• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes

    2021-06-18 02:23:50ZHANGXiaohuaGANXinyuLIUBaoshengYANXiaoyanZHAOXinxin
    新型炭材料 2021年3期

    ZHANG Xiao-hua,GAN Xin-yu,LIU Bao-sheng,YAN Xiao-yan,ZHAO Xin-xin

    (College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)

    Abstract:Graphitic hollow porous carbon spheres (GHPCSs) have the advantages of a unique cavity structure,high surface area and excellent conductivity,and are promising electrode materials for energy storage.A Fe–tannic acid (TA) framework synthesized using TA as the carbon source and K3 [Fe(C2O4)3] as a complexing agent,was self-assembled onto a melamine foam,which was converted to GHPCSs by carbonization,where the K3 [Fe(C2O4)3] also acts as an activating-graphitizing agent.The outer shell of the asprepared GHPCSs has a large specific surface area,a micropore-dominated structure and excellent electrical conductivity,which ensure a large enough active surface area for charge accumulation and fast ion/electron transport in the partially graphitized carbon framework and pores.The optimum GHPCS has a high capacitance of 332.7 F g?1 at 1 A g?1.An assembled symmetric supercapacitor has a high energy density of 23.7 Wh kg?1 at 459.1 W kg?1 in 1 mol L-1 Na2SO4.In addition,the device has long-term cycling stability with a 92.1% retention rate after 10 000 cycles.This study not only provides an economic and time-saving approach for constructing GHPCSs by a self-assembly method,but also optimizes ion/electron transport in the carbon spheres to give them excellent performance in capacitive energy storage.

    Key words:Hollow carbon sphere;Graphitization;Tannic acid;Supercapacitor

    1 Introduction

    Carbon materials have multiple advantages including abundant sources,outstanding chemical/thermal stability,tunable porosity and environmental friendliness[1,2].They have been considered as promising electrode materials for applications in energy storage devices,such as supercapacitors[3],lithium-ion batteries[4],metal-air batteries[5]and lithium-sulfur batteries[6].Among them,supercapacitors based on carbon electrodes have gained tremendous interests owing to their wide operation temperature region,long cycling lifespan and excellent reversible charge/discharge performance[7].However,the commercial development of carbon-based supercapacitors is limited by the ion/electron kinetic barriers and small energy density (5–8 Wh kg?1)[8].The energy stored in carbon materials greatly depends on their pore structure and electronic conductivity.An excellent pore structure refers to a large effective specific surface area (SBET)and suitable pore size distribution,which can offer abundant active sites for charge accumulation and accelerate ion transport.An excellent electronic conductivity is directly related to the graphitic structure of a carbon material,which can reduce the electron transfer resistance.Thus,it is desirable to fabricate efficient carbon materials with largeSBET,suitable pore size distribution and high graphitization degree.

    Hollow carbon spheres (HCSs) comprise of a huge internal cavity and a thin carbon shell,which endow them unique electrochemical properties.Specifically,the hollow structure of HCSs can not only provide abundant surface area for charge accommodation during charge/discharge process,but also accommodate the volume expansion/contraction,prolong cycling stability.Also,the carbon shell with good conductivity can facilitate electron transfer[9,10].However,the compact structure of the carbon shell seriously inhibits the infiltration and transport of electrolyte ions,resulting in a poor capacitive performance.For the purpose of facilitating ion diffusion and increasing effective surface area,pore engineering has been regarded as a promising strategy[11,12].Wang’s group[13]synthesized HCSs by a hard template method.After subsequent KOH activation,the obtained HCSs have a micro/mesoporous shell and theSBETincreases from 669 to 1 290 m2g?1,achieving a large specific capacitance of 303.9 F g?1.Hu et al.[14]fabricated hierarchical porous HCSs by a polymer template method and subsequent polymer blend carbonization.Poly methyl acrylic acid was used as a sacrificing template to realize the porous carbon shell after pyrolysis,and the obtained HCSs achieved an enhanced capacitance behavior.HCSs with a porous outer shell not only shorten the ion transport path to inner cavity,but also significantly increase the number of active sites of interior region in the carbon shell,achieving a much better utilization of carbon materials.

    Various porous HCSs are synthesized by template methods,because the inner/outer diameter and porous structure can be easily tailored by different templates[9].However,this method usually relies on multi-step procedures including template preparation and removal,which make the procedure tedious,costly,and even environmentally unfriendly (for example,the use of hazardous chemicals,NaOH,HF,or organic solvent to remove templates)[8,15,16].Comparatively,the self-templating method without using additional templates is a time-saving and economic strategy.In this method,HCSs can be directly synthesized by self-templating or a self-assembly method followed by thermal decomposition treatment[9,17].For example,Wu’s group[17]successfully fabricated HCSs from poly(amic acid) and amphiphilic homopolymer vesicles via a self-assembled method.After carbonization,theSBETof the obtained HCSs is 668.1 m2g?1,while the micropore surface area (Smic) accounts for 23.1%[17].Many researches revealed that the micropores contributed maximally to form electrical double-layers[18,19].Qian et al.[7]synthesized HCSs by crosslinking p-phenylenediacetonitrile with terephthalaldehyde and benzene-1,3,5-tricarbaldehyde.The obtained porous HCSs possess a highSBETof 1 963 m2g?1and aSmicof 1 716 m2g?1.Microporous graphitic HCSs were also prepared by a simple carbonization of melamine-formaldhyde resin spheres synthesized by a self-assembly method[20]. However,few carbon sources are available for self-assembly to synthesize the hollow spherical structure.Recently,renewable,inexpensive biomass-based materials are particularly preferred to be adopted as carbon precursors to achieve sustainable development[21].Therefore,design a straightforward self-assembly route to prepare HCSs using renewable precursors is urgently needed.

