姜潤(rùn)學(xué),胡萬寧,孫國(guó)貴,李 軍,韓曉晨,蔡海峰
1.河北聯(lián)合大學(xué)附屬唐山市人民醫(yī)院頭頸外科,河北 唐山063000;
2.河北聯(lián)合大學(xué)附屬唐山市人民醫(yī)院放化療科,河北 唐山063000
BTG1對(duì)喉癌細(xì)胞增殖和凋亡的影響及其機(jī)制研究
姜潤(rùn)學(xué)1,胡萬寧1,孫國(guó)貴2,李 軍1,韓曉晨1,蔡海峰1
1.河北聯(lián)合大學(xué)附屬唐山市人民醫(yī)院頭頸外科,河北 唐山063000;
2.河北聯(lián)合大學(xué)附屬唐山市人民醫(yī)院放化療科,河北 唐山063000
背景與目的:在多種細(xì)胞中B細(xì)胞易位基因1(B-cell translocation gene 1,BTG1)能夠抑制細(xì)胞增殖,促進(jìn)細(xì)胞凋亡,調(diào)節(jié)細(xì)胞周期進(jìn)程及分化。該研究通過體外實(shí)驗(yàn)探討B(tài)TG1高表達(dá)對(duì)喉癌Hep-2細(xì)胞增殖、凋亡及細(xì)胞周期的影響及其相關(guān)作用機(jī)制。方法:構(gòu)建pEGFP-N1-BTG1,培養(yǎng)并轉(zhuǎn)染喉癌Hep-2細(xì)胞,分為實(shí)驗(yàn)組(轉(zhuǎn)染pEGFP-N1-BTG1的Hep-2細(xì)胞)和對(duì)照組(轉(zhuǎn)染pEGFP-N1空質(zhì)粒的Hep-2細(xì)胞)。采用蛋白[質(zhì)]印跡法(Western blot)檢測(cè)兩組細(xì)胞中BTG1蛋白的表達(dá)水平;應(yīng)用MTT法檢測(cè)細(xì)胞的增值活性;使用流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期分布和磷脂酰絲氨酸外翻分析(Annexin Ⅴ-FITC/PI)檢測(cè)細(xì)胞凋亡;采用Western blot法檢測(cè)細(xì)胞周期調(diào)控蛋白Cyclin D1、凋亡相關(guān)蛋白Bcl-2表達(dá)情況。結(jié)果:成功構(gòu)建pEGFP-N1-BTG1,Western blot檢測(cè)結(jié)果顯示,實(shí)驗(yàn)組細(xì)胞中BTG1蛋白表達(dá)水平明顯高于對(duì)照組細(xì)胞(0.921±0.091 vs 0.308±0.047,P<0.05)。實(shí)驗(yàn)組與對(duì)照組細(xì)胞相比,從第24 h實(shí)驗(yàn)組細(xì)胞生長(zhǎng)速度減慢,細(xì)胞增值能力降低,兩組比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05);實(shí)驗(yàn)組細(xì)胞中Cyclin D1蛋白表達(dá)水平下降(0.436±0.023 vs 0.916±0.092,P<0.05),細(xì)胞周期的G0/G1期細(xì)胞比例升高[(85.1±5.2)% vs (63.8±3.1)%,P<0.05)];S期細(xì)胞比例降低[(8.3±1.1)% vs (23.1±1.5)%,P<0.05];實(shí)驗(yàn)組細(xì)胞Annexin Ⅴ增多,細(xì)胞早期凋亡率升高[(10.3±1.1)% vs (2.8±0.3)%,P<0.05],抗凋亡蛋白Bcl-2表達(dá)水平降低(0.167±0.009 vs 0.834±0.084,P<0.05)。結(jié)論:BTG1高表達(dá)能明顯抑制喉癌Hep-2細(xì)胞的生長(zhǎng)增殖、誘導(dǎo)凋亡,其可能的機(jī)制與BTG1參與細(xì)胞周期調(diào)控、誘導(dǎo)細(xì)胞凋亡相關(guān)。
喉癌;BTG1;增殖;凋亡;細(xì)胞周期
B細(xì)胞易位基因1(B-cell translocation gene 1, BTG1) 在許多腫瘤組織中表達(dá)水平低下,但在體外實(shí)驗(yàn)中使其過量表達(dá)時(shí)則表現(xiàn)為腫瘤細(xì)胞的增殖和轉(zhuǎn)移能力降低,凋亡增加[1-3]。因此,其可能是一種新型的抑癌基因并已受到廣泛關(guān)注。喉癌是一種頭頸部常見的預(yù)后較差的惡性腫瘤。本研究試圖通過對(duì)喉癌Hep-2細(xì)胞株轉(zhuǎn)染BTG1基因,以探討該基因的高表達(dá)在體外對(duì)喉癌細(xì)胞增殖、凋亡的影響,以期為探討喉癌治療的新途徑提供實(shí)驗(yàn)基礎(chǔ)。
