• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solvothermal Syntheses, Crystal Structures, Thermal Stability and Quantum Chemistry of Dinuclear Trialkyltin ComplexesConstructed by Camphoric Acid①

    2014-12-17 10:33:58YUJiangXiKUANGDaiZhiFENGYongLanZHUXiaoMingJIANGWuJiuZHANGFuXing
    結(jié)構(gòu)化學(xué) 2014年10期

    YU Jiang-Xi KUANG Dai-Zhi FENG Yong-Lan ZHU Xiao-Ming JIANG Wu-Jiu ZHANG Fu-Xing

    ?

    Solvothermal Syntheses, Crystal Structures, Thermal Stability and Quantum Chemistry of Dinuclear Trialkyltin ComplexesConstructed by Camphoric Acid①

    YU Jiang-Xi KUANG Dai-Zhi②FENG Yong-Lan ZHU Xiao-Ming JIANG Wu-Jiu ZHANG Fu-Xing

    (421008)

    Two dinuclear organotin complexes C8H14(CO2SnCy3)2(1) (Cy = cyclohexyl group) and C8H14[CO2Sn(CH2CMe2Ph)3]2(2) were synthesized by the reactions of camphoric acid with tricyclohexyltin hydroxide and bis[tri(2-methyl-2-phenyl)propyltin] oxide under solvothermal conditions, and these complexes were characterized by infrared spectra, elemental analyses, and H NMR spectra. The crystal of 1 belongs to the monoclinic system, space group21/with1.83478(19),= 1.52707(18),1.9849(2) nm,= 122.515(7)°,= 4,= 4.6896(9) nm3,D= 1.324 g/cm3,(Mo) = 1.103 mm-1,(000) = 1952,= 0.0697 and= 0.2040. In addition, thermal stability and quantum chemical calculation of 1 were also studied.

    trialkyltin complex, camphoric acid, solvothermal synthesis, structure, quantum chemistry

    1 INTRODUCTION

    Organotin has attracted intensive attention with its bioactivity and wide applications in industry and agriculture. For example, organotin has been made successfully into the preservation of woods, fungi- cides, germicides, insecticides, and additives of marine antifouling coat[1-4]. Some organotin prepara- tions may inhibit the activity of tumor cells and therefore are potential anticancer agents[5], and some others may be used also as catalysts in some organic reactions, such as reduction, coupling[6, 7], esterifica- tion and interesterification[8, 9], and used as thermal stabilizer of PVC[10]. Organotin may form multiple configurations such as ladder-type, drum-type, cap- type, cage-type, ring, 1D, 2D and 3D configura- tions[11-17]through different alkyl groups and ligands connected with tin atom by Sn–C (O, N, S), and therefore organotin may have multiple performances due to their multiple configurations. Constituting new functional materials with special performances based on the assembly of polybasic carboxylic acid with metals has become a field of active researches. Camphoric acid attracted wide attention with its excellent constitutional function[18, 19]. Ma Chunlinsynthesized a series of trialkyltin camphoric carboxylates with innovative configuration and good thermal stability through the reaction of camphoric acid with R3SnCl (R = Me, Bu, Bz, Ph)[17]. Zhang Rufenobtained a 3D supramolecular organotin complex through the reaction of camphoric acid with Me3SnCl under hydrothermal conditions[20]. Recent- ly, we have prepared two dinuclear trialkyltin com- plexes, 1 and 2,reacting camphoric acid with Cy3SnOH, [(PhCMe2CH2)3Sn]2O under solvother- mal conditions, and report here their synthesis and characterization.

    2 EXPERIMENTAL

    2.1 Instruments and reagents

    Tricyclohexyltin hydroxide and bis[tri(2-methyl- 2-phenyl)propyltin] oxide purchased from Zhejiang Huaxing Chemical & Pesticides Co., Ltd were chemically pure. DL-camphoric acid of chemical reagent grade was obtained from Shanghai Joint State-Private Xinzhong Chemical Factory. Methanol was analytically pure, purchased from Sino-Tianjin BASF Chemical Co., Ltd., and used directly without further purification.

    Melting point was measured by a X4 binocular stereo microscopic melting point meter (Beijing Tektronix Instrument Co. Ltd.) without correction. The contents of C and H were determined by PE- 2400 (II) elemental analyzer (US PE Corporation). Infrared spectrum was recorded by an IR Prestige-21 infrared spectrometer (Japan Shimadzu Corporation, 4000~400 cm-1), and NMR spectrum by Bruker Avance 500 and Bruker Avance 400 NMR Spectrometer (Swiss Bruker Corporation, with TMS as internal standard). Thermogravimetric analyses were executed on a TG 209 F3 thermogravimetric analyzer (Germany Netzsch Corporation).

    2.2 Syntheses of the complexes

    As shown in Fig. 1, a mixture of DL-camphoric acid (1 mmol), tricyclohexyltin hydroxide (2 mmol) or bis[tri(2-methyl-2-phenyl)propyltin] oxide (1 mmol), CH3OH (10 mL) was stirred, and then placed in a 25 mL Teflon-lined stainless-steel vessel which was heated to 130 ℃ for 4 d and finally cooled to room temperature at a rate of 5 ℃·h-1to obtain complex 1 or 2.