    In this paper,we report a feasible Fe–tannic acid(TA) complexing strategy and one-step carbonization to fabricate graphitic hollow porous carbon spheres(GHPCSs).Specifically,TA,as the carbon source,offers the advantages of being abundant,non-toxic,cheap,and wide distribution in plant issues[22].K3[Fe(C2O4)3],as the source of metal coordinating sites,can form Fe–TA complexing framework with the ample phenolic hydroxyl groups in TA.Moreover,the degraded products of Fe species and K2C2O4from K3[Fe(C2O4)3] can act as a graphitizing catalyst and an activating agent,respectively.After carbonization,Fe–TA complexing framework was transformed into GHPCSs,characterized by a graphitic porous carbon shell and internal cavity.Compared with the conventional template methods,the present self-assembly method avoids tedious and time-consuming procedures.More importantly,simultaneous activation and graphitization can be achieved by one-step carbonization,endowing GHPCSs with accessible pore surface and good conductivity.

    2 Experimental

    2.1 Synthesis of GHPCSs

    2.0 g of TA and 2.5 g of K3[Fe(C2O4)3]·H2O were dissolved into 20 mL deionized water to form solutions,separately.Then the K3[Fe(C2O4)3] solution was added dropwise into the TA solution under magnetic stirring to form Fe–TA complexing ink.0.15 g melamine foam with a small cube was immersed into the ink for 1 h and then dried at 80 °C for 18 h.The obtained solid mixture was carbonized at a certain temperature (700,750,800 °C) under N2flow for 2 h.Finally,the carbon power was further washed using 3 mol L?1HCl and deionized water for several times to remove Fe species and other inorganic impurities.The obtained product was labeled as GHPCST(whereTstands for the carbonization temperature of 700,750 and 800 °C).

    For comparison,the sample synthesized without using a melamine foam was also performed,and the related carbonization temperature is 750 °C.The obtained sample was denoted as a graphitic porous carbon (GPC).

    2.2 Materials characterization

    Morphologies and structural features of the samples were measured by JSM-6510F (JEOL,Japan)and Tecnai G2 F20 S-Twin (FEI.org,USA) to obtain scanning electron microscopy (SEM) images and transmission electron microscopy (TEM) images,respectively.TheSBET(calculated by Brunauer–Emmett–Teller method) and pore size distributions (evaluated through density functional theory method) were gained based on the N2adsorption–desorption tests using BELSORP-max (MicrotracBEL Japan Inc.).The miniflex 600 diffractometer (Rigaku,Japan) was employed to obtain X-ray diffraction (XRD) patterns.The LabRAM HR 800 spectrometer (HORIBA JobinYvon,France) was applied to obtain Raman spectra.The ESCALAB 250 (Thermo Fisher Scientific,USA) was used to collect X-ray photoelectron spectra (XPS).

    2.3 Electrochemical measurement

    A CHI760e electrochemical workstation (Shanghai Chenhua Instrument Co.,Ltd.,China) was used to evaluate the electrochemical performance of electrodes.A homogeneous slurry,containing active carbon material (80 wt%,2.4 mg),acetylene black(10 wt%),and polytetrafluoroethylene (10 wt%),was coated on a Ni foam substrate to obtain the working electrode.Three-electrode system was used to assess the performance of carbon electrodes using 6 mol L?1KOH electrolyte.The reference and counter electrodes are Hg/HgO and Pt foil electrode,respectively.As for two-electrode system,the symmetric supercapacitor was prepared by using polypropylene membrane as a separator,6 mol L?1KOH or 1 mol L?1Na2SO4as electrolytes.Two symmetric electrodes have the same mass loading of active materials.

    The specific capacitance in the three-electrode system (C,F g–1) and two-electrode system (Csp,F g–1)can be calculated according to the following equations (1) and (2),respectively:

    whereI,m,Δtand ΔVdenote the response current (A),the mass of active material (g),the discharge time (s),and the potential window (V),respectively[23].

    Energy densityE(Wh Kg–1) of the symmetric supercapacitor was obtained by the equation (3)

    whereV(V) refers to the discharging potential.

    Power densityP(W Kg–1) of the symmetric supercapacitor was obtained by the equation (4):

    3 Results and discussion

    3.1 Morphology and structural properties

    The synthetic procedure of GHPCSTis illustrated in Fig.1,including Fe–TA complexation and carbonization.TA is an environmentally friendly polyphenol,which can provide numerous binding sites for coordinating with Fe ions to form a stable Fe–TA complex.The complexing effect between Fe ions and TA realizes a uniform dispersion of Fe atoms on the carbon precursor,which is beneficial for the formation of carbon with a graphitic structure.Fe–TA complexing ink has excellent penetrability and adhesion[22],which can be easily attached and uniformly dispersed on the skeleton of melamine foam.During carbonization,the Fe–TA complex can be transformed into a hollow sphere structure with internal void.K3[Fe(C2O4)3] can be decomposed into K2C2O4and FeC2O4(2K3[Fe(C2O4)3] → 3K2C2O4+2FeC2O4+2CO2) under high temperature[23].These two oxalates can be further decomposed to K2CO3(K2C2O4→K2CO3+CO) and FeO (FeC2O4→ FeO+CO+CO2).The former is an effective chemical activating agent,which can corrode carbon skeleton to create pores on the carbon shell.While,the latter can be transformed into Fe3C after a series of reactions,which is an effective intermediate product to transform amorphous carbon into graphitized carbon[24].Moreover,the released gases (CO and CO2) during carbonization can act as pore-forming agents.Thus,K3[Fe(C2O4)3] is not only responsible for the complexation of Fe–TA framework to construct hollow carbon spheres,but also acts as an activating–graphitizing agent to develop a graphitic porous carbon structure.

    Fig.1 Scalable fabrication of a Fe–TA complex and its subsequent carbonization to convert into GHPCST.

