• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Morphology, Size-controlled Synthesis of CoO anostructure and Its Magnetic Property①

    2014-12-17 10:25:52JIAXioYUEFngYANGGungPANHiBoLIUWenGe
    結(jié)構(gòu)化學(xué) 2014年10期

    JIA Xio YUE Fng YANG Gung PAN Hi-Bo LIU Wen-Ge

    ?

    Morphology, Size-controlled Synthesis of CoO anostructure and Its Magnetic Property①

    JIA XiaoaYUE FangaYANG GuangaPAN Hai-BoaLIU Wen-Geb②

    a(350002)b(350001)

    CoO nanostructures with tunable morphology and size have been prepared via a simple one-pot solvothermal synthesis. The as-prepared nanoparticles were fully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), etc. The morphology and size of the product can be easily controlled by adjusting the raw materials added. Reaction time and the solvent ratio also play important roles in the synthesis of octahedral nanostructures. The magnetic property of the as-prepared samples was also investigated.

    controlled synthesis, CoO nanostructure, magnetic property

    1 INTRODUCTION

    Transition metal oxides have a wide variety of applications, including gas sensitivity, photocata- lysis, lithium ion battery, chemical sensors, and so on[1-12]. Metal oxides with various sizes and shapes usually behave unusual physiochemical properties, and continuing to evoke interest. So far, nanoma- terails with special morphology have been conti- nually synthesized[13-22].As the classical antiferro- magnetic transition metal oxide, CoO nanoparticles have been widely studied due to their potential applications based on magnetic[17, 18, 23], elec- tric[24-28], catalytic[29-31], solar[32]properties, etc. Monodisperse CoO nanoparticles have been synthe- sized mainly by thermal decomposition of cobalt surfactant complexes in long-chain hydrocarbon or other organic solvents[33-38]. For example, Yin and Wang have successfully synthesized tetrahedral CoO nanocrystals via the oxidation of Co2(CO)8in toluene in the presence of surfactant Na(AOT)[33]. A series of CoO nanoparticles with tetrahedral, flo- werlike, tetrapod and spherical shapeswere obtained via the decomposition of cobalt(II) oleate or cobalt(II) acetylacetonate complex in long-chain hydrocarbon solvents such as octadecene[36],oleic acid, oleylamine[37], dodecanol[38]and so on. Mean- while, microemulsion method[39], gel method[40]and electrochemical deposition method[41]were also reported for the preparation of CoO products.

    Although various methods have been used to synthesize CoO nanoparticles, these methods usually need complex reaction conditions, and the high-cost raw materials often contain some bio- toxic species due to the application of toxic reac- tants. Herein, a simple and environmentally friendly one-pot approach was reported for the controlled synthesis of CoO nanoparticles. Using cost-effec- tive cobalt(II) chloride hexahydrate as the cobalt source, nearly uniform octahedralCoO nanopar- ticles were synthesized. What’s more, the morpho- logies of the products can be easily adjusted by changing the cobalt source added. When cobalt acetate tetrahydrate instead of cobalt(II) chloride hexahydrate was used as the raw material, uniform distorted-octahedralCoO nanoparticles with smaller size would be synthesized.

    The magnetic property of the as-prepared samples was also investigated. Both octahedral and distorted-octahedralCoO nanoparticles are paramag- netic at 300 K, and the M. H measurements are linear passing through zero. Octahedral CoO nano- particles showed an increasing slope compared to the distorted-octahedralCoO nanoparticles, which can be attributed to the difference in size and shape between the two samples.

    2 EXPERIMENTAL

    2.1 Chemicals

    The reagents purchased from Sinopharm Che- micalReagent Co. Ltd were all of analytical grade. Anhydroussodium acetate (NaAc),-octanol (C8H17OH), ethanol (CH3CH2OH) and cobalt(II) chloride hexahydrate (CoCl2·6H2O) were used without further purification.Cobalt acetate tetrahy- drate (Co(CH3COO)2·4H2O) and cobalt nitrate hexahydrate (Co(NO3)2·6H2O) were dried in the desiccator for a few days before use.

    2.2 Synthesis of octahedral CoO nanoparticles

    In a typical experiment, 0.440 g (1.85 mmol) of CoCl2·6H2O and 0.410 g (5 mmol) of NaAc were dissolved in the mixture of-octanol (12 mL) and ethanol (8 mL) under magnetic stirring at 70 ℃for 1 h. Then the precursor solution was placed into a 25 mL autoclave with a Teflon liner. The autoclave was reacted at 230℃ for 4 h. The resultant suspension was collected by centrifugation and washed with deionized water and ethanol for several times.

    2.3 Synthesis of distorted-octahedral CoO nanoparticles

    Reaction of Co(CH3COO)2·4H2O (0.460 g, 1.85 mmol) with 12 mL of-octanol and 8 mL of ethanol at 220 ℃ for 4 h led to distorted-octahedral CoO nanoparticles.

