• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同還原溫度制備RGO/MnO2復(fù)合材料對(duì)電容增效的影響

    2015-01-01 08:20:00王令云章海霞王曉敏
    新型炭材料 2015年1期
    關(guān)鍵詞:碳納米管太原熱處理

    王令云,王 勇,章海霞,王曉敏

    (太原理工大學(xué) 材料科學(xué)與工程學(xué)院,山西 太原 030024)

    1 Introduction

    MnO2is a promising candidate to replace the noble-metal oxides as supercapacitor electrode material,owing to its high theoretical pseudocapacitance,low cost and environmental friendliness[1,2].MnO2has been synthesized via various methods,such as reduction,hydrothermal,and co-precipitation methods[3-5].The values of specific capacitance reported for manganese oxide are mostly between 100 and 250 F·g-1,which is far from the theoretical value of 1 000 F·g-1,which is attributed to its intrinsic poor conductivity,easy aggregation,various crystal structures and morphology of MnO2[3,6].To improve its performance,carbon materials have been applied to composite with MnO2to achieve excellent conductivity and large specific surface area[7-9].

    Graphene is a two-dimensional new carbon material with the advantages of the large specific surface area and outstanding electrical conducting properties,which make it a good carrier material for MnO2.Positive effects have been already attained as a support of MnO2[10-12].As an intermediate product of graphene prepared by the oxidation-reduction method,graphene oxide (GO)has a large specific surface area as well as a large number of oxygen-containing functional groups,providing both double layer capacitance and pseudocapacitance[13].However,for the poor electrical conductivity of GO,composite of MnO2with GO can’t improve significantly the capacitance of MnO2[14,15].

    In this paper,we synthesized composite materials of MnO2with reduced graphene oxide(RGO)as supercapacitor electrode materials.The relationships between specific capacitance and thermal reduction temperature of GO,microstructure,electrical conductivity of the composite materials were analyzed,suggesting a balanced use of RGO’s electrical conductivity and pseudocapacitance in supercapacitor electrode materials.

    2 Experimental

    2.1 Preparation of RGO/MnO2composite materials

    GO was synthesized by the modified Hummers method,and then was dissolved into deionized water to prepare GO by ultrasonic treatment[16,17].Then GO powder was heated at different temperatures from 200 to 800 ℃to obtain RGO in Ar atmosphere.Then the RGO was sonicated in 25% alcoholic solution,to which KMnO4was added under stirring.KMnO4was reduced to MnO2by alcohol and then MnO2grew on the RGO sheets.RGO/MnO2composites were obtained after washing and drying.GO samples after thermal reduction were marked by X-RGO and the composites by X-RGO/MnO2,where X standed for the heating temperature of GO.The mass fraction of RGO in the composites was all controlled to be 20%.

    2.2 Characterization

    Scanning electron microscopy (SEM)was employed to characterize the morphology.X-ray diffraction (XRD,Y-2000X)was used to characterize the size and the structure of all samples.Fourier Translation Infrared Spectroscopy (FT-IR,F(xiàn)TS165)was performed to measure the characteristic functional groups.Four probe method is used to measure the electrical conductivity of the RGO.Electrochemical workstation (CHI660D)was used to evaluate the electrochemical performance of samples,the cyclic voltammetry (CV)for the samples was tested in a standard three-electrode test system.The counter electrode was a piece of Pt foil,the reference electrode was Hg/Hg2SO4electrode and the working electrode was assembled from the RGO/MnO2composites as follows.Electrode material was made of the composites (77%,~16-20 mg),acetylene black (13%)and polytetrafluoroethylene (PTFE,10%).The mixture was painted on Ni foil current collectors and pressed under 25 MPa to make the electrode.The applied potential range for CV measurement was-0.8~0.0 V(vs.Hg/Hg2SO4),the test was conducted in 6 mol·L-1KOH electrolyte.Calculation method of specific capacitance was based on the formula:

    Where Csis the specific capacitance of the composites,s stands for the scan rate in the CV test,m is the weight of the composite,ΔV stands for scanning voltage range,i and V represent for electric current and voltage,respectively.

    3 Results and discussion

    3.1 Morphology and structures

    The obtained materials were analyzed by SEM.Fig.1a shows a low magnification SEM image of the as-prepared MnO2sample without the addition of RGO,in which the particles were aggregated into bulks with a particle size greater than 5 μm.The high magnification SEM image of MnO2shown in Fig.1b revealed a typical sheet-like structure of δ-MnO2,which was a potential material for the study in supercapacitors.Smaller RGO/MnO2particles are shown in Fig.1c,while MnO2was dispersed by GO and the agglomeration was not obvious.In the high magnification SEM image of RGO/MnO2shown in Fig.1d,loose and small pieces of particles can be seen clearly,which were different from the bulks in Fig.1b,indicating that the aggregation was alliviate and dispersion was improved by RGO addition[18-20].Fig.1e is the low magnification SEM image of 600-RGO/MnO2.Compared with Fig.1c,there was no obvious change in the particle size,but in the high magnification SEM image of the sample in Fig.1f,looser and smaller fragments were presented,indicating that thermal reduction broke RGO into much smaller pieces and finally made the MnO2particles more dispersedly grown on RGO and thus increased the specific surface area of the composites.