    The morphologies of GHPCSTcarbonized at 700,750 and 800 °C are shown in Fig.2.All carbon samples have a spherical structure (Figs.2a-c),but differ on the surfaces of carbon shells.GHPCS700has a smooth surface (Fig.2a).While,there are a lot of bulges and several macropores on the rough surface of HPGCS750(Fig.2b),which may be caused by the physical activating effects of released gases and etching effect of K2CO3on the carbon shell[25].GHPCS800shows more obvious pores on the surface of the carbon shell in Fig.2c.The difference in the surface morphology of GHPCSTcan be deduced as follows:(i) the activating effect of K3[Fe(C2O4)3] becomes more intense with increasing the carbonization temperature,thus more pores generated on the surface of sphere shell;(ii) the rise of temperature may cause the fusion or collapse of pores,making the pores more obvious[26].The pores on the surface of the carbon shell are beneficial for the penetration of electrolyte ions into inner region,effectively shortening ion transport path,and significantly increasing the number of electroactive sites.The broken carbon sphere in Fig.2c indicates a huge internal cavity in the sphere.During charge/discharge process,the hollow cavity plays a role of“ion-buffering reservoir”,which can effectively shorten the diffusion distance of ions and accommodate the volume change[14].Fig.2d and 2e indicate that the carbon shell exhibits a similar 3D honeycomb-like feature,which not only provides abundant opening channels for effectively accelerating ion transfer rate but also guarantees plentiful active sites for energy storage.It is worth mentioning that melamine foam plays a critical role for the development of the hollow structure.Drying of the Fe–TA ink at 80 °C further promotes the complexation reaction of TA with Fe ions.The melamine foam with extremely high porosity provides supporting skeleton and enough space for the development of Fe–TA spheres.Without using the melamine foam,the Fe–TA framework becomes compact with the water evaporating.As a result,there is no enough space for Fe–TA framework to form a sphere structure.As shown in Fig.2f,GPC without the addition of the melamine foam has an irregular shape.TEM image in Fig.3a shows some mesopores in GHPCS750,which are resulted from the activation effect of K2CO3and elimination of Fe species.High-resolution TEM image (Fig.3b) reveals obvious lattice fringes and worm-like nanopores,indicating a graphitic porous carbon structure.

    Fig.2 SEM images of all samples:(a) GHPCS700,(b) GHPCS750,(c) GHPCS800,(d) and (e) GHPCS750 and (f) GPC.

    Fig.3 (a,b) TEM images of GHPCS750 under different magnifications.

    Nitrogen adsorption–desorption isotherms(Fig.4a) of GPC,GHPCS700,and GHPCS750show the typic I/IV isotherm with a slight hysteresis,which is the characteristic of micropores and mesopores.HPGCS800has the typic I isotherm,suggesting its copious micropores. GPC without the addition of the melamine foam has a smallSBETof 1 072.9 m2g?1,and a pore volume (Vtotal) of only 0.51 cm3g?1.With the presence of the melamine foam,theSBETandVtotalof GHPCSTincrease remarkably up to 2 005.7 m2g–1and 0.99 cm3g?1,respectively (Table 1).With the increase of the carbonization temperature,theSBETandVtotalof GHPCSTfollow the trend of GHPCS700(2 005.7 m2g–1,0.99 cm3g?1) > GHPCS750(1 541.8 m2g–1,0.70 cm3g?1) > GHPCS800(1 250.8 m2g–1,0.58 cm3g?1).This phenomenon is caused by the pore collapse and even disappearance of partial micropores at high temperature[26].The pore size distribution curves of GPC and GHPCSTin Fig.4b demonstrate a microporedominated porous structure[27],which originates from the pyrolysis of TA and activation effect of K3[Fe(C2O4)3].The micropore sizes of GHPCSTare concentrated at~0.78 nm,which is close to the optimized ion-accessible micropores[25].Notably,theSmicof GHPCS750accounts for 74.4% ofSBET.Many researchers proved that micropores play a more important role in charge accommodation and enhanced capacitance[28,29].Compared with template methods to prepare hollow carbon spheres,the Fe–TA complexing framework strategy combined with K3[Fe(C2O4)3] activation does not only simplify the process and save energy consumption,but also ensure a largeSBETand a high content of the micropore structure.

    Table 1 The porosity properties of GPC and GHPCST.

    Fig.4 (a) Nitrogen adsorption–desorption isotherms of GPC and GHPCST,(b) pore size distribution curves of GPC and GHPCST.

    Apart from a largeSBETand suitable pore structure,the partially graphitized carbon structure with excellent conductivity can be easily achieved by this approach.The XRD patterns (Fig.5a) show that GPC,GHPCS700,and GHPCS750possess a broad hump at 2θ~20–30° for the amorphous carbon framework and a weak diffraction peak at 2θ=43.4° for the (101) plane of the graphitic structure (JCPDS No.41-1487)[30].GHPCS800has a better crystallinity with a distinct and sharp peak for the (002) plane of graphite carbon at 2θ=26.4°,suggesting a more perfect and ordered graphitic structure at higher temperature,compared with other samples[31].A higher intensity at low-angle scatter suggests a larger number of micropores[23].Raman spectra of all samples (Fig.5b) present two distinct bands,Gband (1 585 cm–1) for graphitic carbon andDband (1 335 cm–1) for amorphous carbon[32].The intensity ratioIG/IDvalues of GHPCS700,GHPCS750,and GHPCS800are 0.97,1.05 and 1.06,respectively,indicating an increased graphitization degree with the carbonization temperature[25].The partially graphitic carbon structure with an appropriate amount of defects and disorders is characterized by excellent conductivity and developed pore structure,benefiting for electron/ion transport and energy storage.

    Fig.5 (a) XRD patterns of GPC and GHPCST,(b) Raman spectra of GPC and GHPCST.