    2.4 Characterization

    The nanocrystal structures of the obtained octahe- dral and distorted-octahedral CoO nanoparticles were thoroughly characterized with X-ray powder diffraction (XRD, Rigaku D/Max 2200PC, Curadiation;= 1.5418 ?), scanning electron micro- scopy (SEM, Nova NanoSEM 230), high-resolution TEM (HR-TEM, Tecnai G2 F20 S-TWIN, 200 kV). The magnetic properties of the samples were deter- mined on a SQUID (Quantum Design, MPMSXL-7) magnetometer.

    3 RESULTS AND DISCUSSION

    The crystal structures of octahedral CoO nano- particles were characterized by XRD, as shown in Fig. 1c. The XRD pattern indicated that all dif- fraction peaks of the as-prepared CoO octahedra were assigned to face-centered cubic CoO structure (JCPDS 43-1004). SEM image in Fig. 1a shows that the synthesized CoO nanocrystals have nearly uniform octahedral morphology with an average diameter of ca. 500 nm. TEM image in Fig. 1b shows the corresponding tetragonal projected shapes of the octahedral product.

    The reaction solvent is very important for the structure of the product. In order to investigate the effect of solvent on the crystal morphology, a series of experiments were carried out by using different ratios of solvents with other conditions unchanged. When only-octanol was used as the solvent, octahedral structure of ca. 1 μm in diameter could be obtained, with some irregular column structures around (Fig. 2a). Increasing the volume of ethanol to 5 mL, the product showed mainly octahedral structure of ca. 630 nm but with a wide size distri- bution. The product has optimal narrow range of sizes when the volume ofoctanol and ethanol was 12 and 8 mL respectively, with an average diameter of ca. 500 nm as shown in Fig. 2c. Products with octahedral structure could also be synthesized when adding 10 and 15 mL of ethanol respectively, with decreased sizes form ca. 400 to 270 nm (Fig. 2d and 2e). When the reactants were dissolved in pure ethanol (Fig. 2f), nanoparticles of ca. 100 nm formed instead of octahedral structures. As a result, the solvents play important roles in the synthesis of as-prepared CoO nanoparticles. With the proportion of ethanol increasing, the sizes of octahedral product decreased (from 630 to 270 nm), till the nano- particles (ca. 100 nm) formed instead.

    Fig. 1. SEM, TEM images and the corresponding XRD pattern of octahedral CoO nanoparticles in a typical synthesis

    Fig. 2. SEM images of the samples synthesized with different solvent ratio.-octanol and ethanol in the ratio of(a)-octanol; (b) 15:5; (c) 12:8; (d) 10:10; (e) 5:15; (f) ethanol

    In order to investigate the formation mechanism of as-prepared octahedral CoO nanoparticles, a detailed time-dependent experiment was conducted, and the corresponding XRD patterns are shown in Fig. 3a. When the reaction was conducted for 1 h, the diffraction peaks were weak as a result of the small particle size (ca. 130 nm in SEM image), and the phase is a mixture of face-centered cubic CoO (JCPDS 43-1004) and cobalt oxide chloride hydrate (JCPDS 02-1119, denoted by asterisks). Increasing the reaction time to 2 h, the diffraction peaks assigned to cubic CoO became narrower, while those of cobalt salt precursors weakened. Results in XRD patterns and SEM images (not shown) clearly indicated that pure phase of cubic octahedral CoO nanopartiles began to form at the reaction time of 3 h, and uniform octahedral CoO nanoparticles with size of ca. 500 nm could be prepared at 4 h in a typical synthesis, as shown in Figs. 1 and 2c.

    When using CoCl2·6H2O as the raw material, cobalt oxide chloride hydrate was formed at first, and the diffraction peaks of cobalt salt precursors disappeared until 3 h. Thus we believe that the anions were involved in the formation of octahedral CoO nanoparticles. So, different cobalt salt raw materials were also used to investigate the effect of anions on the product. When Co(NO3)2·6H2Oinstead of CoCl2·6H2O was used as the raw material, the phase of product was impure. The upper pattern in Fig. 3b shows CoO (JCPDS 43-1004) and Co3O4(JCPDS 42-1467, denoted by asterisks) were obtained after reaction for 4 h, which may be caused by the oxidizability of NO3-. However, when Co(CH3COO)2·4H2O was used as the raw material, pure phase CoO product would be prepared even after reacting for 1 h, as shown in the other four patterns below in Fig. 3b. The difference in the formation of product may be caused by the lower thermal decomposition temperature of acetate. As shown in Fig. 4a, uniform distorted-octahedral CoO nanoparticles with size of ca. 100 nm were prepared in a typical synthesis. The uniform tetragonal projected shapes further indicated the octahedral structures of the product, and some octahedra even have hollow structures, as shown in Fig. 4b.

