• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Morphology, Size-controlled Synthesis of CoO anostructure and Its Magnetic Property①

    2014-12-17 10:25:52JIAXioYUEFngYANGGungPANHiBoLIUWenGe
    結(jié)構(gòu)化學(xué) 2014年10期

    JIA Xio YUE Fng YANG Gung PAN Hi-Bo LIU Wen-Ge

    ?

    Morphology, Size-controlled Synthesis of CoO anostructure and Its Magnetic Property①

    JIA XiaoaYUE FangaYANG GuangaPAN Hai-BoaLIU Wen-Geb②

    a(350002)b(350001)

    CoO nanostructures with tunable morphology and size have been prepared via a simple one-pot solvothermal synthesis. The as-prepared nanoparticles were fully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), etc. The morphology and size of the product can be easily controlled by adjusting the raw materials added. Reaction time and the solvent ratio also play important roles in the synthesis of octahedral nanostructures. The magnetic property of the as-prepared samples was also investigated.

    controlled synthesis, CoO nanostructure, magnetic property

    1 INTRODUCTION

    Transition metal oxides have a wide variety of applications, including gas sensitivity, photocata- lysis, lithium ion battery, chemical sensors, and so on[1-12]. Metal oxides with various sizes and shapes usually behave unusual physiochemical properties, and continuing to evoke interest. So far, nanoma- terails with special morphology have been conti- nually synthesized[13-22].As the classical antiferro- magnetic transition metal oxide, CoO nanoparticles have been widely studied due to their potential applications based on magnetic[17, 18, 23], elec- tric[24-28], catalytic[29-31], solar[32]properties, etc. Monodisperse CoO nanoparticles have been synthe- sized mainly by thermal decomposition of cobalt surfactant complexes in long-chain hydrocarbon or other organic solvents[33-38]. For example, Yin and Wang have successfully synthesized tetrahedral CoO nanocrystals via the oxidation of Co2(CO)8in toluene in the presence of surfactant Na(AOT)[33]. A series of CoO nanoparticles with tetrahedral, flo- werlike, tetrapod and spherical shapeswere obtained via the decomposition of cobalt(II) oleate or cobalt(II) acetylacetonate complex in long-chain hydrocarbon solvents such as octadecene[36],oleic acid, oleylamine[37], dodecanol[38]and so on. Mean- while, microemulsion method[39], gel method[40]and electrochemical deposition method[41]were also reported for the preparation of CoO products.

    Although various methods have been used to synthesize CoO nanoparticles, these methods usually need complex reaction conditions, and the high-cost raw materials often contain some bio- toxic species due to the application of toxic reac- tants. Herein, a simple and environmentally friendly one-pot approach was reported for the controlled synthesis of CoO nanoparticles. Using cost-effec- tive cobalt(II) chloride hexahydrate as the cobalt source, nearly uniform octahedralCoO nanopar- ticles were synthesized. What’s more, the morpho- logies of the products can be easily adjusted by changing the cobalt source added. When cobalt acetate tetrahydrate instead of cobalt(II) chloride hexahydrate was used as the raw material, uniform distorted-octahedralCoO nanoparticles with smaller size would be synthesized.

    The magnetic property of the as-prepared samples was also investigated. Both octahedral and distorted-octahedralCoO nanoparticles are paramag- netic at 300 K, and the M. H measurements are linear passing through zero. Octahedral CoO nano- particles showed an increasing slope compared to the distorted-octahedralCoO nanoparticles, which can be attributed to the difference in size and shape between the two samples.

    2 EXPERIMENTAL

    2.1 Chemicals

    The reagents purchased from Sinopharm Che- micalReagent Co. Ltd were all of analytical grade. Anhydroussodium acetate (NaAc),-octanol (C8H17OH), ethanol (CH3CH2OH) and cobalt(II) chloride hexahydrate (CoCl2·6H2O) were used without further purification.Cobalt acetate tetrahy- drate (Co(CH3COO)2·4H2O) and cobalt nitrate hexahydrate (Co(NO3)2·6H2O) were dried in the desiccator for a few days before use.

    2.2 Synthesis of octahedral CoO nanoparticles

    In a typical experiment, 0.440 g (1.85 mmol) of CoCl2·6H2O and 0.410 g (5 mmol) of NaAc were dissolved in the mixture of-octanol (12 mL) and ethanol (8 mL) under magnetic stirring at 70 ℃for 1 h. Then the precursor solution was placed into a 25 mL autoclave with a Teflon liner. The autoclave was reacted at 230℃ for 4 h. The resultant suspension was collected by centrifugation and washed with deionized water and ethanol for several times.

    2.3 Synthesis of distorted-octahedral CoO nanoparticles

    Reaction of Co(CH3COO)2·4H2O (0.460 g, 1.85 mmol) with 12 mL of-octanol and 8 mL of ethanol at 220 ℃ for 4 h led to distorted-octahedral CoO nanoparticles.