    XPS spectrum of GHPCS750in Fig.6a presents two distinct peaks of C 1s (~284.8 eV) and O 1s(~533.3 eV),as well as an inconspicuous peak of N 1s (~400.4 eV).The contents of C,O,N are calculated to be 89.43%,7.84% and 2.73%,respectively.The high content of O comes from carbon source(TA) and the small amount of N originates from the melamine foam.The deconvoluted C 1s spectrum(Fig.6b) contains four peaks at 284.5,285.0,286.1 and 288.6 eV,representing sp2-bonded carbon,sp3-bonded carbon,C―O and C=O,respectively.The deconvoluted O 1s spectrum in Fig.6c displays four characteristic peaks,representing O=C―OH(534.3 eV),C―O―C (533.4 eV),C―OH (532.4 eV),and C=O (531.3 eV),respectively[33].The presence of these oxygen-containing groups can enhance the surface wettability of electrodes,benefiting for ion storage during charge/discharge process.

    Fig.6 (a) XPS survey of GHPCS750,high resolution XPS spectra of (b) C 1s and (c) O 1s.

    3.2 Electrochemical performance

    Fig.7a presents the cyclic voltammetry (CV)curves of GPC and GHPCSTat 10 mV s–1.All CV curves of GHPCSTexhibit larger curve areas than that of GPC,due to their higherSBETof GHPCSTthat provides abundant active sites for charge accumulation.The disordered rectangular shape appeared at?0.8–1.0 V and ?0.1–0 V could be attributed to the limited ion transport and adsorption into irregular micropores and subnanometer pores with narrow bottlenecks[31].Fig.7b presents the CV curves of GHPCS750at different scan rates.The disorder shape at a higher scan rate is attributed to the insufficient time for ion diffusion and deficient contact to electrode surface[34].The typical galvanostatic charge–discharge (GCD)curves of GPC and GHPCSTwith a symmetrical shape at 1 A g–1imply a favorable electric double-layer capacitance characteristic (Fig.7c).The GCD curve of GHPCS750exhibits the longest discharge time,meaning the highest capacitance.Although,GHPCS700has the largestSBETvalue among all samples and the content ofSmicis up to 82.0%,the low graphitization degree limits electron transfer,resulting in a poor electrochemical performance.The micropore sizes of samples are mainly distributed around 0.46–0.86 nm,which enable the solvated ions OH–(0.30 nm) and K+(0.33 nm) to enter into small pores,resulting in a high capacitance[35,36].Specific capacitances of all electrodes gradually decrease with the increase of current densities (Fig.7d),originating from the insufficient diffusion of ions into inner pores in a relatively short time[37].GHPCS750possesses the largest specific capacitance of 332.7 F g–1at 1 A g–1,outperforming those of GPC (298.7 F g–1),GHPCS700(308.1 F g–1) and GHPCS800(282.4 F g–1).Moreover,this value is comparable and even superior to those of reported carbon spheres (Table 2).This could be attributed to the porous carbon shell,large surface area,and high graphitization degree of GHPCS750,which allow fast ion diffusion,large ion storage and rapid charge transfer.A high graphitization degree is important for achieving excellent rate performance.GHPCS700has a specific capacitance of 217.5 F g–1at 30 A g–1,indicating a 70.6% capacitance retention when the current density increases from 1 to 30 A g–1.Notably,GHPCS750maintains 244.5 F g–1at 30 A g–1,corresponding to a 73.5% capacitance retention,and GHPCS800achieves a remarkable retention of 76.8% due to its high graphitization degree.GHPCS750shows a 97.5% capacitance retention after 10 000 cycles (Fig.7e).Compared with the first CV curve,CV curve tested after 10 000 cycles still maintains a similar shape without an obvious distortion,which demonstrates its desirable cycling performance.

    Fig.7 (a) CV curves of GPC and GHPCST at 10 mV s–1,(b) CV curves of GHPCS750 at 10~100 mV s–1,(c) GCD curves of GPC and GHPCST at a current density of 1 A g–1,(d) specific capacitances of all electrodes and (e) cycling stability of GHPCS750 at 100 mV s–1 after 10 000 cycles.

    GHPCS750was assembled into a symmetric supercapacitor using 6 mol L?1KOH electrolyte.The CV curves of GHPCS750//GHPCS750(Fig.8a) under various scan rates show nearly identical and rectangular shapes,reflecting a remarkable rate performance and an outstanding double-electrode layer capacitive behavior.The GCD curves (Fig.8b) exhibit the typical triangular profiles at different current densities and theIRdrop at 10 A g–1is only 0.14 V,suggesting a low internal resistance.The specific capacitance of GHPCS750//GHPCS750is 270.5 F g–1at 0.5 A g–1,and it maintains 219.7 F g–1at 10 A g–1,which indicates a 81.2% rate capability when the current density is increased by 20 times.This good rate capability is resulted from the buffering effect of internal cavity space,easy ion diffusion into pore channels,and fast transfer of charge on the conductive network.

    Supercapacitor GHPCS750//GHPCS750was further measured with 1 mol L?1Na2SO4electrolyte due to its low concentrations of H+and OH–,allowing a high-stability voltage window.Fig.8c shows a set of CV curves at 40 mV s–1with increasing voltage windows.There is no obvious increase of the anodic current in CV curves when voltage window increases to 1.8 V[40].The quasi-rectangular shapes of CV curves(Fig.8d) and the isosceles triangle-shapes of GCD curves (Fig.8e) at the voltage window of 1.8 V further demonstrate an ideal capacitive characteristic.At a high current density,it appears a smallIRdrop owing to the difficulty of ion transport into inner pore network.The specific capacitance of GHPCS750//GHPCS750in Na2SO4electrolyte is 211.2 F g–1at 0.5 A g–1,and it maintains 144.3 F g–1at 10 A g–1,corresponding to a 68.3% rate capability,which is smaller than that in KOH electrolyte.The cycling stability of GHPCS750//GHPCS750tested in 1 mol L?1Na2SO4electrolyte (Fig.8f) displays a 92.1% retention after 10 000 cycles.This value is comparable to those of reported carbon spheres[7,13,14,16,38,39](Table 2).

