• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solvothermal Syntheses, Crystal Structures, Thermal Stability and Quantum Chemistry of Dinuclear Trialkyltin ComplexesConstructed by Camphoric Acid①

    2014-12-17 10:33:58YUJiangXiKUANGDaiZhiFENGYongLanZHUXiaoMingJIANGWuJiuZHANGFuXing
    結(jié)構(gòu)化學(xué) 2014年10期

    YU Jiang-Xi KUANG Dai-Zhi FENG Yong-Lan ZHU Xiao-Ming JIANG Wu-Jiu ZHANG Fu-Xing

    ?

    Solvothermal Syntheses, Crystal Structures, Thermal Stability and Quantum Chemistry of Dinuclear Trialkyltin ComplexesConstructed by Camphoric Acid①

    YU Jiang-Xi KUANG Dai-Zhi②FENG Yong-Lan ZHU Xiao-Ming JIANG Wu-Jiu ZHANG Fu-Xing

    (421008)

    Two dinuclear organotin complexes C8H14(CO2SnCy3)2(1) (Cy = cyclohexyl group) and C8H14[CO2Sn(CH2CMe2Ph)3]2(2) were synthesized by the reactions of camphoric acid with tricyclohexyltin hydroxide and bis[tri(2-methyl-2-phenyl)propyltin] oxide under solvothermal conditions, and these complexes were characterized by infrared spectra, elemental analyses, and H NMR spectra. The crystal of 1 belongs to the monoclinic system, space group21/with1.83478(19),= 1.52707(18),1.9849(2) nm,= 122.515(7)°,= 4,= 4.6896(9) nm3,D= 1.324 g/cm3,(Mo) = 1.103 mm-1,(000) = 1952,= 0.0697 and= 0.2040. In addition, thermal stability and quantum chemical calculation of 1 were also studied.

    trialkyltin complex, camphoric acid, solvothermal synthesis, structure, quantum chemistry

    1 INTRODUCTION

    Organotin has attracted intensive attention with its bioactivity and wide applications in industry and agriculture. For example, organotin has been made successfully into the preservation of woods, fungi- cides, germicides, insecticides, and additives of marine antifouling coat[1-4]. Some organotin prepara- tions may inhibit the activity of tumor cells and therefore are potential anticancer agents[5], and some others may be used also as catalysts in some organic reactions, such as reduction, coupling[6, 7], esterifica- tion and interesterification[8, 9], and used as thermal stabilizer of PVC[10]. Organotin may form multiple configurations such as ladder-type, drum-type, cap- type, cage-type, ring, 1D, 2D and 3D configura- tions[11-17]through different alkyl groups and ligands connected with tin atom by Sn–C (O, N, S), and therefore organotin may have multiple performances due to their multiple configurations. Constituting new functional materials with special performances based on the assembly of polybasic carboxylic acid with metals has become a field of active researches. Camphoric acid attracted wide attention with its excellent constitutional function[18, 19]. Ma Chunlinsynthesized a series of trialkyltin camphoric carboxylates with innovative configuration and good thermal stability through the reaction of camphoric acid with R3SnCl (R = Me, Bu, Bz, Ph)[17]. Zhang Rufenobtained a 3D supramolecular organotin complex through the reaction of camphoric acid with Me3SnCl under hydrothermal conditions[20]. Recent- ly, we have prepared two dinuclear trialkyltin com- plexes, 1 and 2,reacting camphoric acid with Cy3SnOH, [(PhCMe2CH2)3Sn]2O under solvother- mal conditions, and report here their synthesis and characterization.

    2 EXPERIMENTAL

    2.1 Instruments and reagents

    Tricyclohexyltin hydroxide and bis[tri(2-methyl- 2-phenyl)propyltin] oxide purchased from Zhejiang Huaxing Chemical & Pesticides Co., Ltd were chemically pure. DL-camphoric acid of chemical reagent grade was obtained from Shanghai Joint State-Private Xinzhong Chemical Factory. Methanol was analytically pure, purchased from Sino-Tianjin BASF Chemical Co., Ltd., and used directly without further purification.