    2.4 Characterization

    The nanocrystal structures of the obtained octahe- dral and distorted-octahedral CoO nanoparticles were thoroughly characterized with X-ray powder diffraction (XRD, Rigaku D/Max 2200PC, Curadiation;= 1.5418 ?), scanning electron micro- scopy (SEM, Nova NanoSEM 230), high-resolution TEM (HR-TEM, Tecnai G2 F20 S-TWIN, 200 kV). The magnetic properties of the samples were deter- mined on a SQUID (Quantum Design, MPMSXL-7) magnetometer.

    3 RESULTS AND DISCUSSION

    The crystal structures of octahedral CoO nano- particles were characterized by XRD, as shown in Fig. 1c. The XRD pattern indicated that all dif- fraction peaks of the as-prepared CoO octahedra were assigned to face-centered cubic CoO structure (JCPDS 43-1004). SEM image in Fig. 1a shows that the synthesized CoO nanocrystals have nearly uniform octahedral morphology with an average diameter of ca. 500 nm. TEM image in Fig. 1b shows the corresponding tetragonal projected shapes of the octahedral product.

    The reaction solvent is very important for the structure of the product. In order to investigate the effect of solvent on the crystal morphology, a series of experiments were carried out by using different ratios of solvents with other conditions unchanged. When only-octanol was used as the solvent, octahedral structure of ca. 1 μm in diameter could be obtained, with some irregular column structures around (Fig. 2a). Increasing the volume of ethanol to 5 mL, the product showed mainly octahedral structure of ca. 630 nm but with a wide size distri- bution. The product has optimal narrow range of sizes when the volume ofoctanol and ethanol was 12 and 8 mL respectively, with an average diameter of ca. 500 nm as shown in Fig. 2c. Products with octahedral structure could also be synthesized when adding 10 and 15 mL of ethanol respectively, with decreased sizes form ca. 400 to 270 nm (Fig. 2d and 2e). When the reactants were dissolved in pure ethanol (Fig. 2f), nanoparticles of ca. 100 nm formed instead of octahedral structures. As a result, the solvents play important roles in the synthesis of as-prepared CoO nanoparticles. With the proportion of ethanol increasing, the sizes of octahedral product decreased (from 630 to 270 nm), till the nano- particles (ca. 100 nm) formed instead.

    Fig. 1. SEM, TEM images and the corresponding XRD pattern of octahedral CoO nanoparticles in a typical synthesis

    Fig. 2. SEM images of the samples synthesized with different solvent ratio.-octanol and ethanol in the ratio of(a)-octanol; (b) 15:5; (c) 12:8; (d) 10:10; (e) 5:15; (f) ethanol

    In order to investigate the formation mechanism of as-prepared octahedral CoO nanoparticles, a detailed time-dependent experiment was conducted, and the corresponding XRD patterns are shown in Fig. 3a. When the reaction was conducted for 1 h, the diffraction peaks were weak as a result of the small particle size (ca. 130 nm in SEM image), and the phase is a mixture of face-centered cubic CoO (JCPDS 43-1004) and cobalt oxide chloride hydrate (JCPDS 02-1119, denoted by asterisks). Increasing the reaction time to 2 h, the diffraction peaks assigned to cubic CoO became narrower, while those of cobalt salt precursors weakened. Results in XRD patterns and SEM images (not shown) clearly indicated that pure phase of cubic octahedral CoO nanopartiles began to form at the reaction time of 3 h, and uniform octahedral CoO nanoparticles with size of ca. 500 nm could be prepared at 4 h in a typical synthesis, as shown in Figs. 1 and 2c.

    When using CoCl2·6H2O as the raw material, cobalt oxide chloride hydrate was formed at first, and the diffraction peaks of cobalt salt precursors disappeared until 3 h. Thus we believe that the anions were involved in the formation of octahedral CoO nanoparticles. So, different cobalt salt raw materials were also used to investigate the effect of anions on the product. When Co(NO3)2·6H2Oinstead of CoCl2·6H2O was used as the raw material, the phase of product was impure. The upper pattern in Fig. 3b shows CoO (JCPDS 43-1004) and Co3O4(JCPDS 42-1467, denoted by asterisks) were obtained after reaction for 4 h, which may be caused by the oxidizability of NO3-. However, when Co(CH3COO)2·4H2O was used as the raw material, pure phase CoO product would be prepared even after reacting for 1 h, as shown in the other four patterns below in Fig. 3b. The difference in the formation of product may be caused by the lower thermal decomposition temperature of acetate. As shown in Fig. 4a, uniform distorted-octahedral CoO nanoparticles with size of ca. 100 nm were prepared in a typical synthesis. The uniform tetragonal projected shapes further indicated the octahedral structures of the product, and some octahedra even have hollow structures, as shown in Fig. 4b.