    Table 2 Performance comparison of various carbon spheres.

    Fig.8g displays the Ragone plots of GHPCS750//GHPCS750supercapacitor.When the electrolyte is 6 mol L?1KOH,the energy density of GHPCS750//GH-PCS750is 9.4 Wh kg–1at a power density of 252.2 W kg–1.Impressively,a large potential window(1.8 V) in 1 mol L?1Na2SO4affords a maximum energy density of 23.7 Wh kg–1when power density is 459.1 W kg–1,and it retains 20.5 Wh kg–1at 3 035.0 W kg–1.which is comparable to or even exceeds some reported supercapacitors using carbon materials as electrodes[41–47].The outstanding capacitive performance and superior cycling stability of GHPCS750are attributed to the following advantages:(i) the pores on the outer shell act as open channels to facilitate ion diffusion and offer abundant electroactive sites for energy storage;(ii) the high graphitization degree and the high conductivity network of the carbon shell promote fast electron transfer to realize efficient utilization of carbon space;(iii) the unique hollow cavity can provide a buffer space and effectively relieve the volume expansion/contraction,thus improving the durability.

    Fig.8 Electrochemical characteristics of GHPCS750//GHPCS750:(a) CV curves and (b) GCD curves in 6 mol L?1 KOH electrolyte,(c) CV curves with a potential window of 1.0–2.0 V in 1 mol L?1 Na2SO4,(d) CV curves at scan rates of 10–100 mV s–1 with 1.8 V in 1 mol L?1 Na2SO4,(e) GCD curves in 1 mol L?1 Na2SO4,(f) cycling stability for 10 000 cycles in 1 mol L?1 Na2SO4,(g) Ragone plots,(h) Nyquist plots,and (i) Bode phase angle plots of GHPCS750//GHPCS750 tested in different electrolytes.

    The ion and electron transport kinetics were measured by electrochemical impedance spectroscopy (EIS).Nyquist plots (Fig.8h) of GHPCS750//GHPCS750show the typical double-layer capacitive behavior with a semicircle at high frequency segment and a nearly perpendicular line at low frequency segment.The equivalent circuit model fitted by the Zsim-Demo software is displayed in the inset.The equivalent series resistance (Rs) of GHPCS750//GHPCS750in KOH electrolyte is 1.0 Ω and the charge transfer resistance (Rct) is 0.25 Ω.In Na2SO4electrolyte,the values ofRsandRctare 4.3 Ω and 1.6 Ω,respectively,which are obviously larger than those ofRsandRctin KOH electrolyte.Such differences are related to the ionic mobility (OH?> SO42?> K+> Na+) and the conductivity of electrolytes (KOH (aq.) > Na2SO4(aq.))[48].Fig.8i shows Bode phase angle plots of GHPCS750//GHPCS750.At the phase angle of–45°,the frequenciesf0for KOH electrolyte and Na2SO4electrolyte are 0.35 Hz and 0.07 Hz,respectively.The corresponding time constantsτ0are 2.88 s (KOH electrolyte) and 13.77 s (Na2SO4electrolyte).The low time constant indicates rapid frequency response,suggesting fast ion transport.

    4 Conclusion

    A simple and novel Fe–TA framework strategy combined with one-step carbonization was employed to synthesize GHPCSs,based on the complexation of TA with Fe ions and the activation–graphitization effect of K3[Fe(C2O4)3].In addition to possessing a porous carbon shell and a huge internal cavity,the obtained carbon spheres have high specific surface area,micropore-dominated structure,and high graphitization degree,which allow the carbon spheres for achieving fast and effective mass diffusion and ion/electron transport.These superiorities endow GHPCS750with a high specific capacitance (332.7 F g–1at 1 A g–1) and excellent rate capability.More importantly,the symmetric supercapacitor in Na2SO4electrolyte processes a maximum energy density of 23.7 Wh kg–1at 459.1 W kg–1,and it has a 92.1% capacitance retention after 10 000 cycles.This study not only provides an economic and sustainable self-assembly strategy to fabricate GHPCSs for high-performance supercapacitor,but also puts a way to optimize ion/electron transport in carbon spheres.

    Acknowledgements

    The Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2020L0330),the Award Fund for Outstanding Doctors in Shanxi Province (No.20202075) and the Doctor Funds of Taiyuan University of Science and Technology (No.20192054).