    Melting point was measured by a X4 binocular stereo microscopic melting point meter (Beijing Tektronix Instrument Co. Ltd.) without correction. The contents of C and H were determined by PE- 2400 (II) elemental analyzer (US PE Corporation). Infrared spectrum was recorded by an IR Prestige-21 infrared spectrometer (Japan Shimadzu Corporation, 4000~400 cm-1), and NMR spectrum by Bruker Avance 500 and Bruker Avance 400 NMR Spectrometer (Swiss Bruker Corporation, with TMS as internal standard). Thermogravimetric analyses were executed on a TG 209 F3 thermogravimetric analyzer (Germany Netzsch Corporation).

    2.2 Syntheses of the complexes

    As shown in Fig. 1, a mixture of DL-camphoric acid (1 mmol), tricyclohexyltin hydroxide (2 mmol) or bis[tri(2-methyl-2-phenyl)propyltin] oxide (1 mmol), CH3OH (10 mL) was stirred, and then placed in a 25 mL Teflon-lined stainless-steel vessel which was heated to 130 ℃ for 4 d and finally cooled to room temperature at a rate of 5 ℃·h-1to obtain complex 1 or 2.

    Fig. 1. Synthesis reactions of 1 and 2

    Complex (1): 0.773 g, colorless crystal, yield 82.7%, m.p: 206~207 ℃. Elemental composition: (C46H80O4Sn2); theoretical value (%): C, 59.12; H, 8.63. Measured value (%): C, 59.20; H, 8.59. IR (KBr, cm-1): 2918 (m), 2845 (m), 1653 (vs), 1614(vs), 1450 (m), 1402(m), 1283 (m), 1246 (m), 1213 (w), 1167 (m), 1124 (m), 1084 (m), 991 (m), 937 (w), 878 (w), 841 (w), 802(w), 783 (w), 577 (w), 523 (w), 440 (w).1H NMR (CDCl3, 500MHz),(ppm): 2.80 (t,= 9.5 Hz, 1H, CC(CH2)CO2), 0.86~2.53 (m, 79H, -CH2-, -CH3).

    Complex (2): 0.922 g, colorless crystal, yield 74.7%. m.p: 106~107 ℃. Elemental composition: (C70H92O4Sn2); theoretical value (%): C, 68.09; H, 7.50. Measured value (%): C, 68.09; H, 7.50. IR (KBr, cm-1): 3059 (w), 3026 (w), 2961 (m), 2922 (m), 1647 (vs), 1495 (w), 1443 (m), 1366(m), 1304 (s), 1285 (m), 1244 (w), 1192 (w), 1076 (m), 1030 (w), 999 (w), 768 (m), 700 (s), 615 (w), 554 (w).1H NMR (CDCl3, 400MHz),(ppm): 7.10~7.28 (m, 30H, Ph-H), 2.72 (t,= 9.2 Hz, 1H, CC(CH2)CO2), 0.89~2.59 (m, 61H, -CH2-, -CH3).

    2.3 Crystal structure determination of complex 1

    A crystal of complex 1 (0.25mm × 0.17mm × 0.13mm) was chosen for data collection which was performed on a Bruker Smart Apex II CCD diffrac- tometer equipped with a graphite-monochromated Moradiation (= 0.071073 nm) using a-scan mode at 296(2) K. A total of 26,124 reflections were collected in the range of 1.81≤≤25.05°, of whcih 8,280 were independent (int= 0.0251) and 5,580 were observed (> 2()). All the data were corrected byfactors and multi-scan absorbance. The crystal structure was solved by direct methods. The non-hydrogen atoms, H21X and H21Y were located in successive difference Fourier syntheses, and other hydrogen atoms were placed in the calculated positions. All hydrogen and non-hy- drogen atoms were refined by isotropic and anisotro- pic thermal parameters through full-matrix least- squares method.The final0.0697,0.2040, (Δ)max= 1554 and (Δ)min= –1650 e·nm-3. All cal- culations were completed by SHELXTL-97 program. Selected bond lengths and bond angles of complex 1 are given in Table 1.