    Fig. 3. XRD patterns of the products prepared with different cobalt salts at different reaction time.(a)CoCl2·6H2O (1~6 h); (b) Co(NO3)2·6H2O (denoted by asterisks, 4 h), Co(CH3COO)2·4H2O (1~4 h)

    Fig. 4. SEM, TEM images of the as-synthesized distorted-octahedral CoO nanoparticles in a typical synthesis

    Furthermore, the magnetic properties of the as- prepared octahedral (S1) and distorted-octahedral (S2) CoO nanoparticles were investigated. As shown in Fig. 5, field-dependent magnetization measure- ments were carried out at 300 K in the applied magnetic field from –80 to 80 kOe. The M. H measurements are linear for both samples S1 and S2, which is consistent with the results that CoO nanoparticles are paramagnetic above Néel tempera- ture (T), and the linear-shape of the hysteresis loop shows the characteristic of antiferromagnetism of CoO nanoparticles[17, 42]. The magnetization of both samples rose rapidly as the applied field increased, and the magnetization of samples S1 and S2 is around 5.6 and 4.9 emu/g at 80 kOe respectively, which is a little higher than the results reported in the literature with similar size[18]. Sample S1 showed a slowly increasing slope compared to sample S2, which may be attributed to the differences in the microstructures of the samples, as different surface environment often shows a great influence on the magnetic properties of nanopartilces[43-47].

    Fig. 5. Field variation of magnetization at 300 K for the as-prepared octahedral and distorted-octahedral CoO nanoparticles

    4 CONCLUSION

    In summary, one-pot controlled synthesis of octahedral CoO nanoparticles was reported. The morphology and size of the product can be easily controlled by adjusting the reaction parameters, such as solvent ratio, inexpensive inorganic raw materials, etc. Furthermore, the magnetic property shows that both octahedral and distorted-octahedral CoO nano particles were paramagnetic at 300 K, and the mag- netization behavior was related to different mor- phologies and sizes of the samples.

    (1) Song, H. J.; Jia, X. H.; Zhang, X. Q. Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedra.2012,22, 22699–22705.

    (2) Zhao, C.; Zhang, G.; Han, W.; Fu, J.; He, Y.; Zhang, Z.; Xie, E. Electrospun In2O3/-Fe2O3heterostructure nanotubes for highly sensitive gas sensorapplications.2013,15, 6491–6497.

    (3) Song, H. J.; Jia, X. H.; Qi, H.; Yang, X. F.; Tang, H.; Min, C. Y. Flexible morphology-controlled synthesis of monodisperse-Fe2O3hierarchical hollow microspheres and their gas-sensing properties.2012,22, 3508–3516.

    (4) Kim, J.; Kim, W.; Yong, K. CuO/ZnO heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing.2012, 116, 15682–15691.

    (5) Sun, P.; He, X.; Wang, W.; Ma, J.; Sun, Y.; Lu, G. Template-free synthesis of monodisperse-Fe2O3porous ellipsoids and their application to gas sensors.2011, 14, 2229–2234.

    (6) Wang, Z.; Zhou, L. Metal oxide hollow nanostructures for lithium-ion batteries.2012,24, 1903–1911.

    (7) Guo, Y.; Hu, J.; Wan, L. Nanostructured materials for electrochemical energy conversion and storage devices.2008, 20, 2878–2887.

    (8) Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.2012, 4, 2526–2542.

    (9) Litter, M. I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems.1999, 23, 89–114.

    (10) Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. A red metallic oxide photocatalyst.2012,11, 595–598.

    (11) Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films.2002, 14, 2812–2816.

    (12) Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery.2010, 4, 6001–6013.

    (13) Wei, W.; Wang, Z.; Liu, Z.; Liu, Y.; He, L.; Chen, D.; Umar, A.; Guo, L.; Li, J. Metal oxide hollow nanostructures: fabrication and Li storage performance.2013,238, 376–387.

    (14) Wu, Z.; Yu, K.; Zhang, S.; Xie, Y. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries.2008, 112, 11307–11313.

    (15) Liang, H.; Wang, Z. Facile synthesis and photocatalytic activity of cocoon-like hollow hematite nanostructures.2013, 96, 12–15.

    (16) Zhu, J.; Yin, Z.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Hierarchical hollow spheres composed of ultrathin Fe2O3nanosheets for lithium storage and photocatalytic water oxidation.2013, 6, 987–993.

    (17) Dai, Q.; Tang, J. Magnetic properties of CoO nanocrystals prepared with a controlled reaction atmosphere.2013,3, 9228–9233.

    (18) Dai, Q.; Tang, J. The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique.2013,5, 7512–7519.

    (19) Wang, X.; Yu, L.; Hu, P.; Yuan, F. Synthesis of single-crystalline hollow octahedral NiO.. 2007, 7, 2415–2418.

