean of 48.3 g cm-2year-1),which is slightly lower than OCBR.The inorganic carbon standing stock ranges from 2.4 to 26.0 kg cm-2(weighted mean of 8.1 kg cm-2), resulting in a sum of~101 Tg regional inorganic carbon burial since~AD1800,which is slightly lower than the organic carbon sequestration.OCBR in ASAC shows a continuously increasing trend since~AD1950,which is possibly due to the high autochthonous and allochthonous primary production and subsequently high sedimentation rate in thelakes.This increasing carbon burial is possibly related to both climatic changes and enhanced anthropogenic activities,such as land use change,deforestation,and eutrophication in the lake.Furthermore,OCBR and ICBR are expected to continuously increase under the scenario of increasing precipitation and runoff and enhanced anthropogenic activities. Theresultsofthisresearchshowthattheburiedcarboninlake sediments of the ASAC region constitutes a signifcant and large carbon pool,which should be considered and integrated into the global carbon cycle.

    Organic and inorganic carbon burials·Lake sediments·ASAC·Carbon cycle

    1 Introduction

    Inland water systems are important transfer points for balancing the global atmospheric,terrestrial biosphere,and oceanic carbon cycles(Kastowski et al.2011).Carbon dioxide is directly and indirectly drawn-down from the atmosphere by biomass production and rock weathering, and transported by rivers to the ocean and/or lakes in both organic and inorganic carbon forms(Kastowski et al. 2011).In addition,carbon dioxide is directly drawn down from the atmosphere by hydrophytes,and subsequently sequestered in large amounts into sediments in organic form(Sobek et al.2009).Based on Pareto distribution, Dean and Gorham(1998)suggested that the inland water carbon pools,including lakes,reservoirs,and wetlands, collectively cover less than 2%of Earth’s surface and constitute a carbon sink of about 300 Tg year-1,which is three times larger than ocean carbon pools.Downing et al. (2006)proposed that about 4.6 million km2of continental land(more than 3%)is covered by water,which is twiceas large as previously assumed.Therefore,carbon burial in lake sediments should be a substantial and an important component of the global carbon cycle(Dean and Gorham 1998;Cole et al.2007).Lake sediments play an important role in removing carbon from the actively cycling carbon pools(Sobek et al.2009),and account for a large proportion of previously‘‘missing’’carbon by processing large amounts of terrestrially derived carbon,although certain fractions of carbon burial are returned to the atmosphere by degassing(Battin et al.2009;Downing 2009).However, due to the small coverage of Earth’s land surface,little attention has been directed to the role of carbon burial in lakes within the global carbon cycle.

    In recent years,an increasing number of studies have focused on lake carbon burial(Kortelainen et al.2004;Alin and Johnson 2007;Downing et al.2008;Kastowski et al. 2011;Dong et al.2012),among which nearly all studies focused on organic carbon burial,while inorganic carbon burial was,in most cases,overlooked.In addition,very few studies have focused on lake carbon burial in China even though the lake areas are large(Dong et al.2012).In this study,we estimate the organic and inorganic carbon burial from nine lakes in the arid/semiarid region of China (ASAC)since~AD1800,and discuss the most plausible factors controlling carbon burial.

    2 Background and methods

    2.1 Background

    The ASAC is located in northwestern China and has a total area of~2.55 million km2.It is situated in the temperate continental climatic zone,with annual temperatures ranging from 0 to 10°C.Precipitation over the ASAC region is mostly<400 mm per year,which is much less than the corresponding evaporation (~2000 mm per year) (Table 1).These climatic conditions lead to low vegetative cover,vulnerable ecosystems,and strong physical weathering over most of the ASAC area.Six provinces and/or autonomous regions of China(Xinjiang,Gansu,Inner Mongolia,Ningxia,Shannxi,and Shanxi)are located within the ASAC.

    2.2 Methods

    In this study,nine well-studied lakes in ASAC were chosen for estimating carbon burial based on quality of published sedimentation rate and organic and/or inorganic carbon content(Fig.1).To assess the burial rate of organic and inorganic carbon in each lake,the total organic carbon (TOC),total inorganic carbon(TIC),sedimentation rate, and dry bulk density(DBD)of the sediment are required. Once these parameters are derived it is possible to assess the organic carbon burial rate(OCBR)and inorganic carbon burial rate(ICBR)based on the following equations:

    We then proceed to calculate the total burial of organic carbon and inorganic carbon in the ASAC based on estimated lake surface area derived by the Pareto distribution method.In the following sections we derive each one of the required parameters.

    2.2.1 Sedimentation rate

    Assessment of carbon burial in lake sediments requires knowledge of the sedimentation rate.The linear interpolation/extrapolation of sedimentation rates used in this study is calculated using age-depth models,which are usually established by210Pb and/or137Cs(Fig.2).

    The results show that the sedimentation rate may have increased since~AD1950.This rate change have played a signifcant role in carbon burial in lake sediments(see discussion below).

    2.2.2 Dry bulk density

    Estimating carbon burial in lake sediments requires DBD data;unfortunately,it is generally not reported in the literature.Therefore,we choose an empirical approach to estimate DBD.A large number of studies show that DBD of lakesedimentsiscloselyrelatedtoTOC.Forexample,based on six alpine lake sediment cores,Menounos(1997)found a signifcant,nonlinear relationship between TOC and DBD (DBD=1.881-0.385×ln(TOC);R2=0.89).Avnimelech et al.(2001)examined the correlation between TOC and DBD in six different submerged sediments,including lake,pond,river,and sea foor sediments,and found that DBD is inversely related to TOC content(DBD=1.776 -0.363×ln(TOC);R2=0.70).Using three lakes in Minnesota,Dean and Gorham(1998)showed that DBD of lake sediments is mainly dependent on TOC content (DBD=1.665×TOC-0.887).Taking into consideration theeffectofcompaction,Campbelletal.(2000)presentedan additional relationship between TOC and DBD.A complicationintheDBDestimationmayarisewhenTOCcontentis less than 5%,because the data used to construct the best ft line does not include low TOC,as mentioned by Kastowski et al.(2011).Overall,DBD may be overestimated or underestimatedwhenTOCisveryloworveryhigh(Kastowski et al.2011).Here,we combine different empirical relationships between TOC and DBD in lake sediments generatedfrom the former(Fig.3)and divide the estimated DBD into two segments:when TOC content ranges from 2%to 10%, we use Eq.(3):

    Table 1 Selected limnological characteristics of the nine lakes

    While when DBD is higher than 10%or lower than 2%,Eq.(4)is used:

    However,when TOC is lower than a threshold value,a persistent increase in DBD should probably not occur with decreasing TOC content in lake sediments.Thus,DBD in lake sediments cannot appreciably be calculated by the equations proposed above.Extremely low TOC has often been reported in ASAC because of the low annual precipitation and high potential evaporation.Therefore,when the TOC content was less than 0.5%we use a DBD value of 2.5 g cm-3(Richerson et al.2008).