    Table 1. Bond Length (?) and Bond Angle (°)of Complex 1

    3 RESULTS AND DISCUSSION

    3.1 IR and 1H NMR

    The absorption caused by carboxyl-hydroxyl association appearing at 2500~3300 cm-1in the ligand disappeared in the complex, indicating that the carboxyl group was deprotonated and coor- dinated with the tin atom; carboxyl unsymmetric and symmetric stretching vibrations occurring at 1700 and 1283 cm-1in the ligand shifted to 1653, 1614, 1450 and 1402 cm-1in complex 1 respectively, with the difference to be 203and 212 cm-1, showing that the carboxyl group was coordinated in a mono- dentate manner in 1[21], which agreed with the result of X-ray single-crystal diffraction. In complex 2, carboxyl symmetric and unsymmetric stretching vibration appeared at 1647and 1304 cm-1, sugges- ting that the carboxyl group was coordinated still in a monodentate manner in 2. For complex 1, the stretching vibration of Sn–Cand Sn–O bonds appeared at 577and 440 cm-1, while at 615and 554 cm-1in complex 2[22].

    In the1H NMR spectra, the total numbers of protons calculated by integration are in agreement with the expected molecular composition of the complexes. Carboxyl-hydroxyl proton peak appea- ring at 12.10 ppm in the ligand disappeared in the complexes, indicating the formation of complexes 1 and 2. Triple absorption peaks at 2.80 ppm (1) and 2.72 ppm (2) in the ligand correspond to the methyne H peak of camphoric acid; multiple absorp- tion appearing within 0.86~2.53 ppm in 1and 0.89~2.59 ppm in 2 was attributed to the H peaks of methyl and methylene groups (cyclohexyl methyne for 1).

    3.2 Crystal structure analysis of complex 1

    The molecular structure of complex 1 is shown in Fig. 2 (ellipsoids probability: 10%). From this figure, we can see that a molecule of camphoric acid was connected with 2 tricyclohexyltins to form a dinu- clear configuration. The tin atom was coordinated with methyne carbons of 3 tricyclohexyl groups and a carboxyl oxygen atom of camphoric acid to generate a tetrahedral configuration with tin atom as the center. Three groups of Sn–C bonds in each tin atom had different bond lengths, and 3 groups of angle ∠C–Sn–O all deviated from 109.5° for a regular tetrahedron, showing that the tin atom and coordinated atoms formed a distorted tetrahedron. The distances between the tin atom and carboxyl oxygen atoms are as follows: Sn(1)–O(1) = 2.041(6) ?, and Sn(2)–O(3) = 2.050(6) ?, smaller than the sum of covalent radii of 2 atoms (2.160 ?), suggesting that stable coordination bonds are formed between Sn(1) and O(1) as well as between Sn(2) and O(3). The distances between the tin atom and other carboxyl oxygen atoms are as below: Sn(1)···O(2) = 2.8836(74) ? and Sn(2)···O(4) = 2.9689(78) ?. The interactions were weak, and therefore carboxyl group was coordinated with a tin atom in a monodentate manner in complex 1.

    In the crystal of complex 1, a 1D ribbon-like structure is formed through the actions of C–H···O hydrogen bond (H(11B)···O(2)i2.5507(93) ?,∠C(11)–H(11B)···O(2)i132.856(904)°, i: –, –1/2+, –1/2–) between cyclohexyl hydrogen of one molecule and carbonyl oxygen of the adjacent other molecule (Fig. 3).

    Fig. 2. Molecular structure of 1(Hydrogen atoms and the second component of disordered parts were omitted for clarity)

    Fig. 3. 1D ribbon-like structure of 1 (i: –, –1/2 +, –1/2 –) constituted by hydrogen bonds (Some H atoms and cyclohexyl groups are omitted for clarity)

    3.3 Thermal stability

    Thermogravimetric analysis was carried out for complex 1 to investigate its thermal stability (Fig. 4). The thermogravimetric curve shows that 1 is stable up to 182 ℃, and then a noticeable weight loss up to 395 ℃appears (nearly 75.2 %). After that, no weight loss occurs. Assuming that the residue cor- responds to SnO2, the observed weight is basically in agreement with the calculated value (calcd. 32.3%). Thus, complex1shows good thermal stability.