    Fig. 3. XRD patterns of the products prepared with different cobalt salts at different reaction time.(a)CoCl2·6H2O (1~6 h); (b) Co(NO3)2·6H2O (denoted by asterisks, 4 h), Co(CH3COO)2·4H2O (1~4 h)

    Fig. 4. SEM, TEM images of the as-synthesized distorted-octahedral CoO nanoparticles in a typical synthesis

    Furthermore, the magnetic properties of the as- prepared octahedral (S1) and distorted-octahedral (S2) CoO nanoparticles were investigated. As shown in Fig. 5, field-dependent magnetization measure- ments were carried out at 300 K in the applied magnetic field from –80 to 80 kOe. The M. H measurements are linear for both samples S1 and S2, which is consistent with the results that CoO nanoparticles are paramagnetic above Néel tempera- ture (T), and the linear-shape of the hysteresis loop shows the characteristic of antiferromagnetism of CoO nanoparticles[17, 42]. The magnetization of both samples rose rapidly as the applied field increased, and the magnetization of samples S1 and S2 is around 5.6 and 4.9 emu/g at 80 kOe respectively, which is a little higher than the results reported in the literature with similar size[18]. Sample S1 showed a slowly increasing slope compared to sample S2, which may be attributed to the differences in the microstructures of the samples, as different surface environment often shows a great influence on the magnetic properties of nanopartilces[43-47].

    Fig. 5. Field variation of magnetization at 300 K for the as-prepared octahedral and distorted-octahedral CoO nanoparticles

    4 CONCLUSION

    In summary, one-pot controlled synthesis of octahedral CoO nanoparticles was reported. The morphology and size of the product can be easily controlled by adjusting the reaction parameters, such as solvent ratio, inexpensive inorganic raw materials, etc. Furthermore, the magnetic property shows that both octahedral and distorted-octahedral CoO nano particles were paramagnetic at 300 K, and the mag- netization behavior was related to different mor- phologies and sizes of the samples.

    (1) Song, H. J.; Jia, X. H.; Zhang, X. Q. Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedra.2012,22, 22699–22705.

    (2) Zhao, C.; Zhang, G.; Han, W.; Fu, J.; He, Y.; Zhang, Z.; Xie, E. Electrospun In2O3/-Fe2O3heterostructure nanotubes for highly sensitive gas sensorapplications.2013,15, 6491–6497.

    (3) Song, H. J.; Jia, X. H.; Qi, H.; Yang, X. F.; Tang, H.; Min, C. Y. Flexible morphology-controlled synthesis of monodisperse-Fe2O3hierarchical hollow microspheres and their gas-sensing properties.2012,22, 3508–3516.

    (4) Kim, J.; Kim, W.; Yong, K. CuO/ZnO heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing.2012, 116, 15682–15691.

    (5) Sun, P.; He, X.; Wang, W.; Ma, J.; Sun, Y.; Lu, G. Template-free synthesis of monodisperse-Fe2O3porous ellipsoids and their application to gas sensors.2011, 14, 2229–2234.

    (6) Wang, Z.; Zhou, L. Metal oxide hollow nanostructures for lithium-ion batteries.2012,24, 1903–1911.

    (7) Guo, Y.; Hu, J.; Wan, L. Nanostructured materials for electrochemical energy conversion and storage devices.2008, 20, 2878–2887.

    (8) Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.2012, 4, 2526–2542.

    (9) Litter, M. I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems.1999, 23, 89–114.

    (10) Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. A red metallic oxide photocatalyst.2012,11, 595–598.

    (11) Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films.2002, 14, 2812–2816.

    (12) Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery.2010, 4, 6001–6013.

    (13) Wei, W.; Wang, Z.; Liu, Z.; Liu, Y.; He, L.; Chen, D.; Umar, A.; Guo, L.; Li, J. Metal oxide hollow nanostructures: fabrication and Li storage performance.2013,238, 376–387.

    (14) Wu, Z.; Yu, K.; Zhang, S.; Xie, Y. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries.2008, 112, 11307–11313.

    (15) Liang, H.; Wang, Z. Facile synthesis and photocatalytic activity of cocoon-like hollow hematite nanostructures.2013, 96, 12–15.

    (16) Zhu, J.; Yin, Z.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Hierarchical hollow spheres composed of ultrathin Fe2O3nanosheets for lithium storage and photocatalytic water oxidation.2013, 6, 987–993.

    (17) Dai, Q.; Tang, J. Magnetic properties of CoO nanocrystals prepared with a controlled reaction atmosphere.2013,3, 9228–9233.

    (18) Dai, Q.; Tang, J. The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique.2013,5, 7512–7519.

    (19) Wang, X.; Yu, L.; Hu, P.; Yuan, F. Synthesis of single-crystalline hollow octahedral NiO.. 2007, 7, 2415–2418.