    In cases where no TOC data were available,we calculated TOC data from organic matter content(OM) (Eq.5)—(Dean 1974,1999)or loss on ignition at 550°C (LOI550)(Eq.6)—(Santisteban et al.2004):

    TIC was estimated in two ways:loss on ignition at 950°C(LOI950)using—(Santisteban et al.2004):

    or calculated by dividing carbonate content by 8.33(Dean 1999),which is the proportion of carbon in carbonate.

    2.2.3 Total lake surface area

    Evaluation of carbon burial in lake sediments of ASAC requires an estimate of the total lake surface area.Previous estimates suggested that large lakes dominate the global lakeareawith a totallakesurfaceareaof about 2–2.8×106km2(Meybeck 1995;Kalff 2001;Shiklomanov and Rodda 2003).Downing et al.(2006)addedsmall water bodies and using the Pareto distribution proposed that the global lake area is~4.6×106km2.

    Ma et al.(2010,2011)and Lehner and Do¨ll(2004)provided comprehensive lake surface data in China.Based on satellite images from CBERS CCD and Landsat TM/ETM, Maetal.(2010,2011)suggestedthattherearepresently2693 natural lakes in China with an area larger than 1 km2.The lakedistribution,asproposedbyLehnerandDo¨ll(2004)can generally be described by the size-frequency function:

    where Nais the number of lakes larger and/or equal to a specifc lake size A,and a and b are ftted equation parameters. In this study,we mainly analyze lakes in ASAC larger than 1 km2and neglect those smaller than 1 km2due to lack of data.Based on comprehensive lake data in this area (Ma et al.2010,2011),we found that the number of lakes in ASAC follows the Pareto distribution,where the number of lakes increases exponentially with decreasing lake area (Fig.4a)described by:

    And the total surface area of this region also can be obtained from Ma et al.(2010,2011),who implied that there is a total lake surface area of about 12,590 km2,with 514 lakes>1 km2and 19 lakes>100 km2(Figs.1,4b).

    Fig.2 The210Pb and137Cs activities in part of the selected lakes.a Erbinur Lake(Ma et al.2011;Wu et al.2009).b Bosten Lake(Chen et al. 2006).c Daihai Lake(Lan et al.2011).d Wulungu Lake(Liu et al.2008a,b).e Jili Lake(Jiang et al.2010)

    Fig.3 The empirical relationship between total organic carbon (TOC)content and dry bulk density(DBD)in lake sediments.The square dotted lines are results from Menounos(1997),Avnimelech et al.(2001),Campbell et al.(2000),and Dean and Gorham(1998). The red dotted line is applied for this study,stacked from the formers

    3 Results:estimating the carbon burial rate

    Based on the parameters calculated above and using Eqs.1 and 2,the results show that OCBR ranges from 5.3 to 129.8 g cm-2year-1with a weighted mean of 49.9 g cm-2year-1,resulting in an organic carbon standing stock of about 1.1–24.0 kg cm-2(weighted mean 8.6 kg cm-2)and a total regional organic carbon sequestration of~108 TgC since~AD1800 for lakes larger than 1 km2in ASAC(Table 2).

    The ICBR in ASAC was calculated as ranging between 11.4 and 124.0 g cm-2year-1,with a weighted mean of 48.3 g cm-2year-1resulting in an inorganic carbon standing stock of2.4–26.0 kg cm-2(weighted mean 8.1 kg cm-2)and a TIC sequestration of~101 TgC in lake sediments throughout the whole arid/semiarid area, both of which are slightly smaller than the corresponding organic carbon burial(Table 2).

    4 Discussion

    Carbon stored in atmospheric,oceanic,and terrestrial ecosystems are important parameters of the climate system and have thus received widespread attention(Fang et al. 2001;Sabine et al.2004;Canadell et al.2007;Bloom et al. 2010;Bond-Lamberty and Thomson 2010;Frank et al. 2010;Pan et al.2011;Ballantyne et al.2012).When constructing the various components of the carbon cycle,it is assumed that the oceans take up approximately one third of the CO2arising from fossil-fuel emissions,with the remaining two thirds divided between terrestrial ecosystems and the atmosphere.However,there still appears to be a missing carbon sink,which may be accounted for in terrestrial ecosystems(Siegenthaler and Sarmiento 1993). Thus it is crucial to assess the contributions of the various parts of the terrestrial ecosystems to the sequestration of carbon in order to better our understanding of the process that might occur under a regime of global warming. Models predict that in northwestern China,precipitation will increase as a consequence of global warming and enhance the water cycle(Shi et al.2007).The consequence of this process to the carbon cycle will be enhanced carbon transport to lakes from their catchments and subsequent escape to the atmosphere or sequestering in lake sediments (Molot and Dillon 1996).

    4.1 OCBR trend in ASAC since~AD1800

    OCBR in most ASAC lakes,excluding Ebinur Lake,has generally increased since~AD1950(Fig.5a).However, the temporal variations among those lakes are considerably different.

    To obtain a more comprehensive understanding of carbon burial in ASAC,we considered in more detail the impacts on carbon burial of precipitation,proportion of cropland and forest,population,and sedimentation rate.

    Fig.4 Total lake number of each lake size class in ASAC(a)and total lake surface area(b)

    Table 2 Organic and inorganic carbon burial in lake sediments of ASAC

    Fig.5 a OCBR trends in lake sediments over the arid/ semiarid,NW China,since~AD 1800.Bosten Lake(blue line), Erbinur Lake(pink line),Daihai Lake(wine line),Hongjiannao Lake(purple line),Jili Lake (yellow line)and Wulungu Lake (green line).b Precipitation reconstructed from tree-ring δ18O(red line)(Liu et al.2004, 2008a,b)and tree-ring width (blue line)(Zhang et al.2013)

    Reconstructed precipitation patterns based on tree-ring width(Zhang et al.2013)and δ18O(Liu et al.2004,2008a, b)show considerable variation beforeAD1970s,and a signifcant increase thereafter(Fig.5b).Moreover,a stimulate model also shows an increasing trend of precipitation since~AD1975(Shi et al.2007).Both results may roughly indicate that increased precipitation corresponds with enhanced OCBR,attributed to high primary production and chemical weathering under increased precipitation and temperature.Thus,precipitation is plausibly a predominate factor for organic carbon burial.