1.1 材料
人喉癌上皮細(xì)胞Hep-2購(gòu)自上海拜力生物科技有限公司,質(zhì)粒pEGFP-N1、XhoⅠ內(nèi)切酶、KpnⅠ內(nèi)切酶、T4連接酶購(gòu)自寶生物工程(大連)有限公司,質(zhì)粒pDonR223-BTG1購(gòu)自長(zhǎng)沙愛科博生物科技有限公司,LipofectamineTM2000、DH5a感受態(tài)細(xì)胞購(gòu)自美國(guó)Invitrogen公司,鼠抗人BTG1單克隆抗體、鼠抗人Bcl-2單克隆抗體、鼠抗人CyclinD1單克隆抗體、鼠抗人β-actin單克隆抗體購(gòu)自美國(guó)Santa Cruz公司,辣根過氧化酶標(biāo)記的二抗(山羊抗鼠)購(gòu)自北京中杉金橋生物技術(shù)有限公司,ECL發(fā)光試劑購(gòu)自上海碧云天生物技術(shù)有限公司,高純度質(zhì)粒小提中量試劑盒購(gòu)自天根生化科技(北京)有限公司,10%胎牛血清購(gòu)自HyClone公司,DMEM完全培養(yǎng)基購(gòu)自美國(guó)Gibco公司,BCA蛋白濃度測(cè)定試劑盒購(gòu)自北京賽馳生物科技有限公司,PVDF膜購(gòu)自Millipore公司,Annexin Ⅴ-FITC/PI凋亡試劑盒、MTT購(gòu)自美國(guó)Sigma公司生物科技有限公司。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng)
用含10%胎牛血清的 DMEM 完全培養(yǎng)基培養(yǎng)細(xì)胞,置于37 ℃、CO2體積分?jǐn)?shù)為5%飽和濕度的培養(yǎng)箱中;每周傳代2次,用0.25%胰酶消化細(xì)胞。
1.2.2 pEGFP-N1-BTG1構(gòu)建與鑒定
根據(jù)人BTG1 cDNA序列(NM_001731)設(shè)計(jì)B T G 1基因擴(kuò)增引物,序列如下: 5’-CGCCTCGAGATGCATCCCTTCTAC-3’(上游)和5’-CGCGGTACCTCA CCTGATACAGT CATC-3’(下游)。上游引物包含XhoⅠ限制性內(nèi)切酶位點(diǎn),下游引物包含KpnⅠ限制性內(nèi)切酶位點(diǎn)。引物由南京金斯瑞基因科技有限公司合成。PCR反應(yīng)體系:10×PCR緩沖液5 μL,引物順義鏈1 μL,引物反義鏈1 μL,dNTPs(10 mmol/L) 1 μL,pDonR223-BTG1 2 μL,Taq DNA聚合酶0.5 μL,ddH2O 39.5 μL,共計(jì)50 μL。反應(yīng)條件:95 ℃ 5 min;95 ℃ 30 s,56 ℃ 30 s,72 ℃ 1 min,30個(gè)循環(huán);72 ℃ 10 min。反應(yīng)結(jié)束后進(jìn)行1.2%的瓊脂糖凝膠電泳,然后對(duì)目的片段進(jìn)行回收。對(duì)回收后的片段以及pEGFP-N1載體進(jìn)行XhoⅠ和KpnⅠ雙酶切反應(yīng),反應(yīng)體系:BTG1 36 μL,XhoⅠ2 μL,KpnⅠ 2 μL,10×緩沖液H 5 μL,ddH2O 5 μL,總共50 μL。pEGFP-N1 6 μL,XhoⅠ 1 μL,KpnⅠ 1 μL,10×緩沖液H 2 μL,ddH2O 10 μL,共20 μL。對(duì)以上酶切體系放置37 ℃水浴反應(yīng)4 h后,進(jìn)行1.5%的瓊脂糖凝膠電泳鑒定,然后回收目的片段。并進(jìn)行連接反應(yīng):BTG1酶切產(chǎn)物3.0 μL,pEGFP-N1 1.0 μL,10×T4連接酶緩沖液2.0 μL,T4連接酶1.0 μL,ddH2O 13.0 μL,混勻,16 ℃反應(yīng)過夜。之后轉(zhuǎn)化到DH5a感受態(tài)細(xì)胞中。挑取陽(yáng)性克隆進(jìn)行質(zhì)粒提取備用,并將陽(yáng)性克隆送交美國(guó)Invitrogen公司進(jìn)行DNA序列測(cè)定。
1.2.3 Hep-2細(xì)胞株的瞬時(shí)轉(zhuǎn)染
Hep-2細(xì)胞分成兩組分別轉(zhuǎn)染pEGFPN 1-B T G 1和p E G F P-N 1空質(zhì)粒。采用LipofectaminTM2000轉(zhuǎn)染試劑按其說明嚴(yán)格進(jìn)行操作。