    Fig. 1. Synthesis reactions of 1 and 2

    Complex (1): 0.773 g, colorless crystal, yield 82.7%, m.p: 206~207 ℃. Elemental composition: (C46H80O4Sn2); theoretical value (%): C, 59.12; H, 8.63. Measured value (%): C, 59.20; H, 8.59. IR (KBr, cm-1): 2918 (m), 2845 (m), 1653 (vs), 1614(vs), 1450 (m), 1402(m), 1283 (m), 1246 (m), 1213 (w), 1167 (m), 1124 (m), 1084 (m), 991 (m), 937 (w), 878 (w), 841 (w), 802(w), 783 (w), 577 (w), 523 (w), 440 (w).1H NMR (CDCl3, 500MHz),(ppm): 2.80 (t,= 9.5 Hz, 1H, CC(CH2)CO2), 0.86~2.53 (m, 79H, -CH2-, -CH3).

    Complex (2): 0.922 g, colorless crystal, yield 74.7%. m.p: 106~107 ℃. Elemental composition: (C70H92O4Sn2); theoretical value (%): C, 68.09; H, 7.50. Measured value (%): C, 68.09; H, 7.50. IR (KBr, cm-1): 3059 (w), 3026 (w), 2961 (m), 2922 (m), 1647 (vs), 1495 (w), 1443 (m), 1366(m), 1304 (s), 1285 (m), 1244 (w), 1192 (w), 1076 (m), 1030 (w), 999 (w), 768 (m), 700 (s), 615 (w), 554 (w).1H NMR (CDCl3, 400MHz),(ppm): 7.10~7.28 (m, 30H, Ph-H), 2.72 (t,= 9.2 Hz, 1H, CC(CH2)CO2), 0.89~2.59 (m, 61H, -CH2-, -CH3).

    2.3 Crystal structure determination of complex 1

    A crystal of complex 1 (0.25mm × 0.17mm × 0.13mm) was chosen for data collection which was performed on a Bruker Smart Apex II CCD diffrac- tometer equipped with a graphite-monochromated Moradiation (= 0.071073 nm) using a-scan mode at 296(2) K. A total of 26,124 reflections were collected in the range of 1.81≤≤25.05°, of whcih 8,280 were independent (int= 0.0251) and 5,580 were observed (> 2()). All the data were corrected byfactors and multi-scan absorbance. The crystal structure was solved by direct methods. The non-hydrogen atoms, H21X and H21Y were located in successive difference Fourier syntheses, and other hydrogen atoms were placed in the calculated positions. All hydrogen and non-hy- drogen atoms were refined by isotropic and anisotro- pic thermal parameters through full-matrix least- squares method.The final0.0697,0.2040, (Δ)max= 1554 and (Δ)min= –1650 e·nm-3. All cal- culations were completed by SHELXTL-97 program. Selected bond lengths and bond angles of complex 1 are given in Table 1.

    Table 1. Bond Length (?) and Bond Angle (°)of Complex 1

    3 RESULTS AND DISCUSSION

    3.1 IR and 1H NMR

    The absorption caused by carboxyl-hydroxyl association appearing at 2500~3300 cm-1in the ligand disappeared in the complex, indicating that the carboxyl group was deprotonated and coor- dinated with the tin atom; carboxyl unsymmetric and symmetric stretching vibrations occurring at 1700 and 1283 cm-1in the ligand shifted to 1653, 1614, 1450 and 1402 cm-1in complex 1 respectively, with the difference to be 203and 212 cm-1, showing that the carboxyl group was coordinated in a mono- dentate manner in 1[21], which agreed with the result of X-ray single-crystal diffraction. In complex 2, carboxyl symmetric and unsymmetric stretching vibration appeared at 1647and 1304 cm-1, sugges- ting that the carboxyl group was coordinated still in a monodentate manner in 2. For complex 1, the stretching vibration of Sn–Cand Sn–O bonds appeared at 577and 440 cm-1, while at 615and 554 cm-1in complex 2[22].

    In the1H NMR spectra, the total numbers of protons calculated by integration are in agreement with the expected molecular composition of the complexes. Carboxyl-hydroxyl proton peak appea- ring at 12.10 ppm in the ligand disappeared in the complexes, indicating the formation of complexes 1 and 2. Triple absorption peaks at 2.80 ppm (1) and 2.72 ppm (2) in the ligand correspond to the methyne H peak of camphoric acid; multiple absorp- tion appearing within 0.86~2.53 ppm in 1and 0.89~2.59 ppm in 2 was attributed to the H peaks of methyl and methylene groups (cyclohexyl methyne for 1).