    Fig.1 SEM images of (a,b)pure MnO2,(c,d)GO/MnO2and (e,f)600-RGO/MnO2.

    Fig.2 shows the XRD patterns of the GO/MnO2,200-RGO/MnO2,400-RGO/MnO2,600-RGO/MnO2and 800-RGO/MnO2.In each pattern,characteristic diffraction peaks of MnO2were all located at the 2θ values of~12°,37°,67°,corresponding to δ-MnO2(JCPDS file 80-1098).The crystal type of the MnO2was not changed by the addition of RGO,in accordance with the analysis of SEM images.The δ-MnO2was also considered to have a relatively high capacitance as well[21].The structure destruction of RGO was caused by the thermal reduction.So the characteristic peak of the (002)plane was broadened,which agreed well with the result in SEM image,which suggested that the edges of RGO after heat treatment appeared to be loose and blurry[22].Besides,with the increase of the heating temperature,the 2θ value of the (001)plane peak of GO gradually increased,indicating that oxygen-containing functional groups located between the layers of GO were reduced during heat treatment,and the interlayer spacing was decreased[23,24].However,the (001)plane peak of RGO sample after thermal reduction at 800 ℃ didn’t drift to the location of characteristic peak of the (002)planes (2θ=26°)completely,which indicated that some of the oxygen-containing functional groups were still left in the RGO.The patterns of sample d and e with higher heating temperatures obviously showed that the peaks of the (001)and (002)planes coincided and broadened,which indicated the structure of GO was destructed to some extent during the thermal reduction.The destruction was presented as the loosen edges of RGO,leading to an increase of its specific surface area and making it easier to disperse MnO2.

    Fig.2 XRD patterns of the samples:(a)GO/MnO2,(b)200-RGO/MnO2,(c)400-RGO/MnO2,(d)600-RGO/MnO2and (e)800-RGO/MnO2.

    The FT-IR spectra of GO,200-RGO,400-RGO,600-RGO and 800-RGO are shown in Fig.3.The characteristic peaks at 3480,1750 and 1408cm-1could be attributed to the stretching vibration of—H—O—H from interlayer water molecules,C=O from aromatic aldehydes,and C—O from carboxy group,respectively[25].The intensity of the peak at 3480 cm-1weakened with the increasing temperature,which indicated that heat treatment decreased the interlayer water content[26].The intensity of the peaks at 1750cm-1and 1408cm-1weakened when the heating temperature was increased,demonstrating that the thermal reducing ability was enhanced with the rising temperature.All of the weakened peaks indicated that the reduction of oxygen-containing functional groups would lead to the decrease of the interlayer spacing,which was proved by the XRD spectra.The existence of oxygen-containing functional groups also caused a high electrical resistance of GO,so their removal would improve the electrical conductivity of RGO[27,28].

    Fig.3 FT-IR spectra of (a)GO,(b)200-RGO,(c)400-RGO,(d)600-RGO and (e)800-RGO.

    The electrical resistances of the prepared RGO are listed in Table 1.These data confirmed our prediction and was in accordance with the analysis of the FT-IR spectra.

    Table 1 Electrical conductivity of different RGO samples.

    3.2 Electrochemical characterization

    Fig.4 shows the cyclic voltammograms of different RGO samples.Fig.5 shows the cyclic voltammograms of different RGO/MnO2composite samples.Table 2 and Table 3 list the specific capacitance of all samples obtained from Fig.4 and Fig.5,respectively.Fig.6 indicates the capacitance retention rate of the 600-RGO/MnO2composite.

    The redox reaction would take place and electric energy would be stored due to the existence of oxygen-containing functional groups of GO and RGO.The reaction would be reflected in the curves by the redox peaks[29],just like the obvious peaks in cyclic voltammetry curve of GO and 200-RGO.For other samples,the peaks changed to be weaker as the thermal reduction temperature got higher,this was because that the functional groups were partly removed and the reaction was thus weakened accordingly.On the other hand,the impurities in the materials and electrolyte might also have redox reactions and bring out some peaks.

    Fig.4 Cyclic voltammetry curves of (a)GO,(b)200-RGO,(c)400-RGO,(d)600-RGO and (e)800-RGO.

    Fig.5 Cyclic voltammetry curves of (a)GO/MnO2,(b)200-RGO/MnO2,(c)400-RGO/MnO2,(d)600-RGO/MnO2and (e)800-RGO/MnO2.