    午夜精品在线福利| 亚洲精品日韩av片在线观看| 欧美bdsm另类| 免费看av在线观看网站| 成人性生交大片免费视频hd| 男人爽女人下面视频在线观看| 亚洲成人久久爱视频| 青青草视频在线视频观看| 色吧在线观看| 中文字幕免费在线视频6| 日韩精品有码人妻一区| 成人一区二区视频在线观看| 成人特级av手机在线观看| 欧美日韩一区二区视频在线观看视频在线 | 最近2019中文字幕mv第一页| 久久99热6这里只有精品| 午夜福利成人在线免费观看| 最近最新中文字幕大全电影3| 又爽又黄无遮挡网站| 国产视频首页在线观看| 草草在线视频免费看| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 精品国产一区二区三区久久久樱花 | 国产成人一区二区在线| 久久久久久久亚洲中文字幕| 九九爱精品视频在线观看| 国产69精品久久久久777片| 欧美日韩亚洲高清精品| 99久久人妻综合| 精品国内亚洲2022精品成人| 干丝袜人妻中文字幕| 国产精品伦人一区二区| 亚洲在线观看片| 国产高清国产精品国产三级 | 日韩,欧美,国产一区二区三区| 成人午夜高清在线视频| 亚洲精品亚洲一区二区| 中文字幕久久专区| 好男人在线观看高清免费视频| 99久久中文字幕三级久久日本| 中文字幕av成人在线电影| 搡女人真爽免费视频火全软件| 国产男人的电影天堂91| 青春草亚洲视频在线观看| 亚洲国产精品成人综合色| 一级毛片我不卡| 国产国拍精品亚洲av在线观看| 美女大奶头视频| 国产午夜福利久久久久久| av在线亚洲专区| 十八禁国产超污无遮挡网站| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久av不卡| 精品久久久久久久久av| 成人国产麻豆网| 午夜日本视频在线| 成年女人在线观看亚洲视频 | 中文字幕久久专区| 日韩一区二区三区影片| 日韩一区二区三区影片| 成人亚洲精品av一区二区| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 亚洲人成网站在线播| 老女人水多毛片| 免费av观看视频| 国产精品1区2区在线观看.| 久久精品人妻少妇| 高清日韩中文字幕在线| 午夜福利在线观看吧| 直男gayav资源| 国产精品1区2区在线观看.| 精品久久久久久电影网| 在线免费十八禁| 免费人成在线观看视频色| 我的老师免费观看完整版| 一级片'在线观看视频| 在线 av 中文字幕| 亚洲性久久影院| 亚洲乱码一区二区免费版| 99九九线精品视频在线观看视频| 亚洲一区高清亚洲精品| 内射极品少妇av片p| 亚洲成人中文字幕在线播放| 欧美激情在线99| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 搡老乐熟女国产| 成年免费大片在线观看| 国产精品一区二区在线观看99 | 久久精品夜色国产| 人妻制服诱惑在线中文字幕| 国产精品一及| 在现免费观看毛片| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 九九在线视频观看精品| 精品午夜福利在线看| 亚洲国产精品成人久久小说| 国产又色又爽无遮挡免| 国产精品无大码| 女人十人毛片免费观看3o分钟| 内地一区二区视频在线| 我的老师免费观看完整版| 色哟哟·www| 99热6这里只有精品| 中国美白少妇内射xxxbb| 国产一区二区三区av在线| 国产黄片视频在线免费观看| 又黄又爽又刺激的免费视频.| 插逼视频在线观看| 日本猛色少妇xxxxx猛交久久| 一级黄片播放器| 色5月婷婷丁香| 看非洲黑人一级黄片| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 久久久久国产网址| 国产精品一区二区三区四区久久| 一级av片app| 国产精品.久久久| 日韩制服骚丝袜av| 好男人在线观看高清免费视频| 中文字幕av在线有码专区| 国产黄色免费在线视频| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 国产在视频线在精品| 三级国产精品欧美在线观看| 啦啦啦中文免费视频观看日本| 日本三级黄在线观看| 日本-黄色视频高清免费观看| 午夜激情久久久久久久| 麻豆av噜噜一区二区三区| 久久久久国产网址| 99久久中文字幕三级久久日本| 精品一区二区三区视频在线| 亚洲精品一二三| 日韩中字成人| 久久人人爽人人片av| 91狼人影院| 国产精品av视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| 国产一区二区在线观看日韩| 久99久视频精品免费| 高清视频免费观看一区二区 | 夜夜爽夜夜爽视频| 日本午夜av视频| 成人无遮挡网站| 日韩在线高清观看一区二区三区| www.色视频.com| 欧美xxxx黑人xx丫x性爽| 精品国内亚洲2022精品成人| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| 久久精品国产亚洲av涩爱| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 国产精品.久久久| xxx大片免费视频| 午夜激情福利司机影院| 国产白丝娇喘喷水9色精品| 国产亚洲91精品色在线| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99 | av线在线观看网站| 亚洲精品亚洲一区二区| 一个人观看的视频www高清免费观看| 中文在线观看免费www的网站| 久久精品人妻少妇| 国语对白做爰xxxⅹ性视频网站| 天堂av国产一区二区熟女人妻| 欧美日韩在线观看h| 美女内射精品一级片tv| 欧美日本视频| 精品久久久久久电影网| 国产69精品久久久久777片| 一个人看的www免费观看视频| 国产成人精品婷婷| 欧美日韩亚洲高清精品| 亚洲精品视频女| 欧美zozozo另类| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 最近2019中文字幕mv第一页| 插逼视频在线观看| av在线天堂中文字幕| 精品亚洲乱码少妇综合久久| av在线观看视频网站免费| 六月丁香七月| 人妻一区二区av| 久久久久久久久大av| 