    3.2 Crystal structure analysis of complex 1

    The molecular structure of complex 1 is shown in Fig. 2 (ellipsoids probability: 10%). From this figure, we can see that a molecule of camphoric acid was connected with 2 tricyclohexyltins to form a dinu- clear configuration. The tin atom was coordinated with methyne carbons of 3 tricyclohexyl groups and a carboxyl oxygen atom of camphoric acid to generate a tetrahedral configuration with tin atom as the center. Three groups of Sn–C bonds in each tin atom had different bond lengths, and 3 groups of angle ∠C–Sn–O all deviated from 109.5° for a regular tetrahedron, showing that the tin atom and coordinated atoms formed a distorted tetrahedron. The distances between the tin atom and carboxyl oxygen atoms are as follows: Sn(1)–O(1) = 2.041(6) ?, and Sn(2)–O(3) = 2.050(6) ?, smaller than the sum of covalent radii of 2 atoms (2.160 ?), suggesting that stable coordination bonds are formed between Sn(1) and O(1) as well as between Sn(2) and O(3). The distances between the tin atom and other carboxyl oxygen atoms are as below: Sn(1)···O(2) = 2.8836(74) ? and Sn(2)···O(4) = 2.9689(78) ?. The interactions were weak, and therefore carboxyl group was coordinated with a tin atom in a monodentate manner in complex 1.

    In the crystal of complex 1, a 1D ribbon-like structure is formed through the actions of C–H···O hydrogen bond (H(11B)···O(2)i2.5507(93) ?,∠C(11)–H(11B)···O(2)i132.856(904)°, i: –, –1/2+, –1/2–) between cyclohexyl hydrogen of one molecule and carbonyl oxygen of the adjacent other molecule (Fig. 3).

    Fig. 2. Molecular structure of 1(Hydrogen atoms and the second component of disordered parts were omitted for clarity)

    Fig. 3. 1D ribbon-like structure of 1 (i: –, –1/2 +, –1/2 –) constituted by hydrogen bonds (Some H atoms and cyclohexyl groups are omitted for clarity)

    3.3 Thermal stability

    Thermogravimetric analysis was carried out for complex 1 to investigate its thermal stability (Fig. 4). The thermogravimetric curve shows that 1 is stable up to 182 ℃, and then a noticeable weight loss up to 395 ℃appears (nearly 75.2 %). After that, no weight loss occurs. Assuming that the residue cor- responds to SnO2, the observed weight is basically in agreement with the calculated value (calcd. 32.3%). Thus, complex1shows good thermal stability.

    3.4 Quantum chemical study

    Quantum chemical calculation of complex 1 was performed with Gaussian03W program at the B3LYP/LANL2DZ level on a P4 personal computer. Molecular configuration parameters used in calcu- lation were obtained from the X-ray experimental data. 132 atoms, 626 basis functions, 1,594 primitive gaussians, 198electrons and 198electrons were involved in the calculation.

    Fig. 4. Thermogravimetric curve of 1

    3.4.1 Frontier molecular orbital energy

    The overall stability of the structure correlates closely with the total energy of the system as well as the frontier molecular orbital energy. Based on calculation, for complex 1, the total energy was –2108.08855 a.u., the energy of the highest occupied molecular orbital (HOMO)HOMO= –0.21995 a.u., and that of the lowest unoccupied molecular orbital (LUMO)LUMO= –0.10980 a.u.,showing that the total energy and energy level of the occupied molecular orbital were both lower relatively, and the energy gap between the highest and lowest unoccupied molecular orbitals Δ= 0.11015 a.u.. It proves that the structure of complex 1 is stable. From the point of oxidation-reduction and charge transfer, the absolute value of the highest occupied molecular orbital energy |HOMO| was a great minus value, suggesting that electrons were difficult to ionize from HOMO, and therefore complex 1 was not liable to lose its electrons and its ground state was stable relatively.

    3.4.2 Molecular orbital composition

    In order to explore the bonding characteristics of the complex, the molecular orbitals were investigated systematically, and the calculation result is shown in Table 2 and Fig. 5.

    Table 2. Composition of Molecular Orbitals of Complex 1 (%) (B3lyp/Lanl2dz)

    Fig. 5. Schematic diagram of the frontier molecular orbitals of 1

    As to the composition of HOMO, carbon atoms made the greatest contribution to HOMO (70.31%), followed by the oxygen atoms (14.74%). The contribution of other atoms to HOMO was less, for example, the contribution of tin atom was 7.55%, and that of hydrogen atom was 7.37%. As regards the composition of LUMO, the contribution of various atoms changed noticeably. The contribution of carbon atoms to LUMO was up to 64.05%, oxygen atoms 27.67%, tin atoms 5.10%; and that of all hydrogen atoms was 3.17%.

    The comparison of orbital components between HOMO and LUMO demonstrated that when the complex transferred to the excited state from its ground state, electrons transferred mainly from the orbital of carbon atom to that of oxygen atom to form the electron transfer complex.

    (1) Rahman, M. M.; Jusoh, I.; Affan, M. A.; Husaini, A.; Hamdan, S. Efficacy of novel organotin(IV) complexes on non-durable tropicalwood against decay fungi.2013, 71, 463–471.