1.2.4 蛋白[質(zhì)]印跡法(Western blot)檢測(cè)轉(zhuǎn)染后兩組細(xì)胞BTG1蛋白及兩組細(xì)胞中Cyclin D1、Bcl-2蛋白的表達(dá)情況
用IP裂解液分別提取兩組細(xì)胞的蛋白質(zhì),用BCA蛋白濃度測(cè)定試劑盒測(cè)定蛋白濃度。每孔上樣量為50 μg行聚丙烯酰胺凝膠電泳(SDSPAGE),穩(wěn)壓冰浴電轉(zhuǎn)至PVDF膜上,用5%脫脂奶粉封閉PVDF膜2 h,加入一抗(1∶500的BTG1抗體),4 ℃搖床過夜,加入二抗(以辣根過氧化酶HRP 標(biāo)記),室溫溫育2 h,雜交膜以ECL化學(xué)發(fā)光試劑在暗室中顯影并曝光,以β-actin作為內(nèi)參。Western blot法檢測(cè)Cyclin D1、Bcl-2蛋白,一抗分別為Cyclin D1、Bcl-2抗體,具體操作步驟同前。
1.2.5 MTT實(shí)驗(yàn)檢測(cè)高表達(dá)BTG1體外對(duì)喉癌Hep-2細(xì)胞增殖的影響
取對(duì)數(shù)生長(zhǎng)期的兩組細(xì)胞胰酶消化并制成等濃度分別加于96孔培養(yǎng)板內(nèi),每孔內(nèi)加5 000個(gè)細(xì)胞,分別培養(yǎng)24、48、72和96 h,結(jié)束培養(yǎng)4 h前每孔加MTT溶液[5 mg/mL用PBS (pH<7.4)]20 μL在37 ℃下繼續(xù)培養(yǎng),到達(dá)時(shí)間后結(jié)束培養(yǎng),棄去上清液,在每孔中加入異丙醇150 μL,搖蕩10 min待結(jié)晶溶解后在酶標(biāo)儀上測(cè)定490 nm波長(zhǎng)的各孔光密度(D)值,以時(shí)間為橫坐標(biāo)、D值為縱坐標(biāo),將記錄的結(jié)果繪制細(xì)胞生長(zhǎng)曲線。
1.2.6 磷脂酰絲氨酸外翻分析檢測(cè)細(xì)胞凋亡
取轉(zhuǎn)染48 h后的兩組細(xì)胞胰酶消化,懸浮細(xì)胞(1×106個(gè))用PBS洗2次,加入100 μL結(jié)合緩沖液和FITC標(biāo)記的Annexin Ⅴ(20 μg/mL)10 μL,室溫避光放置30 min,再加入PI(50 μg/mL)5 μL,避光反應(yīng)5 min后,加入400 μL結(jié)合緩沖液,立即用流式細(xì)胞儀檢測(cè)。
1.2.7 流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期
取轉(zhuǎn)染48 h后的兩組細(xì)胞胰酶消化,離心去除上清液,用預(yù)冷的PBS液洗細(xì)胞2次,預(yù)冷70%乙醇,-20 ℃固定保存24 h。離心(800 r/min)固定的細(xì)胞5 min,去除乙醇,收集細(xì)胞,以1 mL的PBS洗細(xì)胞1次,加入500 μL PBS含50 μg/mL碘化丙啶(PI),100 μg/mL RNase A,4 ℃避光溫育20 min。用流式細(xì)胞儀按照標(biāo)準(zhǔn)程序進(jìn)行檢測(cè),汞激發(fā)波長(zhǎng)488 nm,計(jì)數(shù)10 000個(gè)細(xì)胞,結(jié)果用MultiCycle軟件分析,分別計(jì)算G0/ G1期、S期和G2/M期細(xì)胞的相對(duì)比例。
1.3 統(tǒng)計(jì)學(xué)處理
2.1 重組質(zhì)粒pEGFP-N1-BTG1構(gòu)成的鑒定
將pEGFP-N1-BTG1重組質(zhì)粒進(jìn)行XhoⅠ和KpnⅠ雙酶切反應(yīng),酶切后的產(chǎn)物進(jìn)行1.5%瓊脂糖凝膠電泳圖譜分析,如圖1雙酶切電泳圖譜顯示516 bp(BTG1序列大小)和4.7 kb(pEGFP-N1序列大小)的目的條帶。
圖1 雙酶切電泳圖Fig. 1 Electrophoresis pattern of double enzyme