    Fig.6 Relationship between capacitance retention and cycle number for the 600-RGO/MnO2composite.

    The results showed that the specific capacitance of the composites increased with increasing heating temperatures of GO,and reached a maximum of 321 F·g-1at 600 ℃for 600-RGO/MnO2,which was increased by 87% compared with that of pure MnO2(171 F·g-1)and by 50% compared with GO/MnO2(214 F·g-1).This was a compromising result contributed by two countering factor of electrical conductivity and pseudocapacitance.In one hand,as the electrical conductivity of the RGO improved with the increasing heating temperature,the specific capacitance of the composite also went up.On the other hand,the remaining oxygen-containing functional groups of RGO could provide considerable pseudocapacitance at the same time,which decreased with increasing heating temperature[30].The trend of specific capacitance of RGO samples (Table 2)was consistent with the composite samples (Table 3),which in turn supported the analysis above.On the other hand,the capacitance retention of 600-RGO/MnO2didn’t change too much even cycled for 1 000 times,indicating that the sample had a good stability (Fig.6).

    Table 2 Specific capacitances of different RGO samples.

    Table 3 Specific capacitances of different RGO/MnO2samples.

    4 Conclusions

    The RGO/MnO2composites were prepared after the thermal reduction of GO in the composites at different temperatures.RGO has a large specific surface area,disperses MnO2well and enhances the efficiency of MnO2.With increasing the temperature,the amounts of oxygen-containing functional groups decreased,the electrical conductivity of RGO was increased,which favored an increase of the capacitance.However,the pseudocapacitance provided by the remaining oxygen-containing functional groups decreased with the temperature,leading to a specific capacitance decrease.When GO was reduced at 600 ℃,the 600-RGO/MnO2composite achieved the highest specific capacitance of 321 F·g-1,which is 87% higher than that of the pure MnO2.Also,the 600-RGO/MnO2composite had a good cycling stability.

    [1]Yu Gui-hua,Hu Liang-bing,Liu Nian,et al.Enhancing the supercapacitor performance of graphene MnO2nanostructured electrodes by conductive wrapping[J].Nano Lett,2011,11(10):4438-4442.

    [2]Wei Wei-feng,Cui Xin-wei,Chen Wei-xing,et al.Manganese oxide-based materials as electrochemical supercapacitor electrodes[J].Chem Soc Rev,2011,40(3):1697-1721.

    [3]S Devaraj,N Munichandraiah.Effect of crystallographic structure of MnO2on its electrochemical capacitance properties[J].Journal of Physical Chemistry C,2008,112(11):4406-4417.

    [4]Yang Yu-juan,Huang Cheng-de.Effect of synthetical conditions,morphology,and crystallographic structure of MnO2on its electrochemical behavior[J].J Solid State Electr,2010,14(7):1293-1301.

    [5]V Subramanian,Zhu Hong-wei,Bingqing Wei.Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte[J].CPL,2008,453(4):242-249.

    [6]Daniel Bélanger,L Brousse,Jeffrey W Long.Manganese oxides:battery materials make the leap to electrochemical capacitors[J].The Electrochemical Society Interface,2008,17(1):49-52.

    [7]Wang Yu-qin,Yuan An-bao,Wang Xiu-ling.Pseudocapacitive behaviors of nanostructured manganese dioxidecarbon nanotubes composite electrodes in mild aqueous electrolytes:effects of electrolytes and current collectors[J].J Solid State Electr,2008,12(9):1101-1107.

    [8]Wang Jian-gan,Yang Ying,Huang Zheng-hong,et al.Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance[J].Mat L,2012,72(4):18-21.

    [9]Fan Zhuang-jun,Yan Jun,Wei Tong,et al.Asymmetric supercapacitors based on graphene MnO2and activated carbon nanofiber electrodes with high power and energy density[J].Adv Funct Mater,2011,21(12):2366-2375.

    [10]Deng Ling-juan,Zhu Guang,Wang Jian-fang,et al.Graphene-MnO2and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte[J].J Power Sources,2011,196(24):10782-10787.

    [11]A.K.Geim,Graphene:status and prospects[J].Science,2009,324(5934):1530-4.

    [12]JIN Yu,CHEN Hong-hai,CHEN Ming-hai,et al.Carbon nanotube polyaniline graphene composite paper and its electrochemical capacitance behaviors[J].Acta Phys.-Chim.Sin,2009,28,(03):609-614.(靳 瑜,陳宏源,陳名海.碳納米管聚苯胺石墨烯復(fù)合納米碳紙及其電化學(xué)電容行為[J].物理化學(xué)學(xué)報(bào),2012,28(03):609-614.)

    [13]Xu Bin,Yue Shu-fang,Sui Zhu-yin,et al.What is the choice for supercapacitors:graphene or graphene oxide[J].Energy &Environmental Science,2011,4(8):2826-2830.