    (2) Salam, M. A.; Affan, M. A.; Arafat, M. A.; Saha, R.; Nasrin, R. Synthesis, characterization, and antibacterial activities of organotin(IV) complexes with 2-acetylpyridine-N(4)-cyclohexylthiosemicarbazone (HAPCT).2013, 24, 43–52.

    (3) Knowles, C. O. Chemistry and toxicology of quinoxa-line, organotin, organofluorine, and formamidine acaricides.. 1976, 14, 93–102

    (4) Omae, L.Organotin antifouling paints and their alternatives.2003, 17, 81–105.

    (5) Hussain, M.; Rehman, Z.; Hanif, M.; Altaf, M.; Rehman, A.; Ali, S.; Cavell, K. J. Structural studies of diethyltin(IV) derivatives and their biological aspects as potential antitumor agents against agrobacterium tumefacien cells.2011, 25, 412–419.

    (6) Dumartin, G.; Pourcel, M.; Delmond, B.; Donard, O.; Pereyre, M.In situ generated, polymer-supported organotin hydrides as clean reducing agents.. 1998, 39, 4663–4666.

    (7) Yabe, Y.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Palladium on charcoal-catalyzed ligand-free Stille coupling.2010, 66, 8654–8660.

    (8) Jousseaume, B.; Guillou, V.; Noiret, N.; Pereyre, M.; Francés, J. M. Synthesis and thermal decomposition of substituted [2-(acyloxy)alkyl]diorganotin compounds, Bu2Sn(X)CH2CHR1OCOR2(X halogen 2,4-pentanedionate or OCOR), potential sources of organotin catalysts.1993, 450, 97–102.

    (9) He, X.; Li, Z.; Su, K.; Cheng, B.; Ming, J. Study on the reaction between bisphenol A and dimethyl carbonate over organotin oxide.2013, 33, 20–23.

    (10) Allen, D. W.; Brooks, J. S.; Unwin, J.; McGuinness, J. D.Studies of the degradation of organotin stabilizers in poly(vinyl chloride) during gamma irradiation.1987, 1, 311–317.

    (11) Chandrasekhar, V.; Schmid, C. G.; Burton, S. D.; Holmes, J. M.; Day, R. O.; Holmes, R. R. New drum and ladder organooxotin carboxylates.. 1987, 26, 1050–1056.

    (12) Chen, M. S.; Kuang, D. Z.; Zhang, C. H.; Deng, Y. F.; Li, W.; Yang, Y. Q. Synthesis and crystal structure of a hexameric organooxotin cluster from benzilic acid.2005, 24, 1249–1253.

    (13) Swamy, K. C. K.; Day, R. O.; Holmes, R. R. Organotin clusters. 7. polynuclear chlorine containing organooxotin clusters.. 1992,31, 4184–4193.

    (14) Chandrasekhar, V.; Thilagar, P.; Bickley, J. F.; Steiner, A. Alternating hydrophilic and hydrophobic pockets in the channel structures of organostannoxane prismanes: preferential confinement of guest molecules.. 2005, 127, 11556–11557.

    (15) Prabusankar, G.; Murugavel, R. Hexameric organotin carboxylates with cyclic and drum Structures.2004, 23, 5644–5647.

    (16) Yin, H. D.; Li, F. H.; Li, L. W.; Li, G. Self-assembly of triorganotin(IV) or diorganotin(IV) moieties and 2-methylpyrazine-5-acid: syntheses, characterizations and crystal structures of monomeric, polymeric or tetranuclear macrocyclic compounds.2007, 692, 1010–1019

    (17) Ma, C.; Wang, Q.; Zhang, R.Self-assembly of triorganotin complexes: syntheses, characterization, and crystal structures of dinuclear, 1D polymeric chain, and 2D network polymers containing chiral (+)-(1R,3S)-camphoric acid and meso-cis-4-cyclohexene-1,2-dicarboxylic acid ligands.2008, 2008, 1926–1934.

    (18) Zhang, L. P.; Ma, J. F.; Yang, J.; Liu, Y. Y.; Wei, G. H. 1D, 2D, and 3D metal-organic frameworks based on bis(imidazole) ligands and polycarboxylates: syntheses, structures, and photoluminescent properties.. 2009, 9, 4660–4673.

    (19) Zhang, M. D.; Di, C. M.; Qin, L.; Yao, X. Q.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. Diverse structures of metal-organic frameworks based on a new star-like tri(4-pyridylphenyl)amine ligand.. 2012, 12, 3957–3963.

    (20) Zhang, R. F.; Wang, Q. F.; Yang, M. Q.; Wang, Y. R.; Ma, C. L. Five new dicarboxylate organotin complexes under hydrothermal condition: syntheses, characterization and crystal structures of 1D, 2D and 3D polymers constructed from dimeric tetraorganodistannoxane units.2008, 27, 3123–3131.