    (20) Jiang, X.; Herricks, T.; Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air.2002, 2, 1333–1338.

    (21) Hu, X.; Zhang, T.; Jin, Z.; Huang, S.; Fang, M.; Wu, Y.; Zhang, L. Single-crystalline anatase TiO2dous assembled micro-sphere and their photocatalytic activity.. 2009, 9, 2324–2328.

    (22) Israr-Qadir, M.; Jamil-Rana, S.; Nur, O.; Willander, M.; Larsson, L.; Holtz, P. O. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics.2014, 40, 2435–2439.

    (23) Roth, W. L. Magnetic structures of MnO, FeO, CoO, and NiO.. 1958, 110, 1333–1341.

    (24) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.2000, 407, 496?499.

    (25) Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries.2012,22, 13826?13831.

    (26) Guan, H.; Wang, X.; Li, H.; Zhi, C.; Zhai, T.; Bando, Y.; Golberg, D. CoO octahedral nanocages for high-performance lithium-ion batteries.2012, 48, 4878?4880.

    (27) Jiang, J.; Liu, J.; Ding, R.; Ji, X.; Hu, Y.; Li, X.; Hu, A.; Wu, F.; Zhu, Z.; Huang, X. Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes.2010, 114, 929?932.

    (28) Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor.2013, 13, 2078–2085.

    (29) Lu, A.; Chen, Y.; Zeng, D.; Li, M.; Xie, Q.; Zhang, X.; Peng, D. L. Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods.2014,25, 035707.

    (30) Liao, L.; Zhang, Q.; Su, Z.; Zhao, Z.; Wang, Y.; Li, Y.; Lu, X.; Wei, D.; Feng, G.; Yu, Q. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst.2014, 9, 69–73.

    (31) Lin, H. K.; Chiu, H. C.; Tsai, H. C.; Chien, S. H.; Wang, C. B. Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide.2003, 88, 169–174.

    (32) Barrera, E.; González, I.; Viveros, T. A new cobalt oxide electrodeposit bath for solar absorbers.1998, 51, 69-82.

    (33) Yin, J.; Wang, Z. L. Ordered self-assembling of tetrahedral oxide nanocrystals.1997, 79, 2570–2573.

    (34) Ghosh, M.; Sampathkumaran, E.; Rao, C. Synthesis and magnetic properties of CoO nanoparticles.2005, 17, 2348–-2352.

    (35) Xu, C.; Liu, Y.; Xu, G.; Wang, G. Fabrication of CoO nanorods via thermal decomposition of CoC2O4precursor.2002, 366, 567–571.

    (36) Zhang, Y.; Zhu, J.; Song, X.; Zhong, X. Controlling the synthesis of CoO nanocrystals with various morphologies.2008, 112, 5322–5327.

    (37) Wang, H.; Si, H.; Zhao, H.; Du, Z.; Li, L. S. Shape-controlled synthesis of cobalt oxide nanocrystals using cobalt acetylacetonate.2010, 64, 408–410.

    (38) Zhang, Y.; Zhong, X.; Zhu, J.; Song, X. Alcoholysis route to monodisperse CoO nanotetrapods with tunable size.2007, 18, 195605.

    (39) Sun, G.; Zhang, X.; Cao, M.; Wei, B.; Hu, C. Facile synthesis, characterization, and microwave absorbability of CoO nanobelts and submicrometer spheres.2009, 113, 6948–6954.

    (40) Ramos, J.; Millan, A.; Palacio, F. Production of magnetic nanoparticles in a polyvinylpyridine matrix.2000, 41, 8461–8464.

    (41) Heli, H.; Yadegari, H. Nanoflakes of the cobaltous oxide, CoO: synthesis and characterization.2010, 55, 2139–2148.

    (42) Tracy, J. B.; Weiss, D. N.; Dinega, D. P.; Bawendi, M. G. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles.2005,72, 064404.

    (43) Jia, X.; Chen, D.; Jiao, X.; He, T.; Wang, H.; Jiang, W. Monodispersed Co, Ni-ferrite nanoparticles with tunable sizes: controlled synthesis, magnetic properties, and surface modification.2008,112, 911–917.

    (44) Ghosh, M.; Sampathkumaran, E. V.; Rao, C. N. R. Synthesis and magnetic properties of CoO nanoparticles.2005,17, 2348–2352.

    (45) Ambrose, T.; Chien, C. L. Finite-size effects and uncompensated magnetization in thin antiferromagnetic CoO layers.1996, 76, 1743–1746.

    (46) Tian, Y.; Yu, B.; Li, X.; Li, K. Facile solvothermal synthesis of monodisperse Fe3O4nanocrystals with precise size control of one nanometre as potential MRI contrast agents.2011, 21, 2476–2481.