    [14]Chen Sheng,Zhu Jun-wu,Wu Xiao-dong,et al.Graphene oxide MnO2nanocomposites for supercapacitors[J].Acs Nano,2010,4(5):2822-2830.

    [15]Dmitriy A Dikin,Sasha Stankovich,Eric J Zimney,et al.Preparation and characterization of graphene oxide paper[J].Nature,2007,448(7152):457-460.

    [16]WANG Yong-zhen,WANG Yan,HAN Fei,et al.The effect of heat treatment on the electrical conductivity of highly conducting graphene films[J].New Carbon Materials,2012,27(4):266-270.(王永禎,王 艷,韓 非.還原熱處理對(duì)石墨烯薄膜導(dǎo)電性的影響[J].新型炭材料,2012,27(4):266-270.)

    [17]Goki Eda,Giovanni Fanchini,Manish Chhowalla.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J].Nature nanotechnology,2008,3(5):270-274.

    [18]Myeongjin Kim,Yongseon Hwang,Kyungchan Min,et al.Introduction of MnO2nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors[J].Electrochim Acta,2013,113(0):322-331.

    [19]Ha Fei,Wang Xiao-min,Lian Jie,et al.The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction[J].Carbon,2012,50(15):5498-5504.

    [20]Jiang Rong-rong,Huang Tao,Tang Yang,et al.Factors influencing MnO2multi-walled carbon nanotubes composite's electrochemical performance as supercapacitor electrode[J].Electrochim Acta,2009,54(27):7173-7179.

    [21]Ragupathy P,Park D H,Campet G,et al.Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor[J].The Journal of Physical Chemistry C,2009,113(15):6303-6309.

    [22]LIU Yan-zhen,LI Yong-feng,YANG Yong-gang,et al.The effect of thermal treatment at low temperatures on graphene oxide films[J].New Carbon Materials,2011,26(1):41-45.(劉燕珍,李永鋒,楊永崗.低溫?zé)崽幚韺?duì)氧化石墨烯薄膜的影響[J].新型炭材料,2011,26(1):41-45.)

    [23]Wang Da-wei,Li Feng,Wu Zhong-shuai,et al.Electrochemical interfacial capacitance in multilayer graphene sheets:Dependence on number of stacking layers[J].Electrochem Commun,2009,11(9):1729-1732.

    [24]Zhao Bing,Liu Peng,Jiang Yong,et al.Supercapacitor performances of thermally reduced graphene oxide[J].J Power Sources,2012,198(0):423-427.

    [25]Geng Jian-xin,Liu Lei-jing,Yang Seung-bo,et al.A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension[J].Journal of Physical Chemistry C,2010,114(34):14433-14440.

    [26]James G Radich,Prashant V Kamat.Making graphene holey.Gold nanoparticle mediated hydroxyl radical attack on reduced graphene oxide[J].ACS Nano,2013,7(6):5546-5557.

    [27]Sung Mook Choi,Min Ho Seo,Hyung Ju Kim,et al.Synthesis of surface-functionalized graphene nanosheets with high Ptloadings and their applications to methanol electrooxidation[J].Carbon,2011,49(3):904-909.

    [28]ZHANG Li-li,ZHAO Xin,Meryl D.Stoller,et al.Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors[J].Nano Lett,2012,12(4):1806-1812.

    [29]Frackowiak E,Beguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.

    [30]Chen Cheng-meng,Zhang Qiang,Yang Mang-guo,et al.Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J].Carbon,2012,50(10):3572-3584.