    (21) Xie, Q. L.; Xu, X. H.; Zhang, D. K. Synthesis and structure analyais of tribenzyltin carboxylate.1992, 50, 508–514

    (22) Ke, Y. K.; Dong, H. R.; Chemical Industry Press: Beijing 1998, 932–935

    5 August 2013;

    17 July 2014 (CCDC 951496)

    Natural Science Foundation of Hunan Province (No. 13JJ3112), Scientific & Technological Projects of Hunan Province (No. 2013TZ2025, 2014NK3086), Open Foundation of Innovation Platform of Hunan Provincial University (No. 13K105, 14K014), Scientific & Technological Projects of Hengyang City (No. 2012KJ30), Cultivation projects Based on Collaborative Innovation Center of Hengyang Normal University (No.12XT02) and the Youth Backbone Teacher Training Program of Hengyang Normal University (2012)

    . Kuang Dai-Zhi, (1955-), male, professor, majoring in the research of organometallic chemistry. E-mail: hnkcq@qq.com

    国产黄频视频在线观看| 乱码一卡2卡4卡精品| 少妇的逼水好多| 亚洲av二区三区四区| 在线看a的网站| 国产 一区精品| 久久久国产一区二区| 一区二区三区四区激情视频| 国产精品一二三区在线看| 国产爽快片一区二区三区| 久久狼人影院| 黄色配什么色好看| 如日韩欧美国产精品一区二区三区 | 人妻一区二区av| 中国美白少妇内射xxxbb| 亚洲人成77777在线视频| 亚洲精品日韩在线中文字幕| 在线观看免费日韩欧美大片 | 国产欧美日韩一区二区三区在线 | av福利片在线| 国产高清国产精品国产三级| a级毛片黄视频| 内地一区二区视频在线| 精品人妻熟女毛片av久久网站| 亚洲人成77777在线视频| 亚洲天堂av无毛| 丰满乱子伦码专区| 欧美日韩av久久| 精品人妻一区二区三区麻豆| 日韩熟女老妇一区二区性免费视频| 天天躁夜夜躁狠狠久久av| 亚洲伊人久久精品综合| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂| 看十八女毛片水多多多| 热99久久久久精品小说推荐| 久久精品国产亚洲av涩爱| 波野结衣二区三区在线| 亚洲精品亚洲一区二区| 成年美女黄网站色视频大全免费 | 黑人欧美特级aaaaaa片| 男女高潮啪啪啪动态图| 日本av手机在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品国产亚洲| 黑人猛操日本美女一级片| 日韩强制内射视频| 国精品久久久久久国模美| 亚洲国产最新在线播放| 成年人午夜在线观看视频| 热99国产精品久久久久久7| 美女cb高潮喷水在线观看| 亚洲欧美清纯卡通| 国产精品99久久99久久久不卡 | 精品人妻在线不人妻| 考比视频在线观看| 两个人免费观看高清视频| 国产精品99久久久久久久久| 老司机影院毛片| 黑丝袜美女国产一区| 亚洲国产精品一区二区三区在线| 欧美三级亚洲精品| 看免费成人av毛片| 十八禁网站网址无遮挡| 日韩成人伦理影院| 久久久欧美国产精品| 一个人看视频在线观看www免费| 高清午夜精品一区二区三区| 亚洲第一区二区三区不卡| a级毛片在线看网站| 成年美女黄网站色视频大全免费 | 国产免费现黄频在线看| 亚洲无线观看免费| 免费大片黄手机在线观看| 人妻制服诱惑在线中文字幕| 秋霞伦理黄片| 18+在线观看网站| 九草在线视频观看| 人人妻人人澡人人爽人人夜夜| 国产免费又黄又爽又色| videos熟女内射| 精品一区二区三卡| 99久久精品国产国产毛片| 激情五月婷婷亚洲| 男女高潮啪啪啪动态图| av天堂久久9| 亚洲成人手机| 一二三四中文在线观看免费高清| 国产亚洲欧美精品永久| 久久久亚洲精品成人影院| 伊人亚洲综合成人网| 亚洲成色77777| 国产av码专区亚洲av| 成人亚洲欧美一区二区av| 欧美最新免费一区二区三区| 十八禁网站网址无遮挡| 亚洲精品一二三| 午夜影院在线不卡| 国产色婷婷99| 日韩成人伦理影院| 人人妻人人澡人人爽人人夜夜| 欧美最新免费一区二区三区| 精品视频人人做人人爽| 久久精品国产亚洲av涩爱| 午夜免费男女啪啪视频观看| 老女人水多毛片| 