    (20) Jiang, X.; Herricks, T.; Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air.2002, 2, 1333–1338.

    (21) Hu, X.; Zhang, T.; Jin, Z.; Huang, S.; Fang, M.; Wu, Y.; Zhang, L. Single-crystalline anatase TiO2dous assembled micro-sphere and their photocatalytic activity.. 2009, 9, 2324–2328.

    (22) Israr-Qadir, M.; Jamil-Rana, S.; Nur, O.; Willander, M.; Larsson, L.; Holtz, P. O. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics.2014, 40, 2435–2439.

    (23) Roth, W. L. Magnetic structures of MnO, FeO, CoO, and NiO.. 1958, 110, 1333–1341.

    (24) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.2000, 407, 496?499.

    (25) Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries.2012,22, 13826?13831.

    (26) Guan, H.; Wang, X.; Li, H.; Zhi, C.; Zhai, T.; Bando, Y.; Golberg, D. CoO octahedral nanocages for high-performance lithium-ion batteries.2012, 48, 4878?4880.

    (27) Jiang, J.; Liu, J.; Ding, R.; Ji, X.; Hu, Y.; Li, X.; Hu, A.; Wu, F.; Zhu, Z.; Huang, X. Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes.2010, 114, 929?932.

    (28) Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor.2013, 13, 2078–2085.

    (29) Lu, A.; Chen, Y.; Zeng, D.; Li, M.; Xie, Q.; Zhang, X.; Peng, D. L. Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods.2014,25, 035707.

    (30) Liao, L.; Zhang, Q.; Su, Z.; Zhao, Z.; Wang, Y.; Li, Y.; Lu, X.; Wei, D.; Feng, G.; Yu, Q. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst.2014, 9, 69–73.

    (31) Lin, H. K.; Chiu, H. C.; Tsai, H. C.; Chien, S. H.; Wang, C. B. Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide.2003, 88, 169–174.

    (32) Barrera, E.; González, I.; Viveros, T. A new cobalt oxide electrodeposit bath for solar absorbers.1998, 51, 69-82.

    (33) Yin, J.; Wang, Z. L. Ordered self-assembling of tetrahedral oxide nanocrystals.1997, 79, 2570–2573.

    (34) Ghosh, M.; Sampathkumaran, E.; Rao, C. Synthesis and magnetic properties of CoO nanoparticles.2005, 17, 2348–-2352.

    (35) Xu, C.; Liu, Y.; Xu, G.; Wang, G. Fabrication of CoO nanorods via thermal decomposition of CoC2O4precursor.2002, 366, 567–571.

    (36) Zhang, Y.; Zhu, J.; Song, X.; Zhong, X. Controlling the synthesis of CoO nanocrystals with various morphologies.2008, 112, 5322–5327.

    (37) Wang, H.; Si, H.; Zhao, H.; Du, Z.; Li, L. S. Shape-controlled synthesis of cobalt oxide nanocrystals using cobalt acetylacetonate.2010, 64, 408–410.

    (38) Zhang, Y.; Zhong, X.; Zhu, J.; Song, X. Alcoholysis route to monodisperse CoO nanotetrapods with tunable size.2007, 18, 195605.

    (39) Sun, G.; Zhang, X.; Cao, M.; Wei, B.; Hu, C. Facile synthesis, characterization, and microwave absorbability of CoO nanobelts and submicrometer spheres.2009, 113, 6948–6954.

    (40) Ramos, J.; Millan, A.; Palacio, F. Production of magnetic nanoparticles in a polyvinylpyridine matrix.2000, 41, 8461–8464.

    (41) Heli, H.; Yadegari, H. Nanoflakes of the cobaltous oxide, CoO: synthesis and characterization.2010, 55, 2139–2148.

    (42) Tracy, J. B.; Weiss, D. N.; Dinega, D. P.; Bawendi, M. G. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles.2005,72, 064404.

    (43) Jia, X.; Chen, D.; Jiao, X.; He, T.; Wang, H.; Jiang, W. Monodispersed Co, Ni-ferrite nanoparticles with tunable sizes: controlled synthesis, magnetic properties, and surface modification.2008,112, 911–917.

    (44) Ghosh, M.; Sampathkumaran, E. V.; Rao, C. N. R. Synthesis and magnetic properties of CoO nanoparticles.2005,17, 2348–2352.

    (45) Ambrose, T.; Chien, C. L. Finite-size effects and uncompensated magnetization in thin antiferromagnetic CoO layers.1996, 76, 1743–1746.

    (46) Tian, Y.; Yu, B.; Li, X.; Li, K. Facile solvothermal synthesis of monodisperse Fe3O4nanocrystals with precise size control of one nanometre as potential MRI contrast agents.2011, 21, 2476–2481.

    (47) Tian, Y.; Yu, B.; Yang, H. Y.; Liao, J. Monodispersed silica nanospheres encapsulating Fe3O4and LaF3: Eu3+nanoparticles for MRI contrast agent and luminescent imaging.2013, 6, 1250052.