    猜你喜歡
    碳納米管太原熱處理
    民用飛機(jī)零件的熱處理制造符合性檢查
    太原清廉地圖
    除夜太原寒甚
    Cr12MoV導(dǎo)桿熱處理開裂分析
    模具制造(2019年10期)2020-01-06 09:13:08
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    J75鋼焊后熱處理工藝
    焊接(2016年2期)2016-02-27 13:01:20
    聚賴氨酸/多壁碳納米管修飾電極測(cè)定大米中的鉛
    高精度免熱處理45鋼的開發(fā)
    山東冶金(2015年5期)2015-12-10 03:27:41
    拓?fù)淙毕輰?duì)Armchair型小管徑多壁碳納米管輸運(yùn)性質(zhì)的影響
    功能化多壁碳納米管對(duì)L02細(xì)胞的作用
    亚洲一区高清亚洲精品| 国产一区有黄有色的免费视频| 色播在线永久视频| 伦理电影免费视频| 三级毛片av免费| 最近最新中文字幕大全免费视频| 亚洲精品美女久久久久99蜜臀| 国产精品影院久久| 下体分泌物呈黄色| 窝窝影院91人妻| 老司机午夜福利在线观看视频| 亚洲人成电影观看| 日本a在线网址| 国产亚洲欧美在线一区二区| 一级a爱片免费观看的视频| 精品国产亚洲在线| 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区免费欧美| av片东京热男人的天堂| 两性夫妻黄色片| 男女免费视频国产| 色94色欧美一区二区| 亚洲,欧美精品.| 亚洲成人免费av在线播放| 亚洲欧美精品综合一区二区三区| 色播在线永久视频| 亚洲精品久久午夜乱码| 免费av中文字幕在线| 亚洲综合色网址| 中文字幕人妻熟女乱码| 免费人成视频x8x8入口观看| 99精国产麻豆久久婷婷| 18禁国产床啪视频网站| 国产又爽黄色视频| 国产野战对白在线观看| 精品少妇一区二区三区视频日本电影| 国产免费男女视频| av国产精品久久久久影院| 久久热在线av| 精品久久蜜臀av无| 欧美日韩福利视频一区二区| 国产精品成人在线| 18禁美女被吸乳视频| 久久久久久久午夜电影 | 飞空精品影院首页| 国产精品久久久久成人av| 国精品久久久久久国模美| 国产人伦9x9x在线观看| 国产成人欧美在线观看 | 热99国产精品久久久久久7| 日日爽夜夜爽网站| 国产精品免费大片| 99热国产这里只有精品6| 高清黄色对白视频在线免费看| 国产一区二区三区综合在线观看| 日本欧美视频一区| 久久久久久人人人人人| 激情在线观看视频在线高清 | 国产蜜桃级精品一区二区三区 | 色精品久久人妻99蜜桃| 露出奶头的视频| 99热只有精品国产| 啦啦啦免费观看视频1| 一进一出抽搐gif免费好疼 | 午夜福利影视在线免费观看| 黄色怎么调成土黄色| 久久久国产一区二区| 免费观看a级毛片全部| 久久久久久久久久久久大奶| 黄色视频,在线免费观看| 极品少妇高潮喷水抽搐| 国产无遮挡羞羞视频在线观看| 久久久久国产精品人妻aⅴ院 | 久久精品熟女亚洲av麻豆精品| 极品少妇高潮喷水抽搐| 午夜精品国产一区二区电影| 免费在线观看影片大全网站| 国产无遮挡羞羞视频在线观看| 999久久久精品免费观看国产| 一边摸一边做爽爽视频免费| 免费在线观看影片大全网站| 国产野战对白在线观看| av欧美777| 精品乱码久久久久久99久播| 国产一区二区激情短视频| 久久久国产精品麻豆| 免费高清在线观看日韩| 色精品久久人妻99蜜桃| 后天国语完整版免费观看| 99久久国产精品久久久| 国产区一区二久久| 男女高潮啪啪啪动态图| xxx96com| 精品少妇久久久久久888优播| av国产精品久久久久影院| 免费观看精品视频网站| 高潮久久久久久久久久久不卡| 亚洲欧洲精品一区二区精品久久久| 成人18禁高潮啪啪吃奶动态图| 91精品国产国语对白视频| 国产亚洲精品一区二区www | 亚洲精品一二三| 国产又爽黄色视频| 日韩欧美一区视频在线观看| 成年动漫av网址| 国产av一区二区精品久久| 十八禁网站免费在线| 亚洲精品国产精品久久久不卡| 国产一区二区三区在线臀色熟女 | 国产精品久久久人人做人人爽| 久久久精品免费免费高清| 中文字幕人妻丝袜一区二区| 女人久久www免费人成看片| 国产欧美亚洲国产| 欧美黑人欧美精品刺激| 91av网站免费观看| 免费观看人在逋| 国产精品久久久久久人妻精品电影| 电影成人av| 亚洲aⅴ乱码一区二区在线播放 | 精品福利观看| 久久精品亚洲熟妇少妇任你| 一级a爱视频在线免费观看| 好看av亚洲va欧美ⅴa在| 日韩免费高清中文字幕av| 黄色毛片三级朝国网站| 国产成人精品久久二区二区免费| 精品高清国产在线一区| 国产1区2区3区精品| 手机成人av网站| 国产精品国产高清国产av | 欧美日韩亚洲综合一区二区三区_| 国产有黄有色有爽视频| 精品国产一区二区三区久久久樱花| 精品福利永久在线观看| 