一级爰片在线观看| 91精品国产九色| 热re99久久精品国产66热6| 亚洲情色 制服丝袜| 国产男女内射视频| 大片电影免费在线观看免费| 我的老师免费观看完整版| 麻豆成人av视频| 精品亚洲乱码少妇综合久久| 老女人水多毛片| 免费黄频网站在线观看国产| 香蕉精品网在线| 啦啦啦啦在线视频资源| 内地一区二区视频在线| 亚洲国产成人一精品久久久| 亚洲不卡免费看| 久久精品国产亚洲网站| 99热6这里只有精品| 亚洲成人一二三区av| 美女视频免费永久观看网站| 欧美丝袜亚洲另类| 香蕉精品网在线| 欧美日韩在线观看h| 91国产中文字幕| 亚洲精品乱码久久久久久按摩| 日韩,欧美,国产一区二区三区| 欧美激情国产日韩精品一区| 亚洲无线观看免费| 国产一区二区三区综合在线观看 | 国产黄色视频一区二区在线观看| 在现免费观看毛片| 99久国产av精品国产电影| 啦啦啦视频在线资源免费观看| av在线播放精品| 精品久久蜜臀av无| 久久精品国产自在天天线| 天天操日日干夜夜撸| 国产有黄有色有爽视频| 亚洲国产欧美日韩在线播放| 久久精品久久久久久久性| 日本黄色片子视频| 秋霞在线观看毛片| 国产老妇伦熟女老妇高清| 婷婷色综合www| 午夜福利影视在线免费观看| 18禁在线无遮挡免费观看视频| 91久久精品国产一区二区成人| 亚洲,一卡二卡三卡| 国产免费视频播放在线视频| 国产精品三级大全| 我的女老师完整版在线观看| 亚洲伊人久久精品综合| 日韩精品有码人妻一区| 哪个播放器可以免费观看大片| 国产午夜精品久久久久久一区二区三区| 亚洲av欧美aⅴ国产| 欧美精品一区二区大全| 男女免费视频国产| 亚洲国产精品一区二区三区在线| 日本-黄色视频高清免费观看| 高清黄色对白视频在线免费看| 国产成人精品久久久久久| 满18在线观看网站| 午夜日本视频在线| av免费观看日本| 3wmmmm亚洲av在线观看| 国产精品成人在线| 美女国产视频在线观看| 又粗又硬又长又爽又黄的视频| 久久影院123| 久久人人爽av亚洲精品天堂| 日韩成人av中文字幕在线观看| 亚洲色图综合在线观看| 插阴视频在线观看视频| av不卡在线播放| 亚洲av免费高清在线观看| 韩国av在线不卡| 日本黄色片子视频| 日日啪夜夜爽| 国产成人精品一,二区| av在线app专区| 新久久久久国产一级毛片| a级毛色黄片| 亚洲精品456在线播放app| 啦啦啦啦在线视频资源| 久热久热在线精品观看| 热re99久久精品国产66热6| 亚洲精品一区蜜桃| 亚洲性久久影院| 99视频精品全部免费 在线| 大香蕉久久成人网| 最新中文字幕久久久久| 日韩av免费高清视频| 18禁在线播放成人免费| 春色校园在线视频观看| 久久久久国产精品人妻一区二区| 另类精品久久| 免费少妇av软件| 免费少妇av软件| 亚洲人成网站在线观看播放| 亚洲无线观看免费| 岛国毛片在线播放| 久久久国产精品麻豆| 久久99一区二区三区| 最黄视频免费看| 久久久久精品久久久久真实原创| 最新中文字幕久久久久| av免费在线看不卡| 一本—道久久a久久精品蜜桃钙片| 免费不卡的大黄色大毛片视频在线观看| 日韩大片免费观看网站| 男女高潮啪啪啪动态图| 激情五月婷婷亚洲| 一级二级三级毛片免费看| 国产高清有码在线观看视频| 国产免费视频播放在线视频| 免费黄色在线免费观看| 蜜桃久久精品国产亚洲av| av专区在线播放| 免费高清在线观看日韩| 久久免费观看电影| 国产成人91sexporn| 久久影院123| 2021少妇久久久久久久久久久| 99热6这里只有精品| 欧美 日韩 精品 国产| 在线观看免费视频网站a站| 成人免费观看视频高清| 亚洲精品亚洲一区二区| 一区二区av电影网| 狂野欧美激情性xxxx在线观看| 在线观看免费高清a一片| 免费日韩欧美在线观看| 丰满饥渴人妻一区二区三| 精品亚洲乱码少妇综合久久| h视频一区二区三区| 欧美激情 高清一区二区三区| 国产在线视频一区二区| 色网站视频免费| 亚洲激情五月婷婷啪啪| 22中文网久久字幕| 日本av免费视频播放| 啦啦啦在线观看免费高清www| 久久午夜综合久久蜜桃| 高清av免费在线| 久久综合国产亚洲精品| 午夜福利影视在线免费观看| 欧美 日韩 精品 国产| 日韩精品免费视频一区二区三区 | 大片免费播放器 马上看| 少妇 在线观看| 99久久人妻综合| 看免费成人av毛片| av播播在线观看一区| 精品久久久久久电影网| 亚洲欧洲日产国产| 9色porny在线观看| 最后的刺客免费高清国语| 青春草国产在线视频| 亚洲第一av免费看| 人妻制服诱惑在线中文字幕| 久久99蜜桃精品久久| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区四区激情视频| 国产视频内射| 美女中出高潮动态图| 成年人免费黄色播放视频| 在线天堂最新版资源| 国产欧美日韩综合在线一区二区| 亚洲精品乱久久久久久| 啦啦啦在线观看免费高清www| 成人漫画全彩无遮挡| 我要看黄色一级片免费的| 熟妇人妻不卡中文字幕| 国产一区有黄有色的免费视频| 看免费成人av毛片| 我的老师免费观看完整版| 69精品国产乱码久久久| 亚洲av福利一区| 亚洲婷婷狠狠爱综合网| 