    Furthermore,the cropland area in Xinjiang province over the past 100 years has largely increased with the total population in China,especially afterAD1950(Ge and Dai 2005),which dramatically changed the land use and land cover.For example,the cropland area in Xinjiang province increased from about 17×104hm2in the 1920s to about 27×104hm2in the 1950s,and then rapidly increased to larger than 60×104hm2in 15 years(Ge and Dai 2005). The total forest area in ASAC substantially decreased during the period 1800–1950(Ge and Dai 2005;He et al. 2007)due to deforestation by anthropogenic activity.Itwas,however,slightly increased after 1950 and sharply reforested since 1975 due to governmental policy.Enhanced cropland area and reduced forest area due to anthropogenic activity may release organic carbon to the atmosphere which previously was stored in soils and forests(Ge et al.2008).On the other hand,higher sedimentation rates in lakes in areas with enhanced anthropogenic activity in their catchments suggest that organic carbon stored in the forest and soil and inorganic carbon stored in soil may be transported by rivers to lakes from catchments and then buried in lake sediments at higher rates.More organic and inorganic carbons are also sequestered by enhanced hydrophytesdueto eutrophication in lakes. Therefore,increased OCBR and ICBR in recent lake sediments may be indirectly driven by in-catchment anthropogenic activity and directly enhanced by autochthonous hydrophyte blooms.

    Gudasz et al.(2010)found that the mineralization of organic carbon in lake sediments is strongly and positively related to temperature,suggesting that carbon burial would decrease with increased temperature.However,they did not consider the enhancement of anthropogenic activity and the possibility of increased autochthonous and allochthonous primary production with global warming.In our opinion,no matter what complex processes are involved,the burial of carbon in lake sediments can be regarded as a net sink,and sequestration will increase with increasing carbon burial rate.This is also consistent with the results of other studies(Hollander et al.1992;Dean and Gorham 1998;Downing et al.2008;Kastowski et al.2011; Dong et al.2012;Heathcote and Downing 2012).Shi et al. (2007)simulated an increase by 19%in precipitation and more than 10%in runoff in northwestern China under future climate for doubled CO2concentrations using a regional climate model—RegCM2.Anthropogenic activity will probably increase with increasing population.Under such circumstances,carbon burial rates would be expected to increase by about 20%,corresponding to OCBR and ICBR in ASAC conservatively increasing to 59.9 and 57.9 gm-2year-1,respectively.

    4.2 Spatial patterns of carbon burial in ASAC

    Although spatial patterns in lake carbon burial rates over the ASAC region are considerably different,some general features do stand out.For example,carbon burial rates in the eastern region are generally higher than those in the western region.Our estimates show that the OCBR in Daihai Lake,Hongjiannao Lake,and Hulun Lake in the eastern ASAC are 114.2,129.8 and 45.5 gm-2year-1,respectively;while ICBR estimates for those lakes are 124.0, 111.2,and 22.4 gm-2year-1,respectively.These are higher than the corresponding values in the western region.We assume that the east–west variation of carbon burial rate results primarily from variations in the mode of mean annual precipitation in China(Fig.1)and the strength of anthropogenic activity.Annual precipitation is much higher in the eastern than in the western ASAC(Fig.1), which would lead to larger carbon sequestration and strong weathering in the eastern catchment ecosystems.And eastern China is more densely populated,and thus the impact of anthropogenic activity may be much stronger.

    There are,however,some exceptions,such as Bosten Lake and Chaiwopu Lake.Both OCBR and ICBR in these lakes are higher than other lakes in the same climatic region and even higher than lakes in wetter regions.We propose that these lakes may be subjected to stronger anthropogenic impacts than other lakes(Zheng et al.2012). In a recent study,Anderson et al.(2013,2014)proposed that contemporarily OCBR in European lakes have increased at least four to fve fold due to stronger anthropogenic impacts,not climate change.Thus,a second feature of carbon burial pattern in ASAC is that OCBR and ICBR are much higher in areas subjected to more intense anthropogenic activity.Furthermore,the two features of carbon burial rates indicate that a large carbon pool in ASAC is collectively driven by climatic change and enhanced anthropogenic activity.

    4.3 Comparison with other regions

    ToassesstheimportanceofOCBRinASAC,wecomparethe values calculated in this work with OCBR in other regions in China and around the world.The OCBR in ASAC ranges from 5.3 to 129.8 g cm-2year-1with a weighted mean of 49.9 g cm-2year-1since~AD1800.Ourresultssuggestthat organic carbon sequestered by lakes with area>1 km2in ASAC(~73 Tg organic carbon)is much higher than that of theYangtzefoodplain(~41 Tgorganiccarbon)(Dongetal. 2012)in the same period(both since~AD1850).Although annual precipitation at the Yangtze foodplain is generally three to four times higher than at ASAC,anthropogenic activity at the Yangtze foodplain may also be much stronger than at ASAC and the total area of lakes>1 km2in the Yangtze foodplain(about16,476 km2)isalsoslightly higher thaninASAC(about12,590 km2)(Dong etal.2012).OCBR in European lakes in the uppermost 20 cm sediments is 10.6 g cm-2year-1on average(Kastowski et al.2011).In agriculturallyeutrophicimpoundments,OCBRrangedfroma lowof148 g cm-2year-1toahighof17,000 g cm-2year-1(Downingetal.2008),whichismuchhigherthanotherreports and reinforces the importance of anthropogenic activity to carbon burial.Based on carbon mass balance studies of 20 small forested catchments and seven lakes in Ontario, Molot and Dillon(1996)calculated that approximately18–31 Tg year-1of organic and inorganic carbon are stored in boreal lake sediments.In one lake—Lake Chaohu on the Yangtze foodplain—OCBR was about 5–30 m-2year-1, resulting in standing stocks of 1.15 kg cm-2sinceAD1850 (Dongetal.2012).InalakeintheUnitedStates’stateofIowa, OCBR increased to 200 gm-2year-1following agricultural development(Heathcote and Downing 2012).OCBR for the top 10 cm of eutrophic Lake Greifen,Switzerland,is 50–60 gm-2year-2(DeanandGorham1998;Hollanderetal. 1992),which also supports the importance of anthropogenic activitytocarbonburial.Onaglobalscale,DeanandGorham (1998)suggest that global OCBR in the largest lakes(area>5000 km2)and smaller lakes is 5 and 72 gm-2year-1,respectively.Subsequently,the total global organic carbon burialinlakesis42 Tg year-1.AllofthissuggeststhatASAC isalargecarbonpool,althoughtheprimaryproductioninthis region may be less than other regions.

    4.4 A possible carbon sink from parts of the buried inorganic carbon

    Little attention has been previously given to the inorganic carbon cycle in lakes,which is partly due to the understanding that inorganic carbon is mechanically transported from catchment to lake and/or directly inputted from precipitation(Dillon and Molot 1997;Urban et al.2005),but not directly from atmospheric CO2.However,part of the dissolved inorganic carbon(DIC),which comes from both carbonate and silicate weathering and/or directly from hydration with atmosphere(Liu et al.2010,2011;Liu 2011),may be kept in the water systems for a prolonged time span,and can be regarded as a temporary carbon sink. In addition,more than 70%of riverine DIC is directly and/ or indirectly withdrawn from atmospheric CO2,and portions of the DIC in lake waters may potentially precipitate as alkaline minerals and be buried in lake sediments,as suggested by our most recent estimate(Xu et al.2013). Therefore,although we do not know exactly how much of the inorganic carbon in lake sediments is a carbon sink, some portion may eventually form a carbon sink and balance the global carbon cycle.