国产黄色免费在线视频| 男人的好看免费观看在线视频 | 黄网站色视频无遮挡免费观看| 久久久久久久国产电影| 亚洲av成人不卡在线观看播放网| 精品人妻1区二区| 波多野结衣av一区二区av| 另类亚洲欧美激情| 一级a爱片免费观看的视频| 国产不卡av网站在线观看| 国产三级黄色录像| 国产91精品成人一区二区三区| 国产精品免费一区二区三区在线 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一区中文字幕在线| 成人永久免费在线观看视频| 亚洲三区欧美一区| 热re99久久精品国产66热6| 久久久国产欧美日韩av| av在线播放免费不卡| 久久精品国产亚洲av香蕉五月 | www.精华液| 精品久久久久久久久久免费视频 | 日本a在线网址| 香蕉国产在线看| 久久香蕉激情| 人人妻人人澡人人看| 人妻久久中文字幕网| 成人影院久久| 看免费av毛片| 免费一级毛片在线播放高清视频 | 人妻一区二区av| 日韩欧美三级三区| 一进一出好大好爽视频| 亚洲av成人av| 欧美日本中文国产一区发布| 亚洲视频免费观看视频| 日韩欧美一区二区三区在线观看 | 久久国产精品大桥未久av| 亚洲av日韩精品久久久久久密| 老司机影院毛片| 90打野战视频偷拍视频| 久久国产精品大桥未久av| 老司机影院毛片| 亚洲av电影在线进入| 大型av网站在线播放| 麻豆av在线久日| 久久香蕉激情| 熟女少妇亚洲综合色aaa.| 国产亚洲欧美精品永久| 国产片内射在线| 黄片播放在线免费| 美女福利国产在线| 国产成人免费无遮挡视频| 中文字幕精品免费在线观看视频| 水蜜桃什么品种好| 久久久久久久国产电影| 午夜福利欧美成人| 99国产精品免费福利视频| 美女高潮到喷水免费观看| 国产精品九九99| 欧美日韩乱码在线| 国产国语露脸激情在线看| 大片电影免费在线观看免费| 高潮久久久久久久久久久不卡| 色播在线永久视频| 亚洲欧美精品综合一区二区三区| 12—13女人毛片做爰片一| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 亚洲男人天堂网一区| 女性生殖器流出的白浆| 午夜福利在线观看吧| 制服诱惑二区| 亚洲国产中文字幕在线视频| 国内久久婷婷六月综合欲色啪| 日日夜夜操网爽| 色老头精品视频在线观看| 亚洲精品中文字幕在线视频| 天天影视国产精品| 亚洲第一青青草原| 俄罗斯特黄特色一大片| 国产av又大| 十分钟在线观看高清视频www| 国产激情久久老熟女| 99久久99久久久精品蜜桃| 欧美成人午夜精品| 日韩成人在线观看一区二区三区| 亚洲精品一二三| 一夜夜www| 久久午夜亚洲精品久久| av片东京热男人的天堂| 9色porny在线观看| 激情在线观看视频在线高清 | 成人免费观看视频高清| 免费人成视频x8x8入口观看| 欧美一级毛片孕妇| 丰满迷人的少妇在线观看| 免费在线观看视频国产中文字幕亚洲| 国产精品免费视频内射| 久久婷婷成人综合色麻豆| 国产亚洲精品第一综合不卡| 日韩欧美一区视频在线观看| 免费高清在线观看日韩| 国产精品久久久久久人妻精品电影| 欧美人与性动交α欧美精品济南到| 欧美黄色淫秽网站| 一区二区三区国产精品乱码| 精品少妇一区二区三区视频日本电影| 免费黄频网站在线观看国产| 日韩欧美一区视频在线观看| 国产欧美亚洲国产| 国产成人影院久久av| 中出人妻视频一区二区| 两个人看的免费小视频| 久久精品亚洲精品国产色婷小说| 国产精品98久久久久久宅男小说| 精品久久久久久,| 久久香蕉国产精品| av超薄肉色丝袜交足视频| 午夜精品久久久久久毛片777| 校园春色视频在线观看| 啦啦啦视频在线资源免费观看| 在线观看66精品国产| av天堂在线播放| 丁香欧美五月| 女性生殖器流出的白浆| 一区二区三区精品91| www.精华液| 国产在视频线精品| 身体一侧抽搐| 丝袜人妻中文字幕| 夫妻午夜视频| 一级黄色大片毛片| 国产淫语在线视频| 国产精品av久久久久免费| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久蜜臀av无| 男男h啪啪无遮挡| 身体一侧抽搐| 亚洲精品久久成人aⅴ小说| 午夜福利在线免费观看网站| 一边摸一边抽搐一进一小说 | 欧美最黄视频在线播放免费 | 免费在线观看亚洲国产| 欧美中文综合在线视频| 国产视频一区二区在线看| 1024香蕉在线观看| 国产精品偷伦视频观看了| 午夜久久久在线观看| 一级黄色大片毛片| 捣出白浆h1v1| 视频区图区小说| 香蕉久久夜色| 一a级毛片在线观看| 午夜福利在线观看吧| 黄色a级毛片大全视频| 999久久久精品免费观看国产| 欧美老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影| 国产精品欧美亚洲77777| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看a级黄色片| 国产精品一区二区在线观看99| 一区在线观看完整版| www.