亚洲人与动物交配视频| 18禁观看日本| 国产精品99久久久久久久久| 久久99一区二区三区| 成人黄色视频免费在线看| 黑人高潮一二区| 一区二区三区四区激情视频| 亚洲精品第二区| 美女中出高潮动态图| 日本-黄色视频高清免费观看| 色婷婷av一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲成色77777| 日产精品乱码卡一卡2卡三| 亚洲综合色惰| 搡老乐熟女国产| 一本一本综合久久| 啦啦啦啦在线视频资源| 大又大粗又爽又黄少妇毛片口| 成人亚洲精品一区在线观看| 国产永久视频网站| 制服诱惑二区| 亚洲内射少妇av| 亚洲高清免费不卡视频| 晚上一个人看的免费电影| 色5月婷婷丁香| av网站免费在线观看视频| 免费不卡的大黄色大毛片视频在线观看| 免费av中文字幕在线| 狂野欧美激情性xxxx在线观看| 国产在视频线精品| 亚洲国产成人一精品久久久| 欧美3d第一页| 又黄又爽又刺激的免费视频.| 午夜福利视频在线观看免费| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 大片电影免费在线观看免费| 日本欧美国产在线视频| 涩涩av久久男人的天堂| 色网站视频免费| 桃花免费在线播放| 国产免费一区二区三区四区乱码| 99热这里只有精品一区| 人妻一区二区av| 亚洲精品自拍成人| 久久久国产一区二区| 免费观看的影片在线观看| 成年av动漫网址| 国产精品99久久久久久久久| 亚洲精品自拍成人| 久久久久人妻精品一区果冻| 国产精品国产三级国产专区5o| 亚洲丝袜综合中文字幕| 夫妻性生交免费视频一级片| 精品久久久久久久久亚洲| 亚洲欧洲精品一区二区精品久久久 | 大片免费播放器 马上看| av线在线观看网站| 国产成人freesex在线| 一区在线观看完整版| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 成人免费观看视频高清| 国产国语露脸激情在线看| 美女cb高潮喷水在线观看| 夜夜爽夜夜爽视频| 亚洲精品aⅴ在线观看| 男女国产视频网站| 美女视频免费永久观看网站| av有码第一页| 十分钟在线观看高清视频www| 热99国产精品久久久久久7| 80岁老熟妇乱子伦牲交| kizo精华| 久久99蜜桃精品久久| 18禁在线播放成人免费| 啦啦啦啦在线视频资源| 不卡视频在线观看欧美| 99热网站在线观看| 五月天丁香电影| 秋霞伦理黄片| 亚洲精品,欧美精品| 啦啦啦视频在线资源免费观看| 欧美成人精品欧美一级黄| 女人久久www免费人成看片| 纵有疾风起免费观看全集完整版| 国产熟女午夜一区二区三区 | 建设人人有责人人尽责人人享有的| 亚洲无线观看免费| 最新中文字幕久久久久| 女性被躁到高潮视频| 亚洲国产精品999| 美女国产视频在线观看| 免费黄色在线免费观看| 女人久久www免费人成看片| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷色av中文字幕| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| 久久久a久久爽久久v久久| 国产精品国产三级专区第一集| 热re99久久国产66热| 免费少妇av软件| 国产一区二区三区av在线| 老司机亚洲免费影院| 国产在线视频一区二区| 大码成人一级视频| 妹子高潮喷水视频| 亚洲av二区三区四区| 一级片'在线观看视频| 少妇 在线观看| 在线观看免费视频网站a站| 亚洲第一区二区三区不卡| 美女xxoo啪啪120秒动态图| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| 青青草视频在线视频观看| 精品亚洲成国产av| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 女的被弄到高潮叫床怎么办| 欧美最新免费一区二区三区| 欧美国产精品一级二级三级| 久久久久久久久久久丰满| 亚洲av二区三区四区| 亚洲av.av天堂| av国产久精品久网站免费入址| 久久久a久久爽久久v久久| 91午夜精品亚洲一区二区三区| 观看美女的网站| 国产深夜福利视频在线观看| 夜夜看夜夜爽夜夜摸| 亚洲欧洲日产国产| 韩国高清视频一区二区三区| 国产成人freesex在线| 最黄视频免费看| 国产亚洲精品久久久com| 国产淫语在线视频| 久久久午夜欧美精品| 日日摸夜夜添夜夜爱| 亚洲少妇的诱惑av| 免费人妻精品一区二区三区视频| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 亚洲第一区二区三区不卡| 十分钟在线观看高清视频www| 久久久久网色| 日韩在线高清观看一区二区三区| av免费观看日本| 看免费成人av毛片| 人人妻人人澡人人爽人人夜夜| 最新中文字幕久久久久| 美女内射精品一级片tv| 精品久久久噜噜| 蜜臀久久99精品久久宅男| 亚洲,一卡二卡三卡| 亚洲国产毛片av蜜桃av| 母亲3免费完整高清在线观看 | 男女高潮啪啪啪动态图| 精品99又大又爽又粗少妇毛片| 两个人的视频大全免费| 