    3.4 Quantum chemical study

    Quantum chemical calculation of complex 1 was performed with Gaussian03W program at the B3LYP/LANL2DZ level on a P4 personal computer. Molecular configuration parameters used in calcu- lation were obtained from the X-ray experimental data. 132 atoms, 626 basis functions, 1,594 primitive gaussians, 198electrons and 198electrons were involved in the calculation.

    Fig. 4. Thermogravimetric curve of 1

    3.4.1 Frontier molecular orbital energy

    The overall stability of the structure correlates closely with the total energy of the system as well as the frontier molecular orbital energy. Based on calculation, for complex 1, the total energy was –2108.08855 a.u., the energy of the highest occupied molecular orbital (HOMO)HOMO= –0.21995 a.u., and that of the lowest unoccupied molecular orbital (LUMO)LUMO= –0.10980 a.u.,showing that the total energy and energy level of the occupied molecular orbital were both lower relatively, and the energy gap between the highest and lowest unoccupied molecular orbitals Δ= 0.11015 a.u.. It proves that the structure of complex 1 is stable. From the point of oxidation-reduction and charge transfer, the absolute value of the highest occupied molecular orbital energy |HOMO| was a great minus value, suggesting that electrons were difficult to ionize from HOMO, and therefore complex 1 was not liable to lose its electrons and its ground state was stable relatively.

    3.4.2 Molecular orbital composition

    In order to explore the bonding characteristics of the complex, the molecular orbitals were investigated systematically, and the calculation result is shown in Table 2 and Fig. 5.

    Table 2. Composition of Molecular Orbitals of Complex 1 (%) (B3lyp/Lanl2dz)

    Fig. 5. Schematic diagram of the frontier molecular orbitals of 1

    As to the composition of HOMO, carbon atoms made the greatest contribution to HOMO (70.31%), followed by the oxygen atoms (14.74%). The contribution of other atoms to HOMO was less, for example, the contribution of tin atom was 7.55%, and that of hydrogen atom was 7.37%. As regards the composition of LUMO, the contribution of various atoms changed noticeably. The contribution of carbon atoms to LUMO was up to 64.05%, oxygen atoms 27.67%, tin atoms 5.10%; and that of all hydrogen atoms was 3.17%.

    The comparison of orbital components between HOMO and LUMO demonstrated that when the complex transferred to the excited state from its ground state, electrons transferred mainly from the orbital of carbon atom to that of oxygen atom to form the electron transfer complex.

    (1) Rahman, M. M.; Jusoh, I.; Affan, M. A.; Husaini, A.; Hamdan, S. Efficacy of novel organotin(IV) complexes on non-durable tropicalwood against decay fungi.2013, 71, 463–471.

    (2) Salam, M. A.; Affan, M. A.; Arafat, M. A.; Saha, R.; Nasrin, R. Synthesis, characterization, and antibacterial activities of organotin(IV) complexes with 2-acetylpyridine-N(4)-cyclohexylthiosemicarbazone (HAPCT).2013, 24, 43–52.

    (3) Knowles, C. O. Chemistry and toxicology of quinoxa-line, organotin, organofluorine, and formamidine acaricides.. 1976, 14, 93–102

    (4) Omae, L.Organotin antifouling paints and their alternatives.2003, 17, 81–105.

    (5) Hussain, M.; Rehman, Z.; Hanif, M.; Altaf, M.; Rehman, A.; Ali, S.; Cavell, K. J. Structural studies of diethyltin(IV) derivatives and their biological aspects as potential antitumor agents against agrobacterium tumefacien cells.2011, 25, 412–419.

    (6) Dumartin, G.; Pourcel, M.; Delmond, B.; Donard, O.; Pereyre, M.In situ generated, polymer-supported organotin hydrides as clean reducing agents.. 1998, 39, 4663–4666.

    (7) Yabe, Y.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Palladium on charcoal-catalyzed ligand-free Stille coupling.2010, 66, 8654–8660.

    (8) Jousseaume, B.; Guillou, V.; Noiret, N.; Pereyre, M.; Francés, J. M. Synthesis and thermal decomposition of substituted [2-(acyloxy)alkyl]diorganotin compounds, Bu2Sn(X)CH2CHR1OCOR2(X halogen 2,4-pentanedionate or OCOR), potential sources of organotin catalysts.1993, 450, 97–102.