該質(zhì)粒行DNA序列測(cè)定顯示與GenBank數(shù)據(jù)庫(kù)中收錄的人類B T G 1基因序列(NM_001731)一致,表明BTG1 cDNA已經(jīng)成功克隆至pEGFP-N1載體。測(cè)序結(jié)果如下:ATGCATCCCTTCTACACCCGGGCCGCCACCA TGATAGGCGAGATCGCCGCCGCCGTGTCCT TCATCTCCAAGTTTCTCCGCACCAAGGGGC TCACGAGCGAGCGACAGCTGCAGACCTTCA GCCAGAGCCTGCAGGAGCTGCTGGCAGAA CATTATAAACATCACTGGTTCCCAGAAAAGC CATGCAAGGGATCGGGTTACCGTTG TATTCGCATCAACCATAAAATGGATCCTCTG ATTGGACAGGCAGCACAGCGGATTGG ACTGAGCAGTCAGGAGCTGTTCAGG CTTCTCCCAAGTGAACTCACACTCTGGGTT GACCCCTATGAAGTGTCCTACAGAATTGGA GAGGATGGCTCCATCTGTGTGCTGTATGA AGCCTCACCAGCAGGAGGTAGCACTCAAAA CAGCACCAACGTGCAAATGGTAGACA GCCGAATCAGCTGTAAGGAGGAACTTCTCT TGGGCAGAACGAGCCCTTCCAAAAACTA CAATATGATGACTGTATCAGGTTAA。
2.2 Hep-2細(xì)胞株中BTG1蛋白表達(dá)鑒定
采用Western blot法檢測(cè)兩組細(xì)胞中BTG1蛋白表達(dá)水平,從圖2中可以看出,轉(zhuǎn)染BTG1的實(shí)驗(yàn)組細(xì)胞中BTG1蛋白表達(dá)水平明顯高于未轉(zhuǎn)染BTG1的對(duì)照組Hep-2細(xì)胞(0.921±0.091 vs 0.308±0.047,P<0.05)。從實(shí)驗(yàn)結(jié)果可以清楚地看到,BTG1基因已經(jīng)成功轉(zhuǎn)染進(jìn)入喉癌Hep-2細(xì)胞中,而且可以使轉(zhuǎn)染細(xì)胞BTG1蛋白表達(dá)得到明顯提高。
2.3 MTT實(shí)驗(yàn)檢測(cè)BTG1體外對(duì)喉癌Hep-2細(xì)胞生長(zhǎng)的影響
經(jīng)MTT實(shí)驗(yàn)檢測(cè)發(fā)現(xiàn),與對(duì)照組細(xì)胞相比較,從第24 h實(shí)驗(yàn)組細(xì)胞生長(zhǎng)即明顯降低,相對(duì)增值能力下降,D值明顯降低。各個(gè)時(shí)間點(diǎn)兩組比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05,圖3)。本實(shí)驗(yàn)結(jié)果表明,提高BTG1表達(dá)對(duì)喉癌Hep-2細(xì)胞生長(zhǎng)具有明顯的抑制作用。
圖2 Western blot鑒定BTG1蛋白的表達(dá)Fig. 2 Identification of the expression of BTG1 protein by Western blot
圖3 BTG1高表達(dá)對(duì)細(xì)胞增殖的影響Fig. 3 The effects of BTG1 overexpression on the cell proliferation
2.4 BTG1對(duì)喉癌Hep-2細(xì)胞凋亡的影響
采用Annexin Ⅴ分析法檢測(cè)結(jié)果顯示,實(shí)驗(yàn)組細(xì)胞中早期凋亡率為(10.3±1.1)%,而對(duì)照組細(xì)胞早期凋亡率為(2.8±0.3)% 。兩者比較,實(shí)驗(yàn)組早期凋亡率明顯高于對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖4A、B)。
2.5 BTG1對(duì)喉癌Hep-2細(xì)胞周期的影響
應(yīng)用流式細(xì)胞儀分析兩組細(xì)胞周期分布顯示,實(shí)驗(yàn)組中,G0/G1期細(xì)胞所占比例明顯高于對(duì)照組細(xì)胞[(85.1±5.2)% vs (63.8±3.1)%,P<0.05];而S期細(xì)胞明顯低于對(duì)照組細(xì)胞[(8.3±1.1)% vs (23.1±1.5)%,P<0.05];G2/ M期細(xì)胞與對(duì)照組細(xì)胞無明顯差異(P>0.05)。本實(shí)驗(yàn)結(jié)果顯示,使BTG1基因表達(dá)水平提高可以影響喉癌Hep-2細(xì)胞的細(xì)胞周期分布,BTG1可以導(dǎo)致Hep-2細(xì)胞G0/G1期阻滯,S期細(xì)胞明顯減少,G2/M期細(xì)胞阻滯不明顯(圖5A、B)。