    (47) Tian, Y.; Yu, B.; Yang, H. Y.; Liao, J. Monodispersed silica nanospheres encapsulating Fe3O4and LaF3: Eu3+nanoparticles for MRI contrast agent and luminescent imaging.2013, 6, 1250052.

    14 July 2014;

    15 August 2014

    the National Natural Science Foundation of China (No. 21201035, No.81371343), the Scientific and Technological

    Foundation of Fujian Province (No. JK2013003), and the Natural Science Foundation of Fujian Province (No. 2012J01204)

    . Born in 1966, doctor, majoring in the synthesis of materials and biological applications. E-mail: 13705977551@163.com

    久久天躁狠狠躁夜夜2o2o | 十八禁人妻一区二区| 19禁男女啪啪无遮挡网站| 国产午夜精品一二区理论片| 无遮挡黄片免费观看| 亚洲国产成人一精品久久久| 国产无遮挡羞羞视频在线观看| 亚洲婷婷狠狠爱综合网| 久久久久久久久免费视频了| 夫妻午夜视频| 七月丁香在线播放| 国产极品粉嫩免费观看在线| 亚洲美女黄色视频免费看| 最新的欧美精品一区二区| av网站免费在线观看视频| 51午夜福利影视在线观看| 不卡视频在线观看欧美| 亚洲,欧美精品.| 国产深夜福利视频在线观看| 老汉色∧v一级毛片| 性色av一级| 亚洲精品一二三| 秋霞伦理黄片| 午夜免费观看性视频| 亚洲,欧美精品.| 久久婷婷青草| 亚洲精品在线美女| 一本久久精品| 亚洲国产精品一区三区| 七月丁香在线播放| 久久性视频一级片| 欧美激情高清一区二区三区 | 色综合欧美亚洲国产小说| 国产黄色免费在线视频| 人体艺术视频欧美日本| 人妻一区二区av| 亚洲国产毛片av蜜桃av| 免费看av在线观看网站| 热re99久久精品国产66热6| 免费看av在线观看网站| 丰满饥渴人妻一区二区三| 妹子高潮喷水视频| 国产精品蜜桃在线观看| 欧美日韩亚洲高清精品| 亚洲精品国产av蜜桃| 成年av动漫网址| www.自偷自拍.com| 精品人妻一区二区三区麻豆| tube8黄色片| 国产又爽黄色视频| 亚洲av成人不卡在线观看播放网 | 亚洲成人av在线免费| 久久国产精品大桥未久av| 中文字幕另类日韩欧美亚洲嫩草| 成人亚洲欧美一区二区av| 大陆偷拍与自拍| 免费观看av网站的网址| 满18在线观看网站| 男女边摸边吃奶| 视频在线观看一区二区三区| 久久性视频一级片| 欧美日韩福利视频一区二区| 久久久精品国产亚洲av高清涩受| 你懂的网址亚洲精品在线观看| 久久99精品国语久久久| 欧美日韩亚洲国产一区二区在线观看 | 在线天堂最新版资源| 精品国产一区二区三区久久久樱花| 午夜福利在线免费观看网站| 香蕉丝袜av| 国产男女超爽视频在线观看| 国产又爽黄色视频| 美女午夜性视频免费| 国产一区有黄有色的免费视频| 国产成人系列免费观看| 秋霞伦理黄片| 国产成人一区二区在线| 亚洲成人av在线免费| 国产女主播在线喷水免费视频网站| 一级片免费观看大全| 日韩av在线免费看完整版不卡| 国产av精品麻豆| 在线天堂中文资源库| 国产成人精品在线电影| 久久久久精品人妻al黑| 国产欧美亚洲国产| 人体艺术视频欧美日本| 色网站视频免费| 免费观看人在逋| 久久精品人人爽人人爽视色| 丝袜美腿诱惑在线| 大陆偷拍与自拍| 丝袜美腿诱惑在线| 日韩人妻精品一区2区三区| 亚洲精品,欧美精品| 日本色播在线视频| 日韩伦理黄色片| 99热网站在线观看| 免费在线观看黄色视频的| 七月丁香在线播放| 久久久精品94久久精品| 少妇人妻 视频| 国产成人欧美在线观看 | 丁香六月天网| 日韩视频在线欧美| 免费看不卡的av| 国产探花极品一区二区| 国产成人精品在线电影| 亚洲精品aⅴ在线观看| 免费高清在线观看视频在线观看| 亚洲成国产人片在线观看| 午夜激情久久久久久久| 亚洲av电影在线观看一区二区三区| 午夜免费鲁丝| 91成人精品电影| 女人高潮潮喷娇喘18禁视频| 国产免费又黄又爽又色| 午夜福利,免费看| 欧美黑人欧美精品刺激| 女性生殖器流出的白浆| 国产有黄有色有爽视频| 国产精品无大码| av女优亚洲男人天堂| 国产精品秋霞免费鲁丝片| 亚洲综合色网址| 国产男女内射视频| 9191精品国产免费久久| 99热全是精品| 国产又爽黄色视频| 国产男女超爽视频在线观看| 亚洲熟女精品中文字幕| 亚洲国产中文字幕在线视频| 精品久久久精品久久久| 三上悠亚av全集在线观看| 成人午夜精彩视频在线观看| 