国产美女午夜福利| 精品国产露脸久久av麻豆 | 最近最新中文字幕大全电影3| 久久久午夜欧美精品| 少妇猛男粗大的猛烈进出视频 | 国产精品一区二区性色av| 18禁在线播放成人免费| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 超碰97精品在线观看| 精品不卡国产一区二区三区| 欧美日韩视频高清一区二区三区二| 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 丰满少妇做爰视频| 免费看光身美女| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 国产爱豆传媒在线观看| 欧美成人a在线观看| 夜夜爽夜夜爽视频| 久久久成人免费电影| 99热全是精品| 日韩欧美 国产精品| 国产免费视频播放在线视频 | 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 人人妻人人澡欧美一区二区| 亚洲国产精品成人久久小说| 亚洲成人av在线免费| 男女国产视频网站| 国产高清三级在线| 少妇人妻一区二区三区视频| 亚洲av免费高清在线观看| 十八禁网站网址无遮挡 | 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 干丝袜人妻中文字幕| 国产免费福利视频在线观看| 欧美zozozo另类| 亚洲av中文字字幕乱码综合| 亚洲av成人精品一二三区| 最近的中文字幕免费完整| 波野结衣二区三区在线| 视频中文字幕在线观看| 看黄色毛片网站| 最新中文字幕久久久久| 非洲黑人性xxxx精品又粗又长| 熟女电影av网| 成人午夜高清在线视频| 国产在线男女| 亚洲国产欧美在线一区| 亚洲综合色惰| 成人亚洲精品av一区二区| 在线观看av片永久免费下载| 男人和女人高潮做爰伦理| 搞女人的毛片| 菩萨蛮人人尽说江南好唐韦庄| 插阴视频在线观看视频| 黄色欧美视频在线观看| 国产有黄有色有爽视频| 日韩伦理黄色片| 天堂√8在线中文| 在现免费观看毛片| 国产激情偷乱视频一区二区| 国产高潮美女av| 激情五月婷婷亚洲| 久久精品国产亚洲网站| 特级一级黄色大片| 欧美bdsm另类| 性色avwww在线观看| 99热这里只有是精品50| av在线蜜桃| 男女边吃奶边做爰视频| 免费在线观看成人毛片| 日本熟妇午夜| 色吧在线观看| 国产人妻一区二区三区在| 免费人成在线观看视频色| 2021天堂中文幕一二区在线观| 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 国产永久视频网站| 一本久久精品| 色网站视频免费| 国产黄片视频在线免费观看| 欧美激情国产日韩精品一区| 美女xxoo啪啪120秒动态图| 精品国内亚洲2022精品成人| 国产欧美另类精品又又久久亚洲欧美| 国产在视频线在精品| 91av网一区二区| 国产麻豆成人av免费视频| 一级毛片黄色毛片免费观看视频| videossex国产| 搞女人的毛片| 综合色丁香网| 尾随美女入室| 成人漫画全彩无遮挡| 国产探花在线观看一区二区| 黑人高潮一二区| 久久精品国产亚洲av天美| av播播在线观看一区| 国产精品一区www在线观看| 熟女电影av网| 久久久久九九精品影院| 色网站视频免费| 久久6这里有精品| 中文资源天堂在线| av在线天堂中文字幕| 国产精品一区www在线观看| 一级毛片黄色毛片免费观看视频| 性色avwww在线观看| 国产精品.久久久| 超碰av人人做人人爽久久| 精品久久久久久久人妻蜜臀av| 爱豆传媒免费全集在线观看| 老女人水多毛片| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式| 亚洲自拍偷在线| 最近的中文字幕免费完整| 麻豆久久精品国产亚洲av| 亚洲国产最新在线播放| .国产精品久久| 国精品久久久久久国模美| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 成人欧美大片| 有码 亚洲区| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 国产v大片淫在线免费观看| 国产亚洲5aaaaa淫片| 国产精品一区www在线观看| 国产成人精品久久久久久| 欧美xxxx黑人xx丫x性爽| 亚洲国产日韩欧美精品在线观看| 国产视频首页在线观看| 在线播放无遮挡| 亚洲国产欧美人成| 看黄色毛片网站| 精品久久国产蜜桃| 亚洲av中文字字幕乱码综合| 淫秽高清视频在线观看| 中文资源天堂在线| 免费大片18禁| 内射极品少妇av片p| 久久综合国产亚洲精品| 欧美97在线视频| 亚洲国产av新网站| av黄色大香蕉| 亚洲精品乱久久久久久| 精品久久久噜噜| 色吧在线观看| 亚洲在线自拍视频| 国产亚洲91精品色在线| 一级毛片aaaaaa免费看小| 精品午夜福利在线看| 久久久久久久亚洲中文字幕| 午夜激情久久久久久久| 日韩一区二区视频免费看| 国产成人精品婷婷| 国产激情偷乱视频一区二区| 高清av免费在线| 如何舔出高潮| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 一边亲一边摸免费视频| 欧美丝袜亚洲另类| 大香蕉久久网| 国产国拍精品亚洲av在线观看| 亚洲精品中文字幕在线视频 | 中文字幕av在线有码专区| 亚洲伊人久久精品综合| 三级毛片av免费| 国产精品1区2区在线观看.