    14 July 2014;

    15 August 2014

    the National Natural Science Foundation of China (No. 21201035, No.81371343), the Scientific and Technological

    Foundation of Fujian Province (No. JK2013003), and the Natural Science Foundation of Fujian Province (No. 2012J01204)

    . Born in 1966, doctor, majoring in the synthesis of materials and biological applications. E-mail: 13705977551@163.com

    97超碰精品成人国产| 亚洲精品一二三| 老熟女久久久| 999精品在线视频| 美女xxoo啪啪120秒动态图| 99久久人妻综合| 欧美日韩av久久| 日韩欧美精品免费久久| 卡戴珊不雅视频在线播放| 久久97久久精品| 99久久综合免费| 美女内射精品一级片tv| 99久久精品国产国产毛片| 一级毛片我不卡| 亚洲精品国产av成人精品| av卡一久久| 一本大道久久a久久精品| 国产精品久久久久成人av| 日韩免费高清中文字幕av| 亚洲精品成人av观看孕妇| 下体分泌物呈黄色| 在线 av 中文字幕| 亚洲国产最新在线播放| 日韩免费高清中文字幕av| 亚洲欧美中文字幕日韩二区| 纯流量卡能插随身wifi吗| 中国三级夫妇交换| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品久久久久久噜噜老黄| 一级毛片 在线播放| 国产成人精品婷婷| 天美传媒精品一区二区| 精品久久久精品久久久| av女优亚洲男人天堂| 久久久精品区二区三区| 久久人人97超碰香蕉20202| 久久精品国产鲁丝片午夜精品| 亚洲图色成人| videosex国产| 色吧在线观看| 久久久久网色| 久久精品aⅴ一区二区三区四区 | 日本午夜av视频| 亚洲国产精品一区三区| 在线观看www视频免费| 在线观看免费视频网站a站| 亚洲第一区二区三区不卡| 菩萨蛮人人尽说江南好唐韦庄| 久久青草综合色| 热re99久久精品国产66热6| 97超碰精品成人国产| 亚洲精品自拍成人| 综合色丁香网| 午夜精品国产一区二区电影| 免费高清在线观看日韩| 各种免费的搞黄视频| 久久精品国产综合久久久 | 啦啦啦在线观看免费高清www| 午夜福利影视在线免费观看| 搡女人真爽免费视频火全软件| 9色porny在线观看| 国产精品国产三级国产专区5o| 另类亚洲欧美激情| 日韩一本色道免费dvd| 欧美国产精品一级二级三级| 一本大道久久a久久精品| videos熟女内射| 老司机影院毛片| 少妇人妻 视频| 久久 成人 亚洲| 欧美 日韩 精品 国产| 男女午夜视频在线观看 | 亚洲国产av新网站| 精品一区二区免费观看| 又粗又硬又长又爽又黄的视频| 高清av免费在线| 天美传媒精品一区二区| 夜夜骑夜夜射夜夜干| 麻豆乱淫一区二区| 亚洲伊人色综图| 另类亚洲欧美激情| 九九在线视频观看精品| 中文欧美无线码| 免费不卡的大黄色大毛片视频在线观看| 亚洲av电影在线观看一区二区三区| 精品卡一卡二卡四卡免费| 久久久久国产精品人妻一区二区| 国产亚洲av片在线观看秒播厂| 高清视频免费观看一区二区| 人人妻人人澡人人看| 美女福利国产在线| 国产日韩欧美亚洲二区| 伊人亚洲综合成人网| 国产精品三级大全| 一边摸一边做爽爽视频免费| 精品人妻熟女毛片av久久网站| 99香蕉大伊视频| 中文字幕av电影在线播放| 亚洲精品国产av蜜桃| 性高湖久久久久久久久免费观看| 国产欧美另类精品又又久久亚洲欧美| 熟女人妻精品中文字幕| 91精品三级在线观看| 五月伊人婷婷丁香| 春色校园在线视频观看| 日韩视频在线欧美| 欧美精品一区二区免费开放| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 色视频在线一区二区三区| 2021少妇久久久久久久久久久| 免费观看无遮挡的男女| 精品一区在线观看国产| 十分钟在线观看高清视频www| 视频区图区小说| 1024视频免费在线观看| 看非洲黑人一级黄片| 少妇的逼好多水| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区国产| 十八禁高潮呻吟视频| 亚洲,欧美,日韩| 国产福利在线免费观看视频| 久久精品国产自在天天线| 欧美另类一区| 婷婷色综合www| 晚上一个人看的免费电影| 精品国产一区二区三区四区第35| 黄片无遮挡物在线观看| 国产精品久久久久久av不卡| 一个人免费看片子| 亚洲精品视频女| 青青草视频在线视频观看| 狠狠精品人妻久久久久久综合| 色网站视频免费| 