精品国产乱码久久久久久男人| 男人操女人黄网站| 国产成人啪精品午夜网站| 91精品国产国语对白视频| 久热爱精品视频在线9| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀 | 日本wwww免费看| 国产一区二区 视频在线| 国产片特级美女逼逼视频| 美女午夜性视频免费| 日韩一本色道免费dvd| 男女国产视频网站| 三上悠亚av全集在线观看| 国产毛片在线视频| 亚洲欧美一区二区三区黑人| 精品国产一区二区久久| 久久影院123| 老司机亚洲免费影院| 亚洲av成人不卡在线观看播放网 | 精品人妻在线不人妻| 久久人妻熟女aⅴ| 视频区图区小说| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区| 国产爽快片一区二区三区| 亚洲,欧美精品.| 在线天堂最新版资源| 国产男女内射视频| 一本久久精品| 国产日韩欧美在线精品| 午夜福利在线免费观看网站| 别揉我奶头~嗯~啊~动态视频 | 成人国语在线视频| 亚洲综合精品二区| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 亚洲精品视频女| 一边亲一边摸免费视频| 无限看片的www在线观看| 九九爱精品视频在线观看| 啦啦啦 在线观看视频| 制服诱惑二区| 成人影院久久| 我要看黄色一级片免费的| 亚洲精品国产av蜜桃| 亚洲精品美女久久久久99蜜臀 | 亚洲av电影在线观看一区二区三区| 欧美国产精品va在线观看不卡| 人人妻,人人澡人人爽秒播 | av.在线天堂| 国产一区二区在线观看av| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美视频二区| 亚洲视频免费观看视频| 亚洲av日韩在线播放| 亚洲国产av影院在线观看| 在线观看国产h片| 欧美日韩精品网址| 美女中出高潮动态图| 久久人妻熟女aⅴ| 亚洲成国产人片在线观看| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 国产精品.久久久| 亚洲一区二区三区欧美精品| 久久久精品国产亚洲av高清涩受| 黄色怎么调成土黄色| 妹子高潮喷水视频| 免费在线观看完整版高清| 十八禁人妻一区二区| 欧美少妇被猛烈插入视频| 一本久久精品| 久久人人97超碰香蕉20202| 人妻一区二区av| 黄片无遮挡物在线观看| 亚洲欧洲精品一区二区精品久久久 | 搡老岳熟女国产| 一级毛片黄色毛片免费观看视频| 国产成人91sexporn| 色播在线永久视频| 91成人精品电影| 人体艺术视频欧美日本| 日日撸夜夜添| 国产免费一区二区三区四区乱码| 国产一级毛片在线| 两个人免费观看高清视频| 777米奇影视久久| 丁香六月欧美| 中文字幕制服av| 亚洲在久久综合| 久久性视频一级片| 久久影院123| 国产日韩欧美视频二区| 亚洲精品一二三| 一级片免费观看大全| www.精华液| 国产 精品1| 亚洲精品久久成人aⅴ小说| 国产成人精品无人区| 中文字幕色久视频| 免费在线观看视频国产中文字幕亚洲 | 黑人欧美特级aaaaaa片| 国产亚洲av高清不卡| 欧美黑人精品巨大| 亚洲av欧美aⅴ国产| av网站在线播放免费| 一边摸一边抽搐一进一出视频| 国产色婷婷99| 亚洲av电影在线进入| 日韩不卡一区二区三区视频在线| 最近中文字幕高清免费大全6| 日韩 亚洲 欧美在线| 在线亚洲精品国产二区图片欧美| 大香蕉久久网| 国产熟女午夜一区二区三区| 久久99热这里只频精品6学生| 国语对白做爰xxxⅹ性视频网站| 亚洲少妇的诱惑av| 午夜免费男女啪啪视频观看| 制服丝袜香蕉在线| 一边亲一边摸免费视频| 久热爱精品视频在线9| 宅男免费午夜| 最黄视频免费看| 亚洲精品日本国产第一区| 看免费成人av毛片| 欧美精品av麻豆av| 国产精品久久久av美女十八| 成人国产麻豆网| 午夜激情av网站| 女性生殖器流出的白浆| 精品一区二区三区av网在线观看 | 成年人免费黄色播放视频| 69精品国产乱码久久久| 黄片播放在线免费| 欧美亚洲日本最大视频资源| 久久亚洲国产成人精品v| 国产一区二区三区av在线| 欧美精品av麻豆av| 国产成人欧美| 九草在线视频观看| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久99久久久精品蜜桃| 亚洲欧美色中文字幕在线| 亚洲国产欧美一区二区综合| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 黑丝袜美女国产一区| 久久精品亚洲av国产电影网| 男的添女的下面高潮视频| 国产片内射在线| 免费看av在线观看网站| 啦啦啦 在线观看视频| 亚洲av成人精品一二三区| 午夜日韩欧美国产| 国产免费又黄又爽又色| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| 老熟女久久久| 国产免费福利视频在线观看| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 