熟女人妻精品国产| 久久久久国产精品人妻aⅴ院 | 日本vs欧美在线观看视频| 亚洲 欧美一区二区三区| 国产亚洲一区二区精品| 巨乳人妻的诱惑在线观看| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 一本综合久久免费| 久久久久久人人人人人| 一二三四社区在线视频社区8| 18禁裸乳无遮挡免费网站照片 | a在线观看视频网站| 午夜成年电影在线免费观看| 好看av亚洲va欧美ⅴa在| av线在线观看网站| 国产精品.久久久| 中文字幕色久视频| 国产精品亚洲一级av第二区| 99热只有精品国产| 狠狠婷婷综合久久久久久88av| 国产av又大| 国产精品欧美亚洲77777| 国产成人免费无遮挡视频| 侵犯人妻中文字幕一二三四区| 国产xxxxx性猛交| 香蕉丝袜av| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 国产一区二区激情短视频| 欧美精品一区二区免费开放| 久久人人爽av亚洲精品天堂| 欧美日韩黄片免| 久久香蕉国产精品| 久久久国产成人免费| 制服人妻中文乱码| av免费在线观看网站| 涩涩av久久男人的天堂| 国产一区二区三区在线臀色熟女 | 男女下面插进去视频免费观看| 国产单亲对白刺激| 一本综合久久免费| 免费看a级黄色片| 极品教师在线免费播放| 在线观看免费日韩欧美大片| 久久国产精品人妻蜜桃| 欧美精品啪啪一区二区三区| 色在线成人网| 免费观看人在逋| 国产亚洲欧美98| 亚洲一区二区三区不卡视频| 精品亚洲成a人片在线观看| 十八禁网站免费在线| 欧美人与性动交α欧美精品济南到| 国产1区2区3区精品| 亚洲 国产 在线| 极品教师在线免费播放| 国产极品粉嫩免费观看在线| 国产亚洲精品一区二区www | 成人黄色视频免费在线看| 精品第一国产精品| 丰满饥渴人妻一区二区三| 国产三级黄色录像| 日本一区二区免费在线视频| 韩国av一区二区三区四区| 日韩 欧美 亚洲 中文字幕| 国产精品久久视频播放| 两个人看的免费小视频| 老司机靠b影院| 一个人免费在线观看的高清视频| 精品国产一区二区久久| 欧美日韩国产mv在线观看视频| 悠悠久久av| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| 亚洲精品av麻豆狂野| 乱人伦中国视频| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 少妇 在线观看| 亚洲熟妇熟女久久| 欧美日韩视频精品一区| 亚洲欧美日韩高清在线视频| 1024视频免费在线观看| 窝窝影院91人妻| 99re在线观看精品视频| 18禁美女被吸乳视频| 最新在线观看一区二区三区| 精品高清国产在线一区| 午夜免费成人在线视频| 日韩三级视频一区二区三区| 麻豆国产av国片精品| 香蕉久久夜色| 两个人免费观看高清视频| 国产精品偷伦视频观看了| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 18禁裸乳无遮挡免费网站照片 | 一进一出抽搐动态| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| 三级毛片av免费| 亚洲自偷自拍图片 自拍| 午夜福利,免费看| 国产精品秋霞免费鲁丝片| 欧美日韩瑟瑟在线播放| 午夜免费观看网址| 一区在线观看完整版| av电影中文网址| 一区福利在线观看| 亚洲人成电影观看| 国产激情欧美一区二区| av线在线观看网站| 69av精品久久久久久| 正在播放国产对白刺激| 动漫黄色视频在线观看| 五月开心婷婷网| 亚洲精品乱久久久久久| 老熟妇乱子伦视频在线观看| 亚洲成人国产一区在线观看| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲| 91成人精品电影| 青草久久国产| 免费在线观看视频国产中文字幕亚洲| 深夜精品福利| 亚洲人成伊人成综合网2020| 美女国产高潮福利片在线看| 国产欧美日韩一区二区三| 热99re8久久精品国产| 色老头精品视频在线观看| av在线播放免费不卡| 国产黄色免费在线视频| 人人澡人人妻人| 中文字幕制服av| 免费女性裸体啪啪无遮挡网站| 久久久久久久久免费视频了| 丁香欧美五月| 久久久久久久久久久久大奶| 在线播放国产精品三级| 男女午夜视频在线观看| 亚洲av片天天在线观看| 天天影视国产精品| 欧美成狂野欧美在线观看| 丝袜美足系列| 宅男免费午夜| 精品国产一区二区久久| 国产激情欧美一区二区| 国产一区在线观看成人免费| 成人黄色视频免费在线看| 99国产精品一区二区三区| www.999成人在线观看| 久久精品国产99精品国产亚洲性色 | 大码成人一级视频| 少妇 在线观看| 国产成人精品在线电影| www.