2.6 BTG1對(duì)喉癌Hep-2細(xì)胞Cyclin D1、Bcl-2蛋白的影響
Western blot檢測(cè)結(jié)果顯示,實(shí)驗(yàn)組細(xì)胞中Cyclin D1、Bcl-2蛋白表達(dá)水平均明顯低于對(duì)照組細(xì)胞(0.436±0.023 vs 0.916±0.092和 0.167±0.009 vs 0.834±0.084, P<0.05)。作為內(nèi)參的β-actin蛋白表達(dá)基本一致,說明Cyclin D1、Bcl-2蛋白表達(dá)水平的下降是由于BTG1基因表達(dá)水平提高所致。Cyclin D1為細(xì)胞周期蛋白,調(diào)控細(xì)胞周期變化;Bcl-2為抗細(xì)胞凋亡蛋白,阻礙細(xì)胞凋亡。本實(shí)驗(yàn)結(jié)果表明,在實(shí)驗(yàn)組細(xì)胞中BTG1基因高表達(dá)從而下調(diào)Cyclin D1、Bcl-2蛋白表達(dá)水平是導(dǎo)致Hep-2細(xì)胞G0/G1阻滯和促進(jìn)Hep-2細(xì)胞凋亡的機(jī)制之一(圖6A、B)。
圖4 BTG1高表達(dá)對(duì)細(xì)胞凋亡的影響Fig. 4 The effects of BTG1 overexpression on the cell apoptosis
圖5 BTG1高表達(dá)對(duì)細(xì)胞周期的影響Fig. 5 The effects of BTG1 overexpression on the cell cycle
圖6 高表達(dá)BTG1對(duì)Cyclin D1和Bcl-2的影響Fig. 6 The effects of BTG1 overexpression on Cyclin D1 and Bcl-2
喉癌在所有癌癥中所占的比例超過3%,其已成為全球第六位最常見的癌癥[4]。盡管不斷改進(jìn)喉癌的診斷和治療方法,但是在過去20年里其患者生存期并沒有得到顯著改善。喉癌的形成是一個(gè)長(zhǎng)時(shí)期、多因素參與、多階段的過程,這一過程會(huì)有多個(gè)癌基因的突變、抑癌基因的失活以及凋亡調(diào)節(jié)基因和DNA修復(fù)基因的改變等,需有眾多基因參與其中。在惡性腫瘤形成過程中目前已知有眾多癌基因及抑癌基因起著重要作用,當(dāng)抑癌基因缺失或突變導(dǎo)致其表達(dá)異常從而常會(huì)引起細(xì)胞不受調(diào)控的增殖進(jìn)而導(dǎo)致惡性腫瘤的發(fā)生。只有對(duì)喉癌的遺傳基礎(chǔ)及其發(fā)生的分子機(jī)制進(jìn)行深入的研究和不斷的探索,才會(huì)在臨床中對(duì)喉癌的早期診斷、基因治療和預(yù)后評(píng)價(jià)具有進(jìn)一步的指導(dǎo)作用。
BTG1是BTG/TOB基因家族成員之一,BTG/ TOB家族包括BTG1、BTG2/PC3/Tis21、BTG3/ ANA、BTG4/PC3B、Tob1/Tob及Tob2等6種基因,最初BTG1為慢性B淋巴細(xì)胞性白血病染色體在t(8;12)(q24;q22)進(jìn)行易位相關(guān)的基因進(jìn)行克隆得到[5]。20世紀(jì)90年代初法國(guó)Rouault等[6]從淋巴母細(xì)胞中分離出5620 bP的BTG1基因全長(zhǎng)cDNA, 其定位在12q22染色體,mRNA 長(zhǎng)度為1.8 kb,編碼相對(duì)分子質(zhì)量為19×103的蛋白。已知該家族所有成員都具有抑制細(xì)胞增殖及負(fù)向調(diào)控細(xì)胞周期的功能。BTG/TOB家族的主要特點(diǎn)是具備多個(gè)氨基酸N末端區(qū)域,被稱為BTG/TOB同源域。這個(gè)同源域結(jié)構(gòu)包括A盒和B盒,均為較短并且高度保守的同源區(qū),A盒具有抗增殖作用,B盒具有和許多靶分子結(jié)合的功能[7]。