2018国产大陆天天弄谢| 免费黄色在线免费观看| 久久婷婷青草| 黄片无遮挡物在线观看| 在线观看免费高清a一片| 丁香六月天网| 色精品久久人妻99蜜桃| 综合色丁香网| 老熟女久久久| 在线天堂最新版资源| 18在线观看网站| 99精品久久久久人妻精品| 国产在视频线精品| 两个人免费观看高清视频| 如日韩欧美国产精品一区二区三区| 久久 成人 亚洲| 97在线人人人人妻| 母亲3免费完整高清在线观看| 青春草亚洲视频在线观看| 亚洲av成人不卡在线观看播放网 | 岛国毛片在线播放| 亚洲成国产人片在线观看| 久热爱精品视频在线9| 国产在线免费精品| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区国产| 黄色视频不卡| 中文字幕色久视频| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 亚洲一级一片aⅴ在线观看| 久热爱精品视频在线9| 大香蕉久久网| xxx大片免费视频| 韩国av在线不卡| 亚洲成色77777| 高清av免费在线| 丝袜在线中文字幕| 欧美日韩亚洲综合一区二区三区_| 免费久久久久久久精品成人欧美视频| 精品国产超薄肉色丝袜足j| 国产成人精品在线电影| 国产精品 欧美亚洲| 自线自在国产av| 亚洲七黄色美女视频| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美成人精品一区二区| 亚洲精品久久久久久婷婷小说| 久久国产亚洲av麻豆专区| 免费黄频网站在线观看国产| 日韩av在线免费看完整版不卡| 成人漫画全彩无遮挡| 国产一级毛片在线| 老汉色∧v一级毛片| 久久免费观看电影| 亚洲欧美精品综合一区二区三区| 成人免费观看视频高清| 午夜福利视频精品| 色婷婷久久久亚洲欧美| 丝袜喷水一区| 精品福利永久在线观看| 午夜激情久久久久久久| a级毛片黄视频| 国产色婷婷99| av免费观看日本| 午夜日韩欧美国产| 一本一本久久a久久精品综合妖精| 99久久精品国产亚洲精品| 国产亚洲av高清不卡| 看十八女毛片水多多多| 亚洲国产中文字幕在线视频| 熟妇人妻不卡中文字幕| 欧美日韩一区二区视频在线观看视频在线| av网站在线播放免费| 一边摸一边抽搐一进一出视频| 国产xxxxx性猛交| 一级片免费观看大全| 777米奇影视久久| 国产亚洲一区二区精品| 天天添夜夜摸| 大片免费播放器 马上看| 色94色欧美一区二区| 久久 成人 亚洲| 国产在线视频一区二区| 日日摸夜夜添夜夜爱| 亚洲中文av在线| 高清不卡的av网站| 在线天堂中文资源库| 操美女的视频在线观看| 欧美成人精品欧美一级黄| 久久久久久久久久久免费av| 啦啦啦在线观看免费高清www| 在线观看www视频免费| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 精品亚洲成国产av| 免费观看人在逋| 亚洲精品国产色婷婷电影| 999久久久国产精品视频| av.在线天堂| 十分钟在线观看高清视频www| svipshipincom国产片| 日韩中文字幕欧美一区二区 | 操出白浆在线播放| 男女国产视频网站| 一级a爱视频在线免费观看| 精品亚洲成国产av| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 男人舔女人的私密视频| 国产黄色免费在线视频| 9191精品国产免费久久| 久久久欧美国产精品| 午夜老司机福利片| 国产日韩欧美视频二区| 最近最新中文字幕大全免费视频 | 伊人久久大香线蕉亚洲五| 婷婷色麻豆天堂久久| 亚洲综合精品二区| 久久鲁丝午夜福利片| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 十八禁人妻一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一二三| 十分钟在线观看高清视频www| 麻豆乱淫一区二区| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 精品人妻在线不人妻| 一本—道久久a久久精品蜜桃钙片| 狂野欧美激情性xxxx| 精品少妇一区二区三区视频日本电影 | 亚洲一级一片aⅴ在线观看| 999精品在线视频| 亚洲精品aⅴ在线观看| 咕卡用的链子| 日本黄色日本黄色录像| 国产亚洲午夜精品一区二区久久| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 久久人人爽人人片av| 亚洲一码二码三码区别大吗| 在线观看免费高清a一片| 深夜精品福利| 男女边吃奶边做爰视频| av在线老鸭窝| 日本wwww免费看| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 亚洲欧美中文字幕日韩二区| 90打野战视频偷拍视频| 精品一区二区三区av网在线观看 | 操美女的视频在线观看| 午夜精品国产一区二区电影| 国产精品无大码| 