    Recently,based on three methods,Wang et al.(2012) determined the soil organic carbon(SOC)and soil inorganic carbon(SIC)in northwest China,and showed that all three methods produce consistently low values for SOC and high values for SIC.These results also imply the potential importance of inorganic carbon for lake carbon burial.The combined organic and inorganic carbon burial in the lakes in ASAC constitutes a large carbon sink and deserve more attention and integration into the global carbon cycle.

    5 Summary

    We estimated the carbon burial in lake sediments over the ASAC region,and showed that carbon burial in lake sediments since~AD1800 amounted to~209 TgC,with organic and inorganic carbon burials~108 and~101 TgC,respectively.Since~AD1950,OCBR shows increasing trends, which are possibly related to climatic changes and enhanced anthropogenic activities.If global warming continues,the increased precipitation and runoff over the ASAC region may lead to increased OCBR and ICBR in lake sediments of ASAC.These constitute a large carbon pool in the ASAC region and need to be given more attention in the future.

    AcknowledgmentsThe authors are grateful to Yoni Goldsmith (Lamont–Doherty Earth Observatory,Columbia University)for suggestions on this manuscript.This work is jointly funded by the Chinese Academy of Science(CAS)Strategic Priority Research Program (Grant No.XDA05120404),the National Basic Research Program of China(No.2013CB955903),the State Key Laboratory of Loess and Quaternary Geology(No.SKLLQG1406)and the Western Light Talent Culture Project of CAS.

    Alin SR,Johnson TC(2007)Carbon cycling in large lakes of the world:a synthesis of production,burial,and lake-atmosphere exchange estimates.Glob Biogeochem Cycles 21:GB3002

    Anderson NJ,Dietz RD,Engstrom DR(2013)Land-use change,not climate change,controls organic carbon burial in lakes.Proc R Soc B 280:20131278

    Anderson NJ,Bennion H,Lotter AF(2014)Lake eutrophication and its implications for organic carbon sequestration in Europe.Glob Change Biol 20:2741–2751

    Avnimelech Y,Ritvo G,Meijer LE,Kochba M(2001)Water content, organic carbon and dry bulk density in fooded sediments. Aquacult Eng 25:25–33

    Ballantyne AP,Alden CB,Miller JB,Tans PP,White JWC(2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.Nature 488:70–72

    Battin TJ,Luyssaert S,Kaplan LA,Aufdenkampe AK,Richter A, Tranvik LJ(2009)The boundless carbon cycle.Nat Geosci 2:598–600

    Bloom AA,Palmer PI,Fraser A,Reay DS,Frankenberg C(2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data.Science 327:322–325

    Bond-LambertyB,ThomsonA (2010)Temperature-associated increases in the global soil respiration record.Nature 464:579–582

    Campbell ID,Campbell C,Vitt DH,Kelker D,Laird LD,Trew D, Kotak B,LeClair D,Bayley S(2000)A frst estimate of organic carbon storage in Holocene lake sediments in Alberta,Canada. J Paleolimnol 24:395–400

    Canadell JG,Le Que′re′C,Raupach MR,Field CB,Buitenhuis ET, Ciaisf P,Conwayg TJ,Gillettc NP,Houghtonh RA,Marlandet G (2007)Contributions to accelerating atmospheric CO2growth from economic activity,carbon intensity,and effciency of natural sinks.Proc Natl Acad Sci 104:18866

    Chen FH,Huang XZ,Zhang JW,Holmes JA,Chen JH(2006)Humid little ice age in arid central Asia documented by Bosten Lake. Sci China Ser D Earth Sci 49:1280–1290

    Cole JJ,Prairie YT,Caraco NF,McDowell WH,Tranvik LJ,Striegl RG,Duarte CM,Kortelainen P,Downing JA,Middelburg JJ, Melack J(2007)Plumbing the global carbon cycle:integrating inland waters into the terrestrial carbon budget.Ecosystems 10:171–184

    Dean WE(1974)Determination of carbonate and organic-matter in calcareous sediments and sedimentary-rocks by loss on ignition—comparison with othermethods.J SedimentPetrol 44:242–248

    Dean WE(1999)The carbon cycle and biogeochemical dynamics in lake sediments.J Paleolimnol 21:375–393

    Dean WE,Gorham E(1998)Magnitude and signifcance of carbon burial in lakes,reservoirs,and peatlands.Geology 26:535–538

    Dillon PJ,Molot LA(1997)Dissolved organic and inorganic carbon mass balances in central Ontario lakes.Biogeochemistry 36:29–42

    Dong X,Anderson NJ,Yang X,Chen X,Shen J(2012)Carbon burial by shallow lakes on the Yangtze foodplain and its relevance to regional carbon sequestration.Glob Change Biol 18:2205–2217

    Downing JA(2009)Global limnology:up-scaling aquatic services and processes to planet earth.Verh Int Ver Limnol 30:1149–1166

    Downing JA,Prairie YT,Cole JJ,Duarte CM,Tranvik LJ,Striegl RG, McDowell WH,Kortelainen P,Caraco NF,Melack JM, Middelburg JJ(2006)The global abundance and size distribution oflakes,ponds,and impoundments.LimnolOceanogr 51:2388–2397

    Downing JA,Cole JJ,Middelburg JJ,Striegl RG,Duarte CM, Kortelainen P,Prairie YT,Laube KA(2008)Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century.Glob Biogeochem Cycles 22:GB1018

    Fang J,Chen A,Peng C,Zhao S,Ci L(2001)Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Frank DC,Esper J,Raible CC,Bu¨ntgen U,Trouet V,Stocker B,Joos F(2010)Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate.Nature 463:527–530

    Ge QS,Dai JH(2005)Farming and forestry land use changes in China and their driving forces from 1900 to 1980.Sci China Ser D Earth Sci 48:1747–1757

    Ge QS,Dai JH,He FN,Pan Y,Wang MM(2008)Land use changes and their relations with carbon cycles over the past 300 a in China.Sci China Ser D Earth Sci 51:871–884

    Gudasz C,Bastviken D,Steger K,Premke K,Sobek S,Tranvik LJ (2010)Temperature-controlled organic carbon mineralization in lake sediments.Nature 466:478–481

    He FN,Ge QS,Dai JH,Lin SS(2007)Quantitative analysis on forest dynamics of China in recent 300 years.Acta Geogr Sin 62:30–40

    Heathcote AJ,Downing JA(2012)Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape.Ecosystems 15:60–70

    Hollander DJ,Mckenzie JA,Lotenhaven H(1992)A 200-year sedimentary record of progressive eutrophication in Lake Greifen(Switzerland)—implications for the origin of organiccarbon-rich sediments.Geology 20:825–828