在喉癌的發(fā)生、發(fā)展中腫瘤細(xì)胞異常生長(zhǎng)增殖發(fā)揮著重要的作用,正常情況下應(yīng)該凋亡的細(xì)胞未發(fā)生凋亡而繼續(xù)生存,顯示出惡性增長(zhǎng)行為[8]。本研究通過脂質(zhì)體轉(zhuǎn)染法而明顯提高了BTG1表達(dá)水平的喉癌Hep-2細(xì)胞進(jìn)行MTT細(xì)胞生長(zhǎng)增殖實(shí)驗(yàn)檢測(cè),結(jié)果發(fā)現(xiàn),高表達(dá) BTG1 蛋白的Hep-2細(xì)胞株生長(zhǎng)減慢,增殖明顯受到抑制,說明BTG1在其中發(fā)揮了重要的生物學(xué)作用,且隨著作用時(shí)間的延長(zhǎng)表現(xiàn)出與對(duì)照組細(xì)胞體外增殖能力差異的顯著增大。本實(shí)驗(yàn)采用流式細(xì)胞儀檢測(cè)細(xì)胞周期實(shí)驗(yàn)中提高喉癌Hep-2細(xì)胞中BTG1的表達(dá)量,結(jié)果發(fā)現(xiàn)實(shí)驗(yàn)組G0/G1期細(xì)胞所占比例升高,S期細(xì)胞比率減少,Hep-2細(xì)胞被阻滯在G0/G1期,這一檢測(cè)結(jié)果所顯示通過誘導(dǎo)細(xì)胞G0/G1期阻滯來抑制喉癌Hep-2細(xì)胞的生長(zhǎng)是BTG1的一重要分子機(jī)制。Western blot檢測(cè)還發(fā)現(xiàn)轉(zhuǎn)基因細(xì)胞中Cyclin D1蛋白表達(dá)明顯降低,表明BTG1高表達(dá)抑制細(xì)胞生長(zhǎng),誘導(dǎo)細(xì)胞周期的阻滯,可能與BTG1使細(xì)胞周期蛋白Cyclin D1表達(dá)下降有關(guān)。Cyclin D1被認(rèn)為是一種原癌基因,是Cyclin D家族基因的重要成員,在人類多種腫瘤組織中高表達(dá)或存在突變[9]。Cyclin D家族還包括Cyclin D2、Cyclin D3,其功能與Cyclin D1相似,可以形成CDK4/Cyclin D以及CDK6/Cyclin D復(fù)合物,促進(jìn)G1/S期轉(zhuǎn)換的發(fā)生。有研究[10-11]結(jié)果顯示,BTG1基因家族中BTG2和TOB2也能夠使得細(xì)胞周期蛋白表達(dá)下調(diào)。本研究結(jié)果顯示,BTG1基因是一個(gè)喉癌細(xì)胞增殖抑制基因,其作用機(jī)制之一是通過CDK/Cyclin D1途徑參與并影響腫瘤細(xì)胞周期的調(diào)控。
細(xì)胞凋亡在生理或病理?xiàng)l件下均可發(fā)生,其是一種自發(fā)的、程序化的細(xì)胞死亡過程。在其發(fā)生過程中會(huì)受到體內(nèi)、外許多因素的影響并涉及到一系列相關(guān)基因的變化[12]。增強(qiáng)對(duì)腫瘤細(xì)胞的誘導(dǎo),促進(jìn)其凋亡也是腫瘤基因治療的又一有效途徑。我們?cè)贏nnexin Ⅴ實(shí)驗(yàn)中發(fā)現(xiàn),提高喉癌Hep-2細(xì)胞中BTG1的表達(dá),可以誘導(dǎo)細(xì)胞凋亡。Corjay等[13]對(duì)患有遺傳性高脂血癥的人群進(jìn)行研究時(shí)發(fā)現(xiàn),含有大量巨噬細(xì)胞組織內(nèi)的凋亡細(xì)胞中BTG1會(huì)出現(xiàn)高表達(dá)現(xiàn)象。Lee等[14]經(jīng)過實(shí)驗(yàn)證實(shí),在腦膠質(zhì)細(xì)胞瘤細(xì)胞凋亡的過程當(dāng)中BTG1發(fā)揮著積極的促進(jìn)作用。Nahta等[15]研究證明,在Bcl-2的反義核酸介導(dǎo)乳腺癌MCF7細(xì)胞凋亡過程中BTG1出現(xiàn)高表達(dá)。我們隨后通過Western blot檢測(cè)發(fā)現(xiàn),Hep-2細(xì)胞中抗凋亡蛋白Bcl-2表達(dá)明顯下降,Bcl-2是重要的抗凋亡基因,同時(shí)又是癌基因,通過阻斷內(nèi)源性核酸內(nèi)切酶的DNA剪切活性或抑制凋亡刺激信號(hào)從而起到阻滯細(xì)胞凋亡的作用。當(dāng)某種因素使Bcl-2基因出現(xiàn)過度表達(dá)時(shí),導(dǎo)致細(xì)胞不能啟動(dòng)正常的凋亡程序,細(xì)胞過長(zhǎng)時(shí)期生存會(huì)促使腫瘤形成[16],并且高表達(dá)Bcl-2的腫瘤患者其預(yù)后較差[17-18]。本研究采用Annexin Ⅴ分析法檢測(cè)了BTG1高表達(dá)對(duì)細(xì)胞凋亡的影響,實(shí)驗(yàn)結(jié)果顯示轉(zhuǎn)染BTG1的喉癌細(xì)胞早期凋亡率明顯高于對(duì)照組(P<0.05),表明BTG1高表達(dá)能夠誘導(dǎo)喉癌Hep-2細(xì)胞的凋亡。結(jié)合以上的研究結(jié)果,BTG1誘導(dǎo)喉癌Hep-2細(xì)胞凋亡的機(jī)制之一是通過下調(diào)Bcl-2的表達(dá)來實(shí)現(xiàn)的。