日韩成人av中文字幕在线观看| 国产在线一区二区三区精| 欧美xxⅹ黑人| 成人影院久久| 黑人巨大精品欧美一区二区蜜桃 | 亚洲久久久国产精品| 亚洲av男天堂| 最近2019中文字幕mv第一页| 99re6热这里在线精品视频| 亚洲国产av新网站| 国产精品一区www在线观看| 久久精品人人爽人人爽视色| 有码 亚洲区| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 能在线免费看毛片的网站| 欧美老熟妇乱子伦牲交| 亚洲综合色网址| 婷婷成人精品国产| 成人毛片60女人毛片免费| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 国产欧美日韩综合在线一区二区| 最近的中文字幕免费完整| 久久久国产精品麻豆| √禁漫天堂资源中文www| 亚洲av不卡在线观看| 久久热精品热| 欧美日韩国产mv在线观看视频| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看 | 久久99精品国语久久久| 午夜老司机福利剧场| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久| 亚洲国产精品成人久久小说| 欧美激情国产日韩精品一区| 色吧在线观看| 人妻系列 视频| 黑丝袜美女国产一区| av天堂久久9| videos熟女内射| av播播在线观看一区| 久久久久精品性色| 精品国产一区二区三区久久久樱花| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 日日撸夜夜添| 亚洲国产成人一精品久久久| 在线观看免费日韩欧美大片 | 国产成人午夜福利电影在线观看| 美女国产视频在线观看| 久久精品久久久久久久性| 最近中文字幕2019免费版| 久久人人爽av亚洲精品天堂| 国产淫语在线视频| 桃花免费在线播放| 亚洲精品国产av蜜桃| 国产黄频视频在线观看| 亚洲国产色片| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看| 蜜桃久久精品国产亚洲av| 交换朋友夫妻互换小说| 亚洲成人手机| 人妻一区二区av| 亚洲欧洲日产国产| 日本91视频免费播放| 日韩中字成人| 亚洲精品第二区| 日本-黄色视频高清免费观看| 一区二区三区四区激情视频| 亚洲精品久久成人aⅴ小说 | 黑人猛操日本美女一级片| 乱人伦中国视频| 91国产中文字幕| a级毛片黄视频| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区 | 国产白丝娇喘喷水9色精品| 黑人猛操日本美女一级片| 乱码一卡2卡4卡精品| 欧美人与性动交α欧美精品济南到 | 一级毛片 在线播放| 久久久精品区二区三区| 国产成人精品无人区| 大片免费播放器 马上看| 亚洲,欧美,日韩| 免费av中文字幕在线| 又黄又爽又刺激的免费视频.| 亚洲美女黄色视频免费看| a 毛片基地| 三级国产精品欧美在线观看| 国产在视频线精品| av有码第一页| 一级二级三级毛片免费看| 一级毛片aaaaaa免费看小| 各种免费的搞黄视频| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件| 国产精品一二三区在线看| 男女免费视频国产| 精品卡一卡二卡四卡免费| 不卡视频在线观看欧美| 丰满乱子伦码专区| 国产色婷婷99| av免费在线看不卡| 国产深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区 | 中文字幕av电影在线播放| 十八禁网站网址无遮挡| 亚洲情色 制服丝袜| 91精品一卡2卡3卡4卡| 黑人猛操日本美女一级片| 在线观看一区二区三区激情| 日韩大片免费观看网站| 亚洲av在线观看美女高潮| 免费播放大片免费观看视频在线观看| 丰满饥渴人妻一区二区三| 免费高清在线观看视频在线观看| 中文乱码字字幕精品一区二区三区| 亚洲欧美精品自产自拍| 日本欧美国产在线视频| 肉色欧美久久久久久久蜜桃| 午夜老司机福利剧场| 久久女婷五月综合色啪小说| 最近中文字幕高清免费大全6| 欧美人与善性xxx| 欧美日韩视频高清一区二区三区二| kizo精华| 亚洲欧洲精品一区二区精品久久久 | 久久久亚洲精品成人影院| 精品一区二区三区视频在线| 99精国产麻豆久久婷婷| 91久久精品国产一区二区三区| av黄色大香蕉| 搡女人真爽免费视频火全软件| 18禁观看日本| 少妇丰满av| 少妇人妻精品综合一区二区| 国产在线免费精品| 久久综合国产亚洲精品| 免费人成在线观看视频色| 欧美日韩视频精品一区| 午夜激情福利司机影院| a级毛片在线看网站| 熟女人妻精品中文字幕| 母亲3免费完整高清在线观看 | 亚洲av在线观看美女高潮| 亚洲怡红院男人天堂| 新久久久久国产一级毛片| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 亚洲精品乱久久久久久| 天天影视国产精品| 久久人人爽人人爽人人片va| 日韩电影二区| 狂野欧美激情性xxxx在线观看| 欧美激情 高清一区二区三区|