亚洲精品乱久久久久久| 丰满饥渴人妻一区二区三| 免费看光身美女| 亚洲国产av影院在线观看| 欧美人与性动交α欧美软件 | 国产视频首页在线观看| 欧美丝袜亚洲另类| 人体艺术视频欧美日本| 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 女性生殖器流出的白浆| 国产男人的电影天堂91| 最近2019中文字幕mv第一页| 女性生殖器流出的白浆| 国产精品国产三级国产av玫瑰| 久久久久精品性色| av有码第一页| 丰满乱子伦码专区| 亚洲国产精品国产精品| av网站免费在线观看视频| 中国国产av一级| 熟妇人妻不卡中文字幕| 精品国产一区二区三区久久久樱花| 777米奇影视久久| 51国产日韩欧美| 国产高清三级在线| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 国产极品粉嫩免费观看在线| 国产黄色视频一区二区在线观看| 在线天堂中文资源库| av免费在线看不卡| 少妇 在线观看| 久久久久精品人妻al黑| 高清av免费在线| 欧美丝袜亚洲另类| 国产成人精品无人区| 制服人妻中文乱码| 男女午夜视频在线观看 | 18禁观看日本| 母亲3免费完整高清在线观看 | 久久 成人 亚洲| 下体分泌物呈黄色| 日韩 亚洲 欧美在线| 国产亚洲一区二区精品| 国产精品久久久久久精品古装| 97精品久久久久久久久久精品| 一个人免费看片子| 亚洲经典国产精华液单| 久久精品久久精品一区二区三区| 中文乱码字字幕精品一区二区三区| 在线观看人妻少妇| 成人免费观看视频高清| 日本午夜av视频| 中文字幕最新亚洲高清| 黄色视频在线播放观看不卡| 日韩电影二区| 日韩熟女老妇一区二区性免费视频| 黄片无遮挡物在线观看| 中文字幕最新亚洲高清| 男女午夜视频在线观看 | 国产国拍精品亚洲av在线观看| 久久青草综合色| 一本大道久久a久久精品| 老熟女久久久| 不卡视频在线观看欧美| 这个男人来自地球电影免费观看 | 亚洲国产日韩一区二区| 国产精品成人在线| 成人影院久久| 国产黄色视频一区二区在线观看| 欧美97在线视频| av.在线天堂| 成人国语在线视频| 午夜91福利影院| 亚洲av在线观看美女高潮| 免费高清在线观看日韩| 亚洲国产欧美在线一区| 欧美日韩亚洲高清精品| 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 男人添女人高潮全过程视频| 极品人妻少妇av视频| 最近的中文字幕免费完整| 久久久国产精品麻豆| 亚洲欧洲日产国产| av在线app专区| 亚洲精品乱码久久久久久按摩| 一二三四中文在线观看免费高清| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 乱人伦中国视频| 1024视频免费在线观看| av不卡在线播放| 亚洲性久久影院| 成人国语在线视频| 亚洲美女搞黄在线观看| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 成年人免费黄色播放视频| 自拍欧美九色日韩亚洲蝌蚪91| 久热久热在线精品观看| 2022亚洲国产成人精品| 亚洲精品日本国产第一区| 黄色配什么色好看| 丰满迷人的少妇在线观看| 国产日韩欧美亚洲二区| 看非洲黑人一级黄片| 国产精品一区www在线观看| 性高湖久久久久久久久免费观看| 男女高潮啪啪啪动态图| 精品人妻一区二区三区麻豆| 国产熟女午夜一区二区三区| 免费观看性生交大片5| 97人妻天天添夜夜摸| 看十八女毛片水多多多| 久久热在线av| h视频一区二区三区| 精品国产乱码久久久久久小说| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 久久久久人妻精品一区果冻| 精品一品国产午夜福利视频| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| a级毛片在线看网站| 亚洲国产最新在线播放| 精品人妻熟女毛片av久久网站| 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| 免费观看a级毛片全部| 男人爽女人下面视频在线观看| 亚洲成av片中文字幕在线观看 | 亚洲国产精品999| 久久99蜜桃精品久久| 人人妻人人添人人爽欧美一区卜| 黄网站色视频无遮挡免费观看| 另类亚洲欧美激情| 中文欧美无线码| 久久 成人 亚洲| 十八禁高潮呻吟视频| 寂寞人妻少妇视频99o| 国产亚洲最大av| 国产亚洲一区二区精品| 看免费成人av毛片| 亚洲国产av新网站| 春色校园在线视频观看| 人妻 亚洲 视频| 18在线观看网站| 国产精品女同一区二区软件| 久热久热在线精品观看| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 国产 精品1| 99国产综合亚洲精品| 校园人妻丝袜中文字幕| 