在急性B淋巴細(xì)胞性白血病患者中由于BTG1基因缺失而引起其低表達(dá)占9%,但是在急性T淋巴細(xì)胞性白血病患者中未發(fā)現(xiàn)此現(xiàn)象[19]。因此,BTG1表達(dá)與遺傳及表觀遺傳的關(guān)系仍然有待我們進(jìn)一步研究。在本實(shí)驗(yàn)中,我們?cè)隗w外模型中論證了BTG1高表達(dá)能夠影響喉癌細(xì)胞周期調(diào)控蛋白、抗凋亡蛋白的表達(dá)水平,可以使喉癌細(xì)胞發(fā)生細(xì)胞周期阻滯,通過上述的作用能夠使喉癌細(xì)胞的增殖生長(zhǎng)受到抑制,誘導(dǎo)凋亡。
[1] ZHAO Y, GOU W F, CHEN S, et al. BTG1 expression correlates with the pathogenesis and progression of ovarian carcinomas[J]. Int J Mol Sci, 2013, 14(10): 19670-19680.
[2] 曹倪豪, 陳明. BTG1在腎透明細(xì)胞癌組織中的表達(dá)及對(duì)786-O細(xì)胞株增殖和凋亡的影響[J]. 東南大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2011, 30(4): 583-587.
[3] ZHU R, ZOU S T, WAN J M, et al. BTG1 inhibits breast cancer cell growth through induction of cell cycle arrest and apoptosis[J]. Oncol Rep, 2013, 30(5): 2137-2144.
[4] SIEGEL R, WARD E, BRAWLEY O, et al. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths[J]. CA Cancer J Clin, 2011, 61(4): 212-236.
[5] RIMOKH R, ROUAULT J P, WAHBI K, et al. A chromosome 12 coding region is juxtaposed to the MYC protooncogene locus in a t(8;12)(q24;q22) translocation in a case of B-cell chronic lymphocytic leukemia[J]. Genes Chromosomes Cancer, 1991, 3(1): 24-36.
[6] ROUAULT J P, RIMOKH R, TESSA C, et al. BTG1, a member of a new family of antiproliferative genes[J]. EMBO, 1992, 11(4): 1663-1670.
[7] WINKLER G S. The mammalian anti-proliferative BTG/Tob protein family[J]. J Cell Physiol, 2010, 222(1): 66-72.
[8] MARTINEZ-OUTSCHOORN U E, PAVLIDES S, SOTGIA F, et al. Mitochondrial biogenesis drives tumor cell proliferation[J]. Am J Pathol, 2011, 178(5): 1949-1952.
[9] KOFF A, CROSS F, FISHER A, et al. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family[J]. Cell, 1991, 66(6): 1217-1228.
[10] IKEMATSU N, YOSHIDA Y, KAWAMURA-TSUZUKU J, et al. Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases[J]. Oncogene, 1999, 18(52): 7432-7441.