    (9) He, X.; Li, Z.; Su, K.; Cheng, B.; Ming, J. Study on the reaction between bisphenol A and dimethyl carbonate over organotin oxide.2013, 33, 20–23.

    (10) Allen, D. W.; Brooks, J. S.; Unwin, J.; McGuinness, J. D.Studies of the degradation of organotin stabilizers in poly(vinyl chloride) during gamma irradiation.1987, 1, 311–317.

    (11) Chandrasekhar, V.; Schmid, C. G.; Burton, S. D.; Holmes, J. M.; Day, R. O.; Holmes, R. R. New drum and ladder organooxotin carboxylates.. 1987, 26, 1050–1056.

    (12) Chen, M. S.; Kuang, D. Z.; Zhang, C. H.; Deng, Y. F.; Li, W.; Yang, Y. Q. Synthesis and crystal structure of a hexameric organooxotin cluster from benzilic acid.2005, 24, 1249–1253.

    (13) Swamy, K. C. K.; Day, R. O.; Holmes, R. R. Organotin clusters. 7. polynuclear chlorine containing organooxotin clusters.. 1992,31, 4184–4193.

    (14) Chandrasekhar, V.; Thilagar, P.; Bickley, J. F.; Steiner, A. Alternating hydrophilic and hydrophobic pockets in the channel structures of organostannoxane prismanes: preferential confinement of guest molecules.. 2005, 127, 11556–11557.

    (15) Prabusankar, G.; Murugavel, R. Hexameric organotin carboxylates with cyclic and drum Structures.2004, 23, 5644–5647.

    (16) Yin, H. D.; Li, F. H.; Li, L. W.; Li, G. Self-assembly of triorganotin(IV) or diorganotin(IV) moieties and 2-methylpyrazine-5-acid: syntheses, characterizations and crystal structures of monomeric, polymeric or tetranuclear macrocyclic compounds.2007, 692, 1010–1019

    (17) Ma, C.; Wang, Q.; Zhang, R.Self-assembly of triorganotin complexes: syntheses, characterization, and crystal structures of dinuclear, 1D polymeric chain, and 2D network polymers containing chiral (+)-(1R,3S)-camphoric acid and meso-cis-4-cyclohexene-1,2-dicarboxylic acid ligands.2008, 2008, 1926–1934.

    (18) Zhang, L. P.; Ma, J. F.; Yang, J.; Liu, Y. Y.; Wei, G. H. 1D, 2D, and 3D metal-organic frameworks based on bis(imidazole) ligands and polycarboxylates: syntheses, structures, and photoluminescent properties.. 2009, 9, 4660–4673.

    (19) Zhang, M. D.; Di, C. M.; Qin, L.; Yao, X. Q.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. Diverse structures of metal-organic frameworks based on a new star-like tri(4-pyridylphenyl)amine ligand.. 2012, 12, 3957–3963.

    (20) Zhang, R. F.; Wang, Q. F.; Yang, M. Q.; Wang, Y. R.; Ma, C. L. Five new dicarboxylate organotin complexes under hydrothermal condition: syntheses, characterization and crystal structures of 1D, 2D and 3D polymers constructed from dimeric tetraorganodistannoxane units.2008, 27, 3123–3131.

    (21) Xie, Q. L.; Xu, X. H.; Zhang, D. K. Synthesis and structure analyais of tribenzyltin carboxylate.1992, 50, 508–514

    (22) Ke, Y. K.; Dong, H. R.; Chemical Industry Press: Beijing 1998, 932–935

    5 August 2013;

    17 July 2014 (CCDC 951496)

    Natural Science Foundation of Hunan Province (No. 13JJ3112), Scientific & Technological Projects of Hunan Province (No. 2013TZ2025, 2014NK3086), Open Foundation of Innovation Platform of Hunan Provincial University (No. 13K105, 14K014), Scientific & Technological Projects of Hengyang City (No. 2012KJ30), Cultivation projects Based on Collaborative Innovation Center of Hengyang Normal University (No.12XT02) and the Youth Backbone Teacher Training Program of Hengyang Normal University (2012)

    . Kuang Dai-Zhi, (1955-), male, professor, majoring in the research of organometallic chemistry. E-mail: hnkcq@qq.com