免费在线观看完整版高清| 又粗又硬又长又爽又黄的视频| 久久精品国产亚洲av天美| 日本与韩国留学比较| 欧美国产精品va在线观看不卡| 看十八女毛片水多多多| 日日爽夜夜爽网站| 日本黄色日本黄色录像| 久久人人爽av亚洲精品天堂| 18+在线观看网站| 五月玫瑰六月丁香| 乱码一卡2卡4卡精品| av福利片在线| 亚洲精品456在线播放app| 一级,二级,三级黄色视频| 咕卡用的链子| 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 两性夫妻黄色片 | 久久精品aⅴ一区二区三区四区 | 精品少妇久久久久久888优播| 热99久久久久精品小说推荐| 国国产精品蜜臀av免费| 一区二区日韩欧美中文字幕 | 狠狠精品人妻久久久久久综合| 日本与韩国留学比较| 久久精品夜色国产| 日韩av不卡免费在线播放| www日本在线高清视频| 波野结衣二区三区在线| 18禁在线无遮挡免费观看视频| 91精品三级在线观看| 国产高清国产精品国产三级| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 久久久国产欧美日韩av| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 国产精品成人在线| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 99re6热这里在线精品视频| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| √禁漫天堂资源中文www| 乱人伦中国视频| 视频区图区小说| 久久久久久久大尺度免费视频| 香蕉国产在线看| 一边摸一边做爽爽视频免费| 久久99精品国语久久久| 国产乱来视频区| 久久免费观看电影| 一二三四在线观看免费中文在 | 最后的刺客免费高清国语| 久久精品人人爽人人爽视色| 99久久综合免费| 精品酒店卫生间| 久久精品久久精品一区二区三区| 九草在线视频观看| 卡戴珊不雅视频在线播放| 成年人免费黄色播放视频| 黄色怎么调成土黄色| 午夜福利,免费看| 中国国产av一级| 免费看不卡的av| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 日本猛色少妇xxxxx猛交久久| 亚洲三级黄色毛片| 免费久久久久久久精品成人欧美视频 | 色婷婷久久久亚洲欧美| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 欧美xxⅹ黑人| 下体分泌物呈黄色| 午夜日本视频在线| 麻豆精品久久久久久蜜桃| 一级片免费观看大全| a 毛片基地| 伊人亚洲综合成人网| 国产 精品1| 22中文网久久字幕| 久久人人爽人人片av| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 性色av一级| av播播在线观看一区| 2021少妇久久久久久久久久久| 日韩,欧美,国产一区二区三区| 日本猛色少妇xxxxx猛交久久| 老女人水多毛片| 99香蕉大伊视频| 免费黄色在线免费观看| 熟女电影av网| 男男h啪啪无遮挡| 国产欧美亚洲国产| 综合色丁香网| 80岁老熟妇乱子伦牲交| 日韩三级伦理在线观看| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 国国产精品蜜臀av免费| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 如何舔出高潮| 婷婷色麻豆天堂久久| 午夜老司机福利剧场| 欧美激情极品国产一区二区三区 | 免费少妇av软件| 草草在线视频免费看| 蜜桃国产av成人99| 日韩av不卡免费在线播放| 午夜91福利影院| 人妻一区二区av| 国产男人的电影天堂91| 久久久久久人妻| 日产精品乱码卡一卡2卡三| 大香蕉97超碰在线| 国产精品.久久久| av天堂久久9| 免费少妇av软件| 搡女人真爽免费视频火全软件| 一边摸一边做爽爽视频免费| 欧美xxⅹ黑人| 久久韩国三级中文字幕| 国产又色又爽无遮挡免| 亚洲精品色激情综合| 中文字幕亚洲精品专区| 视频在线观看一区二区三区| 春色校园在线视频观看| 亚洲经典国产精华液单| 久久韩国三级中文字幕| 在线天堂最新版资源| 国产精品熟女久久久久浪| 美女大奶头黄色视频| 日韩一区二区三区影片| 欧美bdsm另类| 久久久国产欧美日韩av| √禁漫天堂资源中文www| 中国美白少妇内射xxxbb| 久久青草综合色| 国产成人精品在线电影| 国产精品嫩草影院av在线观看| 国产精品 国内视频| 国产精品一二三区在线看| 如日韩欧美国产精品一区二区三区| 亚洲精品国产av蜜桃| av片东京热男人的天堂| 日韩电影二区| 免费大片18禁| 性高湖久久久久久久久免费观看| 久久国内精品自在自线图片| 