[11] TIRONE F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair?[J]. J Cell Physiol, 2001, 187(2): 155-165.
[12] NICHOLSON D W, THORNBERRY N A. Apoptosis, life and death decisions[J]. Science, 2003, 299(5604): 214-215.
[13] CORJAY M H, KEARNEY M A, MUNZER D A, et al. Antiproliferative gene BTG1 is highly expressed in apoptotic cells in macrophage-rich areas of advanced lesions in Watanabe heritable hyperlipidemic rabbit and human[J]. Lab Invest, 1998, 78(7): 847-858.
[14] LEE H, CHA S, LEE M S, et al. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activationinduced cell death of brain microglia[J]. J Immunol, 2003, 171(11): 5802-5811.
[15] NAHTA R, YUAN L X, FITERMAN D J, et al. B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells[J]. Mol Cancer Ther, 2006, 5(6): 1593-1601.
[16] VAUX D L, CORY S, ADAMS J M, et al. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize Pre-B cells[J].Nature, 1988, 335(6189): 440-442.
[17] ERMIAH E, BUHMEIDA A, KHALED B R, et al. Prognostic value of bcl-2 expression among women with breast cancer in Libya[J]. Tumour Biol, 2013, 34(3): 1569-1578.
[18] GU Y, PAN Y, MENG B, et al. High levels of bcl-2 protein expression do not correlate with genetic abnormalities but predict worse prognosis in patients with lymphoblastic lymphoma[J]. Tumour Biol, 2013, 34(3): 1441-1450.
[19] WAANDERS E, SCHEIJEN B, VAN DER MEER, et al. The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution[J]. PLoS Genet, 2012, 8: e1002533.
The effect of BTG1 overexpression on the proliferation and apoptosis of laryngeal cancer cells and its molecular mechanism in vitro
JIANG Runxue1, HU Wanning1, SUN Guogui2, LI Jun1, HAN Xiaochen1,CAI Haifeng1(1.Department of Head and Neck Surgery, Tangshan People’s Hospital of Hebei United University, Tangshan 063000, Hebei Province, China; 2.Department of Chemoradiotherapy, Tangshan People’s Hospital of Hebei United University, Tangshan 063000, Hebei Province, China)
HU Wanning E-mail: rmyy_hwn@163.com
Background and purpose:B-cell translocation gene 1(BTG1) can inhibit cell proliferation, promote cell apoptosis and regulate cell cycle progression and differentiation in a variety of cell types. This study aimed to explore the influence on cell proliferation, apoptosis and cell cycle and its related mechanism of laryngeal cancer Hep - 2 cell lines through BTG1 overexpression by in vitro experiments.Methods:The BTG1 expression plasmids were constructed and transfected into Hep-2. They were divided into experimental group (transfected BTG1 of Hep-2 cells) and control group (transfected empty plasmid of Hep-2 cells). Western blot method was used to identify BTG1 protein expression levels of cells; proliferation activity of cells was detected by MTT assay; flow cytometry was used to analyze the cell cycle distribution and Annexin Ⅴ-FITC/PI cell apoptosis; Western blot was also used to assay cell cycle regulatory protein and apoptosis-related protein expression.Results:The pEGFP-N1-BTG1 plasmid was constructed successfully, and the expression of BTG1 protein was higher in experimental group than that in control group(0.921±0.091 vs 0.308±0.047, P<0.05). Compared with the two group of laryngeal cancer Hep-2 cells, the cell growth in experimental group was slowed down and the proliferation was reduced (P<0.05); Cyclin D1 protein expression level was decreased (0.436±0.023 vs 0.916±0.092, P<0.05), the proportion of G0/G1phase cell cycle was increased [(85.1±5.2)% vs (63.8±3.1)%, P<0.05], the proportion of S phase cell was decreased [(8.3±1.1)% vs (23.1±1.5)%, P<0.05], phosphatidylserine ectropion in experimental group was increased, cell early apoptosis was significant [(10.3±1.1)% vs (2.8±0.3)%, P<0.05] and anti-apoptotic protein Bcl-2 expression level was reduced(0.167±0.009 vs 0.834±0.084, P<0.05).Conclusion:BTG1 high expression could inhibit the proliferation growth of laryngeal Hep-2 cells and promote its apoptosis, and the possible mechanisms are interrelated with BTG1 involved in cell cycle regulation and causing cell apoptosis.
Laryngeal cancer; BTG1; Proliferation; Apoptosis; Cell cycle
10.3969/j.issn.1007-3969.2015.12.007
R739.63
A
1007-3639(2015)12-0959-07
2014-07-12
2015-03-25)
胡萬寧 E-mail:rmyy_hwn@163.com