    Jiang QF,Shen J,Liu XQ,Zhang EL,Xiao XY(2007)A highresolution climatic change since Holocene inferred from multiproxy of lake sediment in westerly area of China.Chin Sci Bull 52:1970–1979

    Jiang QF,Shen J,Liu XQ,Ji JF(2010)Environmental changes recorded by lake sediments from Lake Jili,Xinjiang during the past 2500 year.J Sci 22:119–126(in Chinese)

    Kalff J(2001)Limnology:inland water ecosystems.Prentice,New Jersey

    Kastowski M,Hinderer M,Vecsei A(2011)Long-term carbon burial in European lakes:analysis and estimate.Glob Biogeochem Cycles 25:GB3019

    Kortelainen P,Pajunen H,Rantakari M,Saarnisto M(2004)A large carbon pool and small sink in boreal Holocene lake sediments. Glob Change Biol 10:1648–1653

    Lan JH,Xu H,Liu B(2011)A preliminary study of sedimentation rate and geochemistry in Lake Daihai,southeastern of Inner Mongolia,China.J Earth Environ 2:278–284(in Chinese)

    Lehner B,Do¨ll P(2004)Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Li S,Chen S,Zhang J(2010)Environmental changes recorded by lake sediments from Hongjiannao Lake during recent ffty years. J Anhui Agric Sci 38:2534–2537(in Chinese)

    Liu ZH(2011)Is pedogenic carbonate an important atmospheric CO2 sink?Chin Sci Bull 56:3794–3796

    Liu Y,Ma L,Leavitt SW,Cai Q,Liu W(2004)A preliminary seasonal precipitation reconstruction from tree-ring stable carbon isotopes at Mt.Helan,China,sinceAD1804.Glob Planet Change 41:229–239

    Liu X,Herzschuh U,Shen J,Jiang Q,Xiao X(2008a)Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang,China.Quat Res 70:412–425

    Liu Y,Cai Q,Liu W,Yang Y,Sun J,Song H,Li X(2008b)Monsoon precipitation variation recorded by tree-ring δ18O in arid Northwest China sinceAD1878.Chem Geol 252:56–61

    Liu ZH,Dreybrodt W,Wang HJ(2010)A new direction in effective accounting for the atmospheric CO2 budget:considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms.Earth Sci Rev 99:162–172

    Liu ZH,Dreybrodt W,Liu H(2011)Atmospheric CO2sink:silicate weathering or carbonate weathering?Appl Geochem 26:s292–s294

    Ma RH,Yang GH,Duan HT,Jiang JH,Wang SM,Feng XZ,Li AN,Kong FX,Xue B,Wu JL,Li SJ(2010)China’lakes at present:number,area spatial distrbution.Sci China Earth Sci 54:283–289

    Ma L,Wu J,Yu H,Zeng H,Abuduwaili J(2011)The medieval warm period and the Little ice age from a sediment record of Lake Ebinur,northwest China.Boreas 40:518–524

    Menounos B(1997)The water content of lake sediments and its relationship to other physical parameters:an alpine case study. Holocene 7:207–212

    Meybeck M(1995)Glob distribution of lakes.In:Lerman(ed) Physics and chemistry of lakes.Springer,Berlin,pp 1–35

    Molot LA,Dillon PJ(1996)Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere.Glob Biogeochem Cycles 10:483–492

    Pan Y,Birdsey RA,Fang J,Houghton R,Kauppi PE,Kurz WA, Phillips OL,Shvidenko A,Lewis SL,Canadell JG,Ciais P, Jackson RB,Pacala S,McGuire AD,Piao S,Rautiainen A,Sitch S,Hayes D(2011)A large and persistent carbon sink in the world’s forests.Science 333:988–993

    Richerson PJ,Suchanek TH,Zierenberg RA,Osleger DA,Heyvaert AC,Slotton DG,Eagles-Smith CA,Vaughn CE(2008)Anthropogenic stressors and changes in the Clear Lake ecosystem as recorded in sediment cores.Ecol Appl 18:A257–A283

    Sabine CL,Feely RA,Gruber N,Key RM,Lee K,Bullister JL, Wanninkhof R,Wong CS,Wallace DWR,Tilbrook B,Millero FJ,Peng T,Kozyr A,Ono T,Rios AF(2004)The oceanic sink for anthropogenic CO2.Science 305:367–371

    Santisteban JI,Mediavilla R,Lopez-Pamo E,Dabrio CJ,Zapata MBR,Garc?a MJG,Castano S,Mart?nez-Alfaro PE(2004)Loss on ignition:a qualitative or quantitative method for organicmatter and carbonate mineral content in sediments?J Paleolimnol 32:287–299

    Shen J,Wang Y,Yang X,Zhang E,Yang B,Ji J(2005) Paleosandstorm characteristics and lake evolution history deduced from—the case of Hongjiannao Lake,Shaanxi Province. Chin Sci Bull 50:2355–2361

    Shi Y,Shen Y,Kang E,Li D,Ding Y,Zhang G,Hu R(2007)Recent and future climate change in northwest China.Clim Change 80:379–393

    Shiklomanov IA,Rodda JC(2003)World water resources at the beginning of the twenty-frst century.Cambridge University Press,Cambridge

    Siegenthaler U,Sarmiento J(1993)Atmospheric carbon dioxide and the ocean.Nature 365:119–125

    Sobek S,Durisch-Kaiser E,Zurbrugg R,Wongfun N,Wessels M, Pasche N,Wehrlia B(2009)Organic carbon burial effciency in lake sediments controlled by oxygen exposure time and sediment source.Limnol Oceanogr 54:2243–2254

    Sun Q,Zhou J,Shen J,Chen P,Wu F,Xie X(2006)Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai,north environment sensitive zone, China.Sci China Ser D Earth Sci 49(9):968–981

    Urban N,Auer M,Green S,Lu X,Apul DS,Powell KD,Bub L (2005)Carbon cycling in Lake Superior.J Geophys Res 110:C06S90

    Wang X,Wang J,Zhang J(2012)Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China.PLoS One 7:e44334

    Wu J,Ma L(2010)Characteristcs of the climate and environment in arid regions over the past 150 years recoreded by the core sediments of Chaiwopu Lake,Xinjiang,China.Quat Sci 30:1137–1144(in Chinese)

    Wu J,Yu Z,Zeng H,Wang N(2009)Possible solar forcing of 400-year wet–dry climate cycles in northwestern China=.Clim Change 96:473–482

    Wu¨nnemann B,Mischke S,Chen F(2006)A Holocene sedimentary record from Bosten Lake,China=.Palaeogeogr Palaeoclimatol Palaeoecol 234:223–238

    Xiao J,Xu Q,Nakamura T,Yang X,Liang W,Inouchi Y(2004) Holocene vegetation variation in the Daihai Lake region:a direct indication of the Asian monsoon climatic history.Quat Sci Rev 23:1669–1679