| 淫秽高清视频在线观看| 色尼玛亚洲综合影院| 婷婷色麻豆天堂久久| 国语对白做爰xxxⅹ性视频网站| 中文资源天堂在线| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 大话2 男鬼变身卡| 久久6这里有精品| 午夜视频国产福利| 国产成人免费观看mmmm| 亚洲成人一二三区av| 边亲边吃奶的免费视频| 国产成人aa在线观看| 日韩av在线免费看完整版不卡| 非洲黑人性xxxx精品又粗又长| 久久久午夜欧美精品| 人妻系列 视频| 日产精品乱码卡一卡2卡三| 青春草国产在线视频| 免费看a级黄色片| 欧美丝袜亚洲另类| 五月伊人婷婷丁香| 精品久久久久久久久久久久久| 99久久中文字幕三级久久日本| 国产一区有黄有色的免费视频 | 亚洲精品国产av蜜桃| 亚洲欧洲国产日韩| 国产 一区 欧美 日韩| 最近最新中文字幕免费大全7| 观看免费一级毛片| 床上黄色一级片| 人人妻人人看人人澡| 一级二级三级毛片免费看| 国产成人一区二区在线| 卡戴珊不雅视频在线播放| 成年版毛片免费区| 婷婷色综合www| 国产精品一区二区性色av| 精品人妻熟女av久视频| 亚洲av国产av综合av卡| 极品教师在线视频| 亚洲国产精品专区欧美| 国产探花在线观看一区二区| 国产高清国产精品国产三级 | 免费观看精品视频网站| 国产精品爽爽va在线观看网站| 麻豆成人av视频| av在线播放精品| h日本视频在线播放| 性色avwww在线观看| 大话2 男鬼变身卡| 午夜激情福利司机影院| av国产免费在线观看| 精品99又大又爽又粗少妇毛片| 久久99热这里只有精品18| 老女人水多毛片| 一边亲一边摸免费视频| 国产成人一区二区在线| 毛片一级片免费看久久久久| 色网站视频免费| 日本一二三区视频观看| 亚洲精品aⅴ在线观看| 97精品久久久久久久久久精品| 自拍偷自拍亚洲精品老妇| 欧美日韩亚洲高清精品| 免费电影在线观看免费观看| 天堂av国产一区二区熟女人妻| 欧美性感艳星| 网址你懂的国产日韩在线| 亚洲va在线va天堂va国产| 边亲边吃奶的免费视频| 成人鲁丝片一二三区免费| 久久精品久久久久久噜噜老黄| 极品少妇高潮喷水抽搐| 国产精品女同一区二区软件| 亚洲在久久综合| 国产成人a∨麻豆精品| 国产精品久久久久久久电影| 国产美女午夜福利| 欧美日韩精品成人综合77777| 国产精品国产三级国产专区5o| 3wmmmm亚洲av在线观看| 在线观看人妻少妇| 亚洲国产欧美人成| 日韩,欧美,国产一区二区三区| av卡一久久| 精品一区二区三区人妻视频| 麻豆精品久久久久久蜜桃| 男人舔女人下体高潮全视频| 国产日韩欧美在线精品| 我要看日韩黄色一级片| 成人亚洲精品一区在线观看 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 小蜜桃在线观看免费完整版高清| 91在线精品国自产拍蜜月| 成人亚洲欧美一区二区av| 一本一本综合久久| 街头女战士在线观看网站| 精品99又大又爽又粗少妇毛片| 亚洲精品乱久久久久久| 免费av观看视频| 丝袜美腿在线中文| 亚洲欧美一区二区三区黑人 | 99热网站在线观看| 天堂av国产一区二区熟女人妻| 校园人妻丝袜中文字幕| 欧美日韩综合久久久久久| 久久久久网色| 国产一区二区三区av在线| 亚洲国产精品国产精品| 夫妻午夜视频| 亚洲最大成人中文| 一本一本综合久久| 亚洲欧美日韩无卡精品| 十八禁国产超污无遮挡网站| 亚洲av电影在线观看一区二区三区 | 白带黄色成豆腐渣| 亚洲最大成人手机在线| 日产精品乱码卡一卡2卡三| 欧美成人午夜免费资源| 精品久久国产蜜桃| 国产亚洲精品av在线| 亚洲精品影视一区二区三区av| 国产免费一级a男人的天堂| 欧美丝袜亚洲另类| 久久久久久伊人网av| a级一级毛片免费在线观看| av在线播放精品| 永久网站在线| 色视频www国产| 99久久精品热视频| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| 纵有疾风起免费观看全集完整版 | ponron亚洲| 晚上一个人看的免费电影| 亚洲自偷自拍三级| 国产成人一区二区在线| 最近手机中文字幕大全| 男女边摸边吃奶| 蜜桃久久精品国产亚洲av| 少妇的逼好多水| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 午夜福利在线观看免费完整高清在| a级毛色黄片| 九九久久精品国产亚洲av麻豆| 日韩欧美一区视频在线观看 | 美女脱内裤让男人舔精品视频| 在线免费观看不下载黄p国产| 亚洲欧洲国产日韩| 亚洲av中文字字幕乱码综合| 天天躁日日操中文字幕| 永久免费av网站大全| 极品教师在线视频| 久久人人爽人人爽人人片va| 黄色配什么色好看| 人妻少妇偷人精品九色| 亚洲欧美成人综合另类久久久| 国产激情偷乱视频一区二区| 天天躁日日操中文字幕| 男人舔奶头视频| 亚洲精品乱码久久久v下载方式| 国产一区二区亚洲精品在线观看| 三级经典国产精品| 在线免费观看不下载黄p国产| 亚洲国产av新网站| 欧美高清成人免费视频www| 精品久久久久久久末码| 国产精品国产三级专区第一集| 精品人妻一区二区三区麻豆| 青春草亚洲视频在线观看| 美女脱内裤让男人舔精品视频| 国产视频内射| 国产不卡一卡二| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 草草在线视频免费看| 中文字幕制服av| 欧美日韩精品成人综合77777| 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄| 99热这里只有是精品50| 国产精品一区二区三区四区久久| 一级爰片在线观看| 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久黄片| 免费少妇av软件| 亚洲精品国产成人久久av| 久久亚洲国产成人精品v| 最近中文字幕高清免费大全6| 白带黄色成豆腐渣| 一本久久精品| 国内少妇人妻偷人精品xxx网站| a级毛色黄片| 26uuu在线亚洲综合色| 亚洲国产精品国产精品| 欧美精品国产亚洲| 99久久精品一区二区三区| 欧美性感艳星| 欧美不卡视频在线免费观看| 性色avwww在线观看| 永久免费av网站大全| 国产精品一二三区在线看| 又大又黄又爽视频免费| 乱码一卡2卡4卡精品| 日本猛色少妇xxxxx猛交久久| 国产伦理片在线播放av一区| 丝袜美腿在线中文| 你懂的网址亚洲精品在线观看| 乱系列少妇在线播放| 久久99蜜桃精品久久| 蜜桃久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 欧美性感艳星| 国产黄片美女视频| 久99久视频精品免费| 3wmmmm亚洲av在线观看| 国产色婷婷99| 国产成人福利小说| 久久久久免费精品人妻一区二区| 午夜免费激情av| 国产一区二区在线观看日韩| 国产又色又爽无遮挡免| 大香蕉97超碰在线| 黄片wwwwww| kizo精华| 好男人在线观看高清免费视频| 亚洲国产av新网站| 搞女人的毛片| 三级毛片av免费| 国产一区亚洲一区在线观看| 看十八女毛片水多多多|