精华液| 久久久久久久国产电影| 男女免费视频国产| 黄色a级毛片大全视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品亚洲av国产电影网| 国产精品乱码一区二三区的特点 | 久久午夜综合久久蜜桃| 日本黄色视频三级网站网址 | 一本综合久久免费| 中文字幕人妻丝袜一区二区| 欧美一级毛片孕妇| 精品电影一区二区在线| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www | 制服人妻中文乱码| 极品少妇高潮喷水抽搐| 欧美色视频一区免费| 女同久久另类99精品国产91| 国产有黄有色有爽视频| av国产精品久久久久影院| 午夜福利视频在线观看免费| 中文欧美无线码| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 99热国产这里只有精品6| 国产精品98久久久久久宅男小说| 成人免费观看视频高清| 国产aⅴ精品一区二区三区波| 91成人精品电影| 亚洲人成电影免费在线| 久热爱精品视频在线9| 少妇裸体淫交视频免费看高清 | 建设人人有责人人尽责人人享有的| 国产成人精品在线电影| 高清av免费在线| 久久人人97超碰香蕉20202| 1024视频免费在线观看| 日韩免费高清中文字幕av| 一本一本久久a久久精品综合妖精| 国产亚洲欧美98| 国产99白浆流出| 欧美精品亚洲一区二区| 少妇被粗大的猛进出69影院| 精品一区二区三区四区五区乱码| 精品少妇一区二区三区视频日本电影| 日韩视频一区二区在线观看| 久久久久精品国产欧美久久久| 涩涩av久久男人的天堂| 香蕉国产在线看| 9热在线视频观看99| 亚洲av电影在线进入| xxxhd国产人妻xxx| 丰满的人妻完整版| 美女扒开内裤让男人捅视频| 久久国产乱子伦精品免费另类| 久久这里只有精品19| 老司机靠b影院| 在线观看免费日韩欧美大片| 在线观看66精品国产| 亚洲国产精品一区二区三区在线| 99精品在免费线老司机午夜| 亚洲精品一二三| 国产高清videossex| 亚洲精品久久成人aⅴ小说| 黄色片一级片一级黄色片| 国产精品亚洲一级av第二区| 天堂中文最新版在线下载| 一区二区三区国产精品乱码| 99re6热这里在线精品视频| 正在播放国产对白刺激| 日韩精品免费视频一区二区三区| 老司机午夜福利在线观看视频| 精品人妻1区二区| 久久这里只有精品19| 国产亚洲精品第一综合不卡| x7x7x7水蜜桃| 999精品在线视频| 青草久久国产| 黄网站色视频无遮挡免费观看| 亚洲欧美一区二区三区黑人| 欧美乱码精品一区二区三区| 精品久久久久久久毛片微露脸| 亚洲av成人一区二区三| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 久久狼人影院| 日韩欧美在线二视频 | 免费高清在线观看日韩| 看免费av毛片| 国产三级黄色录像| 中文字幕高清在线视频| 色94色欧美一区二区| 精品久久久精品久久久| 久久久国产精品麻豆| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产 | 欧美人与性动交α欧美精品济南到| 国产视频一区二区在线看| 午夜精品在线福利| 999久久久精品免费观看国产| 丝袜人妻中文字幕| 日本黄色视频三级网站网址 | 国产精品1区2区在线观看. | 久久久精品国产亚洲av高清涩受| 午夜两性在线视频| 一级片免费观看大全| 又黄又粗又硬又大视频| 国产精品自产拍在线观看55亚洲 | 国产欧美亚洲国产| 午夜免费鲁丝| 亚洲熟妇中文字幕五十中出 | 久久午夜综合久久蜜桃| av视频免费观看在线观看| 大片电影免费在线观看免费| 国产xxxxx性猛交| 精品午夜福利视频在线观看一区| 一级a爱片免费观看的视频| 18禁裸乳无遮挡动漫免费视频| 日本五十路高清| 女人被狂操c到高潮| 国产一区有黄有色的免费视频| 操美女的视频在线观看| 久久久国产欧美日韩av| 女人被狂操c到高潮| 午夜影院日韩av| 久久久久久亚洲精品国产蜜桃av| 十八禁高潮呻吟视频| 极品人妻少妇av视频| 日韩制服丝袜自拍偷拍| x7x7x7水蜜桃| 亚洲伊人色综图| 免费在线观看亚洲国产| 国产精品影院久久| 极品人妻少妇av视频| av天堂在线播放| 国产单亲对白刺激| 精品一区二区三卡| 亚洲avbb在线观看| 在线观看免费视频网站a站| 国产人伦9x9x在线观看| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 人妻一区二区av| 亚洲色图综合在线观看| 午夜福利免费观看在线| av电影中文网址| 亚洲一码二码三码区别大吗| 欧美日韩av久久| 最新的欧美精品一区二区| 在线观看www视频免费| 久久香蕉激情| 久久久久久人人人人人| 人人妻人人澡人人看| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| av视频免费观看在线观看| 高潮久久久久久久久久久不卡|