    Xiao J,Wu J,Si B,Liang W,Nakamura T,Liu B,Inouchi Y(2006) Holocene climate changes in the monsoon arid transition by carbon concentration in Daihai Lake of Inner Mongolia. Holocene 16:551–560

    Xu H,Lan J,Liu B,Sheng E,Yeager KM(2013)Modern carbon burial in Lake Qinghai,China.Appl Geochem 39:150–155

    Xue JB,Zhong W(2011)Holocene climate variation denoted by Barkol Lake sediments and its possible linkage to the high and low latitude climates.Sci China Earth Sci 54:603–614

    Zhang T,Yuan Y,Liu Y,Wei W,Yu S,Chen F,Fan Z,Shang H, Zhang R,Qin L (2013)A tree ring based precipitation reconstruction for the Baluntai region on the southern slope of the central Tien Shan Mountains,China,sinceAD1464.Quat Int 283:55–62

    Zhao HY,Wu LJ,Hao WJ(2008)Infuences of climate change to ecological and environmental evolvement in the Hulun Lake wetland and its surrounding areas.Acta Ecol Sin 28:1064–1071 (in Chinese)

    Zheng B,Zhang E,Gao G(2012)The change of primary productivity of Lake Bosten in Xinjiang over the past 100-year.J Lake Sci 24:466–473(in Chinese)

    Received:8 October 2014/Revised:21 January 2015/Accepted:9 March 2015/Published online:27 March 2015

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    ? Jianghu Lan lanjh@ieecas.cn;lanjh115@163.com

    1State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment,Chinese Academy of Sciences,Xi’an 710061,China