1024视频免费在线观看| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 在线观看国产h片| 精品少妇黑人巨大在线播放| 丰满少妇做爰视频| 最近最新中文字幕大全免费视频 | 最新中文字幕久久久久| 国产精品久久久av美女十八| av一本久久久久| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 香蕉精品网在线| 亚洲欧洲国产日韩| 夜夜爽夜夜爽视频| 精品一区在线观看国产| 国产毛片在线视频| 久久精品国产综合久久久 | 久久99热6这里只有精品| 日本午夜av视频| 男女午夜视频在线观看 | 看免费成人av毛片| 欧美人与性动交α欧美软件 | 国产精品久久久久久精品古装| 少妇人妻 视频| 久久国产精品男人的天堂亚洲 | 五月开心婷婷网| 亚洲国产最新在线播放| 日韩av不卡免费在线播放| 亚洲精品456在线播放app| www.色视频.com| 日日啪夜夜爽| 大码成人一级视频| 国产午夜精品一二区理论片| 一二三四中文在线观看免费高清| 在线看a的网站| 99热这里只有是精品在线观看| 免费观看a级毛片全部| 熟妇人妻不卡中文字幕| xxx大片免费视频| 日韩成人伦理影院| 久久97久久精品| 午夜福利在线观看免费完整高清在| 一二三四在线观看免费中文在 | 欧美xxxx性猛交bbbb| 国产熟女午夜一区二区三区| 久久久久久人妻| 啦啦啦在线观看免费高清www| 中国美白少妇内射xxxbb| 国产亚洲精品久久久com| 亚洲精品日韩在线中文字幕| 国产精品蜜桃在线观看| 在线观看三级黄色| 亚洲国产精品999| 9191精品国产免费久久| 美女大奶头黄色视频| 亚洲国产欧美日韩在线播放| 一级毛片 在线播放| av视频免费观看在线观看| 国精品久久久久久国模美| 国产成人精品久久久久久| 韩国高清视频一区二区三区| 亚洲国产av新网站| 欧美变态另类bdsm刘玥| 国产成人a∨麻豆精品| 交换朋友夫妻互换小说| 在线亚洲精品国产二区图片欧美| 在线观看三级黄色| 精品人妻熟女毛片av久久网站| 高清欧美精品videossex| 久久99精品国语久久久| 国产日韩欧美亚洲二区| 久久影院123| 色网站视频免费| 99热6这里只有精品| 久久久久精品久久久久真实原创| 久久婷婷青草| av在线播放精品| 国产成人精品无人区| 国产精品久久久久久久久免| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲久久久国产精品| 国语对白做爰xxxⅹ性视频网站| 午夜日本视频在线| 日日啪夜夜爽| 成人18禁高潮啪啪吃奶动态图| 国产男女超爽视频在线观看| 亚洲精品日本国产第一区| 亚洲天堂av无毛| 日韩视频在线欧美| 一区二区三区四区激情视频| 人成视频在线观看免费观看| 狠狠精品人妻久久久久久综合| 日韩av免费高清视频| 免费大片黄手机在线观看| 老司机亚洲免费影院| 欧美精品一区二区免费开放| 久久久久久久亚洲中文字幕| 久久热在线av| 午夜福利在线观看免费完整高清在| 免费看av在线观看网站| 少妇的丰满在线观看| 99re6热这里在线精品视频| 热99国产精品久久久久久7| 午夜av观看不卡| 国产精品久久久av美女十八| 久久精品久久精品一区二区三区| 成人毛片60女人毛片免费| 飞空精品影院首页| 国产激情久久老熟女| 久久久久久久久久久免费av| 亚洲欧美日韩另类电影网站| 一级毛片 在线播放| 深夜精品福利| 国产亚洲精品久久久com| 日本色播在线视频| 成年动漫av网址| 热re99久久国产66热| 丝袜人妻中文字幕| 丝袜喷水一区| 天美传媒精品一区二区| 永久免费av网站大全| 18禁观看日本| 狂野欧美激情性xxxx在线观看| 精品国产露脸久久av麻豆| 婷婷色av中文字幕| 久久久国产一区二区| 看十八女毛片水多多多| 少妇熟女欧美另类| 久久久久视频综合| 在线精品无人区一区二区三| 亚洲国产精品成人久久小说| 精品国产一区二区久久| 亚洲,欧美精品.| 欧美国产精品va在线观看不卡| av福利片在线| 热99久久久久精品小说推荐| 夜夜骑夜夜射夜夜干| 69精品国产乱码久久久| 日韩欧美一区视频在线观看| 咕卡用的链子| 如日韩欧美国产精品一区二区三区| 青春草视频在线免费观看| 男男h啪啪无遮挡| 久久99精品国语久久久| 巨乳人妻的诱惑在线观看| 美女福利国产在线| 欧美亚洲 丝袜 人妻 在线| 日本欧美视频一区| 中文字幕av电影在线播放| 这个男人来自地球电影免费观看 | 久久久久久人妻| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区黑人 | 色94色欧美一区二区| 青春草国产在线视频| 亚洲综合色网址| 成人免费观看视频高清| 建设人人有责人人尽责人人享有的| 各种免费的搞黄视频| 国产精品.久久久| 建设人人有责人人尽责人人享有的| 啦啦啦在线观看免费高清www| 久久女婷五月综合色啪小说|