亚洲五月色婷婷综合| 国产成人精品无人区| 亚洲综合精品二区| 成人亚洲精品一区在线观看| av电影中文网址| 啦啦啦 在线观看视频| av一本久久久久| 亚洲国产毛片av蜜桃av| 亚洲伊人久久精品综合| 亚洲专区中文字幕在线 | 在线观看人妻少妇| 久久这里只有精品19| 晚上一个人看的免费电影| 国产极品天堂在线| 国产精品免费视频内射| 无限看片的www在线观看| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区蜜桃| 99精品久久久久人妻精品| 超碰97精品在线观看| 18在线观看网站| 亚洲欧美精品综合一区二区三区| 高清黄色对白视频在线免费看| netflix在线观看网站| 女人久久www免费人成看片| 人人妻人人添人人爽欧美一区卜| 亚洲精品一二三| 激情五月婷婷亚洲| h视频一区二区三区| 精品久久蜜臀av无| 日本91视频免费播放| 精品久久久久久电影网| 熟妇人妻不卡中文字幕| 精品国产乱码久久久久久小说| 亚洲成人一二三区av| 亚洲精品视频女| 亚洲国产精品成人久久小说| 久久99一区二区三区| 一级毛片我不卡| 国产一区二区三区综合在线观看| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人人人人人| 国产一区二区三区av在线| 一区二区三区激情视频| 老鸭窝网址在线观看| 黄色视频在线播放观看不卡| 国产福利在线免费观看视频| 日韩免费高清中文字幕av| 欧美日韩综合久久久久久| netflix在线观看网站| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 久久久久精品人妻al黑| 成人漫画全彩无遮挡| 欧美黄色片欧美黄色片| 日韩av免费高清视频| 乱人伦中国视频| 精品久久久久久电影网| 97在线人人人人妻| 国产熟女午夜一区二区三区| 国产 精品1| 亚洲av日韩在线播放| 国产1区2区3区精品| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 国产在线免费精品| 亚洲色图综合在线观看| 精品人妻熟女毛片av久久网站| 我的亚洲天堂| 18禁国产床啪视频网站| 青春草亚洲视频在线观看| 蜜桃在线观看..| 中文字幕最新亚洲高清| 国产一卡二卡三卡精品 | 搡老岳熟女国产| 亚洲av成人精品一二三区| 韩国精品一区二区三区| 成年女人毛片免费观看观看9 | 赤兔流量卡办理| www.熟女人妻精品国产| 大香蕉久久网| 午夜激情av网站| 亚洲国产欧美一区二区综合| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 亚洲五月色婷婷综合| 免费高清在线观看视频在线观看| 丰满饥渴人妻一区二区三| 国产精品无大码| 老司机靠b影院| 操美女的视频在线观看| 欧美激情 高清一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 婷婷色麻豆天堂久久| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线不卡| 人体艺术视频欧美日本| 性色av一级| 国产97色在线日韩免费| 男女床上黄色一级片免费看| 一本久久精品| 国产一区二区三区av在线| 日本欧美视频一区| 亚洲色图综合在线观看| av网站免费在线观看视频| 伊人久久大香线蕉亚洲五| 久久久精品94久久精品| 色94色欧美一区二区| 国产亚洲av高清不卡| 七月丁香在线播放| 国产精品二区激情视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美清纯卡通| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| 免费黄频网站在线观看国产| 午夜激情久久久久久久| 午夜免费男女啪啪视频观看| 欧美少妇被猛烈插入视频| 日韩视频在线欧美| 国产男女内射视频| 国产成人午夜福利电影在线观看| av天堂久久9| 欧美人与善性xxx| 国产精品女同一区二区软件| 宅男免费午夜| 精品第一国产精品| 国产成人精品在线电影| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区 | 色94色欧美一区二区| 国精品久久久久久国模美| 亚洲欧美精品自产自拍| 亚洲国产成人一精品久久久| 欧美少妇被猛烈插入视频| 叶爱在线成人免费视频播放| 丰满饥渴人妻一区二区三| 成人三级做爰电影| 久久av网站| 亚洲成人手机| 交换朋友夫妻互换小说| 飞空精品影院首页| 精品久久蜜臀av无| 免费在线观看完整版高清| 99九九在线精品视频| 亚洲av中文av极速乱| 中文字幕制服av| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 两个人看的免费小视频| 成人免费观看视频高清| a级毛片黄视频| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看|