    2College of Resources and Environment,Zunyi Normal College,Zunyi 563002,China

    3University of Chinese Academy of Sciences,Beijing 100049, China

    老司机影院毛片| 97在线视频观看| 日本爱情动作片www.在线观看| 国产精品久久久久久精品电影小说| 国产精品久久久久久精品古装| 精品人妻一区二区三区麻豆| 国产在线免费精品| av播播在线观看一区| 日本wwww免费看| 亚洲国产精品一区三区| 老司机亚洲免费影院| 超碰97精品在线观看| 国产精品麻豆人妻色哟哟久久| 看免费成人av毛片| 国产精品.久久久| 免费观看的影片在线观看| 美女大奶头黄色视频| 中国美白少妇内射xxxbb| 久久久久久久久久成人| 91精品一卡2卡3卡4卡| 午夜免费男女啪啪视频观看| 久久婷婷青草| 国产精品蜜桃在线观看| h视频一区二区三区| 精品国产一区二区三区久久久樱花| 制服诱惑二区| 青青草视频在线视频观看| 国产成人aa在线观看| 国产亚洲精品第一综合不卡 | 国产高清三级在线| 日本-黄色视频高清免费观看| 少妇丰满av| 天堂8中文在线网| 少妇 在线观看| 亚洲欧美色中文字幕在线| 免费av不卡在线播放| 成人黄色视频免费在线看| 男女边吃奶边做爰视频| 久久久久网色| 黄色欧美视频在线观看| 欧美精品一区二区大全| 亚洲av福利一区| 亚洲婷婷狠狠爱综合网| 久热久热在线精品观看| 国产欧美亚洲国产| 日韩制服骚丝袜av| 99久久精品国产国产毛片| 高清在线视频一区二区三区| 制服丝袜香蕉在线| 久久久精品94久久精品| 天堂俺去俺来也www色官网| 免费看不卡的av| 日韩人妻高清精品专区| 黑人猛操日本美女一级片| 人妻少妇偷人精品九色| 欧美激情 高清一区二区三区| 午夜日本视频在线| 黄色怎么调成土黄色| 成人二区视频| 欧美最新免费一区二区三区| 日韩中文字幕视频在线看片| 人妻少妇偷人精品九色| 伦精品一区二区三区| 只有这里有精品99| 日本爱情动作片www.在线观看| 丝袜在线中文字幕| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 日本黄大片高清| 777米奇影视久久| 国产亚洲精品久久久com| 午夜福利视频在线观看免费| 在线看a的网站| 亚洲综合色网址| 国产精品嫩草影院av在线观看| 亚洲国产毛片av蜜桃av| 肉色欧美久久久久久久蜜桃| xxx大片免费视频| 国语对白做爰xxxⅹ性视频网站| av黄色大香蕉| 午夜福利网站1000一区二区三区| 国国产精品蜜臀av免费| 国产精品久久久久久精品古装| 免费看光身美女| 国产精品偷伦视频观看了| 18禁在线播放成人免费| 中文字幕免费在线视频6| 久久久久国产网址| 草草在线视频免费看| 毛片一级片免费看久久久久| 新久久久久国产一级毛片| 99国产综合亚洲精品| 七月丁香在线播放| 精品人妻偷拍中文字幕| 久久久国产一区二区| 久久97久久精品| 亚洲成人手机| 少妇猛男粗大的猛烈进出视频| 亚洲婷婷狠狠爱综合网| av电影中文网址| 性色av一级| 久久久久久久久久成人| 我的女老师完整版在线观看| 最近的中文字幕免费完整| 久久毛片免费看一区二区三区| freevideosex欧美| 青青草视频在线视频观看| 飞空精品影院首页| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| 国产69精品久久久久777片| 日本黄色日本黄色录像| 桃花免费在线播放| 国产 精品1| 亚洲精华国产精华液的使用体验| 亚洲熟女精品中文字幕| 午夜福利影视在线免费观看| 久久毛片免费看一区二区三区| 街头女战士在线观看网站| 9色porny在线观看| 十八禁高潮呻吟视频| 亚洲第一区二区三区不卡| 国产精品免费大片| 国产视频内射| 女人久久www免费人成看片| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 人妻 亚洲 视频| 免费高清在线观看视频在线观看| 国产免费一区二区三区四区乱码| 一区二区日韩欧美中文字幕 | 91久久精品电影网| 国产av国产精品国产| 国产日韩欧美亚洲二区| 国产精品国产三级专区第一集| 国产综合精华液| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看| 免费久久久久久久精品成人欧美视频 | 人妻人人澡人人爽人人| 交换朋友夫妻互换小说| 成人国产麻豆网| 久久影院123| 午夜福利视频精品| 午夜激情福利司机影院| 亚洲国产毛片av蜜桃av| 亚洲中文av在线| 母亲3免费完整高清在线观看 | xxx大片免费视频| 高清欧美精品videossex| 免费看av在线观看网站| 狂野欧美激情性bbbbbb| 妹子高潮喷水视频| 日韩精品免费视频一区二区三区 | 国产黄片视频在线免费观看| 亚洲欧美色中文字幕在线| 日韩av不卡免费在线播放| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 制服丝袜香蕉在线| 国产av国产精品国产| av在线老鸭窝| 制服诱惑二区| 国产精品久久久久久精品电影小说| 午夜福利,免费看| 九九久久精品国产亚洲av麻豆| 免费日韩欧美在线观看| 欧美日本中文国产一区发布| 亚洲综合色网址| 久久久精品区二区三区| 亚洲第一区二区三区不卡| 中文字幕最新亚洲高清| 十八禁高潮呻吟视频| 国产精品 国内视频| 国产成人av激情在线播放 | 如日韩欧美国产精品一区二区三区 | 日韩av免费高清视频| 国产69精品久久久久777片| 成人亚洲精品一区在线观看| 久久ye,这里只有精品| 国产欧美日韩一区二区三区在线 | 国产精品国产三级国产专区5o| 精品酒店卫生间| 国产成人精品婷婷| 国产爽快片一区二区三区| 亚洲欧美精品自产自拍| 欧美性感艳星| 99久久人妻综合| 中文天堂在线官网| 美女内射精品一级片tv| 亚洲国产精品999| 精品一区二区免费观看| 国产精品一二三区在线看| 亚洲中文av在线| 国产成人精品婷婷| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 一区二区三区乱码不卡18| 久久久欧美国产精品| 成人国产麻豆网| 丝袜脚勾引网站| 免费看光身美女| 大码成人一级视频| 亚洲精品国产av蜜桃| 边亲边吃奶的免费视频| 久久综合国产亚洲精品| 老女人水多毛片| 久久久午夜欧美精品| 99久久综合免费| 亚洲人成网站在线观看播放| 搡女人真爽免费视频火全软件| 国产精品99久久99久久久不卡 | 久久午夜福利片| 日韩一区二区视频免费看| 美女主播在线视频| 韩国av在线不卡| 欧美最新免费一区二区三区| 亚洲精品久久午夜乱码| 日韩 亚洲 欧美在线| 欧美+日韩+精品| 桃花免费在线播放| 晚上一个人看的免费电影| 天天操日日干夜夜撸| 久久精品久久精品一区二区三区| 欧美变态另类bdsm刘玥| 色吧在线观看| 另类精品久久| 纵有疾风起免费观看全集完整版| 午夜91福利影院| 欧美激情 高清一区二区三区| 国产欧美日韩综合在线一区二区| 久久精品国产亚洲网站| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 亚洲中文av在线| av一本久久久久| av黄色大香蕉| 国产国语露脸激情在线看| 美女cb高潮喷水在线观看| 人妻一区二区av| 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲精品日本国产第一区| 岛国毛片在线播放| 久久综合国产亚洲精品| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃国产av成人99| 国产黄色免费在线视频| 日韩免费高清中文字幕av| 亚洲性久久影院| 亚洲国产欧美在线一区| 精品亚洲乱码少妇综合久久| 日韩中字成人| 婷婷色av中文字幕| 18在线观看网站| 婷婷色综合www| 亚洲国产日韩一区二区| 国产精品女同一区二区软件| 一区二区日韩欧美中文字幕 | 少妇的逼好多水| av线在线观看网站| 日韩伦理黄色片| 久久久久国产精品人妻一区二区| 成年美女黄网站色视频大全免费 | 满18在线观看网站| 高清欧美精品videossex| 九草在线视频观看| a级毛片免费高清观看在线播放| 亚洲精品一区蜜桃| 亚洲欧美成人综合另类久久久| 国产视频内射| 亚洲av国产av综合av卡| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 有码 亚洲区| 国产乱人偷精品视频| 欧美精品一区二区免费开放| 久久精品夜色国产| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 色5月婷婷丁香| 国产精品免费大片| 欧美97在线视频| 国产一区二区在线观看av| 婷婷成人精品国产| 日本与韩国留学比较| 老司机影院成人| 亚洲经典国产精华液单| 最近中文字幕高清免费大全6| 亚洲人成网站在线观看播放| √禁漫天堂资源中文www| videos熟女内射| 男人操女人黄网站| 成人二区视频| 制服诱惑二区| 婷婷色av中文字幕| 日本av免费视频播放| 人妻少妇偷人精品九色| 人成视频在线观看免费观看| 成人无遮挡网站| 日本黄色日本黄色录像| 天美传媒精品一区二区| 国产毛片在线视频| 日本猛色少妇xxxxx猛交久久| 免费黄频网站在线观看国产| www.色视频.com| 美女视频免费永久观看网站| 国产黄频视频在线观看| 久久久精品区二区三区| 一区二区三区精品91| 女性被躁到高潮视频| 色网站视频免费| 最近中文字幕高清免费大全6| 亚洲精品一二三| 亚洲内射少妇av| 久久久久久久亚洲中文字幕| 一本—道久久a久久精品蜜桃钙片| 中文字幕制服av| 欧美亚洲 丝袜 人妻 在线| 国产 精品1| 男女免费视频国产| 亚洲四区av| 人体艺术视频欧美日本| videossex国产| 日韩,欧美,国产一区二区三区| 丰满乱子伦码专区| av视频免费观看在线观看| 午夜激情久久久久久久| 免费少妇av软件| 亚洲av.av天堂| 午夜精品国产一区二区电影| 五月伊人婷婷丁香| 欧美 日韩 精品 国产| 美女大奶头黄色视频| 校园人妻丝袜中文字幕| 亚洲精品一二三| 高清av免费在线| 亚洲精品中文字幕在线视频| 母亲3免费完整高清在线观看 | xxx大片免费视频| 精品亚洲成a人片在线观看| 日韩精品有码人妻一区| 纯流量卡能插随身wifi吗| 成人手机av| 亚洲五月色婷婷综合| 欧美精品一区二区大全| 亚洲欧美一区二区三区国产| 男女啪啪激烈高潮av片| 97精品久久久久久久久久精品| 高清黄色对白视频在线免费看| 美女cb高潮喷水在线观看| 99国产综合亚洲精品| 久久午夜福利片| .国产精品久久| 亚洲欧美日韩卡通动漫| 国产成人精品福利久久| 午夜福利视频精品| 色94色欧美一区二区| 中文字幕av电影在线播放| 欧美+日韩+精品| 黄片播放在线免费| 国产成人freesex在线| 亚洲情色 制服丝袜| 欧美激情 高清一区二区三区| 久久ye,这里只有精品| 另类亚洲欧美激情| 亚洲国产精品一区三区| 一个人看视频在线观看www免费| 黄片播放在线免费| 免费大片黄手机在线观看| av在线播放精品| 国产在线视频一区二区| 一区二区三区四区激情视频| 国产精品.久久久| 卡戴珊不雅视频在线播放| 国产欧美亚洲国产| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 国产精品熟女久久久久浪| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人 | 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 国产免费视频播放在线视频| 色网站视频免费| 日韩免费高清中文字幕av| 全区人妻精品视频| 五月天丁香电影| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 91国产中文字幕| 丝袜在线中文字幕| 日本wwww免费看| 乱码一卡2卡4卡精品| 七月丁香在线播放| 久久狼人影院| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 国产黄色免费在线视频| 嘟嘟电影网在线观看| 一区在线观看完整版| 国产欧美日韩一区二区三区在线 | 男人添女人高潮全过程视频| 国产男人的电影天堂91| 少妇的逼水好多| 成人18禁高潮啪啪吃奶动态图 | 大片电影免费在线观看免费| 热99久久久久精品小说推荐| 国产精品一区二区在线不卡| 麻豆成人av视频| 人人妻人人添人人爽欧美一区卜| 亚洲中文av在线| 一区二区三区免费毛片| 亚洲av日韩在线播放| 午夜激情av网站| 亚洲精品久久久久久婷婷小说| 欧美丝袜亚洲另类| 国产国语露脸激情在线看| 亚洲少妇的诱惑av| 一边亲一边摸免费视频| 久久久欧美国产精品| 欧美国产精品一级二级三级| 久久久久久久久久成人| 亚洲高清免费不卡视频| 午夜福利在线观看免费完整高清在| 免费日韩欧美在线观看| 18在线观看网站| 美女视频免费永久观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产深夜福利视频在线观看| 街头女战士在线观看网站| 简卡轻食公司| 熟女电影av网| 99九九线精品视频在线观看视频| 大又大粗又爽又黄少妇毛片口| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 国产精品.久久久| 国产黄片视频在线免费观看| 欧美+日韩+精品| 亚洲精品国产色婷婷电影| av在线老鸭窝| 观看av在线不卡| 狂野欧美白嫩少妇大欣赏| 国产成人精品无人区| av不卡在线播放| 国产av码专区亚洲av| 精品国产国语对白av| 国产成人精品在线电影| 国产av国产精品国产| 色5月婷婷丁香| 久久ye,这里只有精品| 一区二区日韩欧美中文字幕 | 男女免费视频国产| 大片免费播放器 马上看| 日本黄色日本黄色录像| 亚洲国产精品一区三区| 国产精品国产av在线观看| 有码 亚洲区| 亚洲丝袜综合中文字幕| 国产老妇伦熟女老妇高清| 免费观看性生交大片5| 考比视频在线观看| 国产精品国产三级国产av玫瑰| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 水蜜桃什么品种好| 天天操日日干夜夜撸| 大香蕉97超碰在线| 日韩熟女老妇一区二区性免费视频| 日本爱情动作片www.在线观看| 午夜福利,免费看| 国产成人av激情在线播放 | 亚洲精品aⅴ在线观看| 一本大道久久a久久精品| 欧美人与善性xxx| 男女国产视频网站| av在线app专区| 久久热精品热| 老司机影院成人| 天堂中文最新版在线下载| 91精品国产国语对白视频| 一个人看视频在线观看www免费| 一边亲一边摸免费视频| 精品亚洲成国产av| 日韩精品有码人妻一区| 香蕉精品网在线| 亚洲色图 男人天堂 中文字幕 | 天堂8中文在线网| 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| 国产成人精品一,二区| 日本vs欧美在线观看视频| 亚洲av在线观看美女高潮| 日本wwww免费看| 内地一区二区视频在线| 一级,二级,三级黄色视频| 欧美xxxx性猛交bbbb| 满18在线观看网站| 男人爽女人下面视频在线观看| 亚洲第一区二区三区不卡| 春色校园在线视频观看| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 国产精品不卡视频一区二区| 亚洲怡红院男人天堂| 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| 高清不卡的av网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 高清黄色对白视频在线免费看| 亚洲婷婷狠狠爱综合网| 亚洲久久久国产精品| 精品久久国产蜜桃| 久久久精品免费免费高清| 亚洲av福利一区| 91成人精品电影| 最近最新中文字幕免费大全7| 乱人伦中国视频| 最新中文字幕久久久久| 国产亚洲一区二区精品| 男的添女的下面高潮视频| 插阴视频在线观看视频| 成人免费观看视频高清| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 欧美另类一区| 日韩视频在线欧美| 一级二级三级毛片免费看| 精品国产一区二区三区久久久樱花| 午夜激情福利司机影院| 亚洲国产精品专区欧美| 国产精品人妻久久久久久| 好男人视频免费观看在线| 亚洲精品自拍成人| 国产乱人偷精品视频| 成人影院久久| 熟女电影av网| 另类精品久久| 中文精品一卡2卡3卡4更新| 精品人妻熟女毛片av久久网站| 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 欧美一级a爱片免费观看看| xxxhd国产人妻xxx| 久久99一区二区三区| 亚洲av综合色区一区| 大码成人一级视频| 黄色配什么色好看| 精品人妻熟女av久视频| 亚洲av成人精品一二三区| 亚洲人成网站在线观看播放| 丰满少妇做爰视频| 免费人妻精品一区二区三区视频| 丝袜喷水一区| 天堂8中文在线网| 国产免费福利视频在线观看| 欧美日韩亚洲高清精品| 国国产精品蜜臀av免费| 国产精品一区二区在线观看99| 国产成人aa在线观看| 亚洲av成人精品一二三区| 午夜免费男女啪啪视频观看| 人妻人人澡人人爽人人| 如日韩欧美国产精品一区二区三区 | 又黄又爽又刺激的免费视频.| 狂野欧美激情性xxxx在线观看| 精品国产一区二区三区久久久樱花| 韩国高清视频一区二区三区| 国产精品人妻久久久影院| 人妻制服诱惑在线中文字幕| 简卡轻食公司| 九九久久精品国产亚洲av麻豆| 日韩在线高清观看一区二区三区| 黑人高潮一二区| 欧美+日韩+精品| a级毛片黄视频| 国产国语露脸激情在线看| 精品人妻在线不人妻| 午夜91福利影院| 国产精品无大码| 国产淫语在线视频| 卡戴珊不雅视频在线播放| 这个男人来自地球电影免费观看 | 少妇的逼好多水| 亚洲av二区三区四区| 建设人人有责人人尽责人人享有的| 日韩三级伦理在线观看| 亚洲国产日韩一区二区| 51国产日韩欧美| 国产极品粉嫩免费观看在线 | 国产成人免费观看mmmm| 精品少妇黑人巨大在线播放| 中文乱码字字幕精品一区二区三区| 精品国产乱码久久久久久小说| 另类亚洲欧美激情| 中文字幕精品免费在线观看视频 | 国精品久久久久久国模美| 日韩av在线免费看完整版不卡| av在线app专区| 最近中文字幕高清免费大全6| 天天躁夜夜躁狠狠久久av| 精品亚洲乱码少妇综合久久| 97在线视频观看| 夜夜看夜夜爽夜夜摸| 纯流量卡能插随身wifi吗| 制服人妻中文乱码| 国产成人精品无人区| 亚洲少妇的诱惑av| 最近中文字幕高清免费大全6|