    欧美成人精品欧美一级黄| 国产亚洲av片在线观看秒播厂| 女人精品久久久久毛片| 欧美精品一区二区免费开放| freevideosex欧美| 美女高潮到喷水免费观看| 成年动漫av网址| 老女人水多毛片| 成年女人在线观看亚洲视频| 欧美在线黄色| 波多野结衣av一区二区av| 在线观看人妻少妇| 国产亚洲av片在线观看秒播厂| 午夜影院在线不卡| 国产色婷婷99| 成人午夜精彩视频在线观看| 日韩欧美一区视频在线观看| h视频一区二区三区| 亚洲精品一区蜜桃| 波多野结衣av一区二区av| 免费少妇av软件| 精品视频人人做人人爽| 一区福利在线观看| 亚洲视频免费观看视频| 亚洲精华国产精华液的使用体验| 成人午夜精彩视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲男人天堂网一区| 女人被躁到高潮嗷嗷叫费观| 久久婷婷青草| 97人妻天天添夜夜摸| 午夜久久久在线观看| 2021少妇久久久久久久久久久| 亚洲精品国产色婷婷电影| 两个人看的免费小视频| 欧美少妇被猛烈插入视频| 久久影院123| 啦啦啦中文免费视频观看日本| 久久人人爽av亚洲精品天堂| 久久韩国三级中文字幕| 国产1区2区3区精品| 精品卡一卡二卡四卡免费| 亚洲精品国产av成人精品| 亚洲国产精品成人久久小说| 97精品久久久久久久久久精品| 另类精品久久| 久久国产精品男人的天堂亚洲| 免费看不卡的av| 在线精品无人区一区二区三| 另类亚洲欧美激情| 久久毛片免费看一区二区三区| 国产精品不卡视频一区二区| 尾随美女入室| 女性生殖器流出的白浆| 亚洲第一区二区三区不卡| 久久免费观看电影| 18在线观看网站| 日本午夜av视频| 五月伊人婷婷丁香| 天天躁夜夜躁狠狠久久av| 男女下面插进去视频免费观看| 国产在线免费精品| 五月开心婷婷网| 在线看a的网站| 满18在线观看网站| 亚洲欧美精品自产自拍| 视频在线观看一区二区三区| 久久精品久久久久久噜噜老黄| 搡女人真爽免费视频火全软件| 欧美bdsm另类| 桃花免费在线播放| 18禁裸乳无遮挡动漫免费视频| 欧美黄色片欧美黄色片| 中文字幕制服av| 亚洲精品一区蜜桃| 国产精品不卡视频一区二区| 国产精品一区二区在线观看99| 国产av一区二区精品久久| 午夜免费男女啪啪视频观看| 18+在线观看网站| 看免费成人av毛片| 最近中文字幕2019免费版| 丝袜人妻中文字幕| 亚洲色图 男人天堂 中文字幕| 看非洲黑人一级黄片| 亚洲国产av影院在线观看| 大片电影免费在线观看免费| 两个人看的免费小视频| 美国免费a级毛片| a 毛片基地| 麻豆乱淫一区二区| 国产成人欧美| 欧美av亚洲av综合av国产av | 黄网站色视频无遮挡免费观看| 狠狠精品人妻久久久久久综合| 免费少妇av软件| 欧美激情 高清一区二区三区| 女性生殖器流出的白浆| 纵有疾风起免费观看全集完整版| 香蕉国产在线看| 中国三级夫妇交换| 国产视频首页在线观看| 久久国产亚洲av麻豆专区| 男人爽女人下面视频在线观看| 亚洲成人一二三区av| 日本91视频免费播放| 少妇被粗大的猛进出69影院| 国产成人精品在线电影| 亚洲国产精品一区二区三区在线| 午夜av观看不卡| 十分钟在线观看高清视频www| 一级毛片电影观看| 国产免费视频播放在线视频| 日韩免费高清中文字幕av| 三级国产精品片| 高清在线视频一区二区三区| 久久久精品免费免费高清| 99re6热这里在线精品视频| 国产有黄有色有爽视频| 久久99蜜桃精品久久| 亚洲成国产人片在线观看| 亚洲,一卡二卡三卡| 亚洲国产色片| 九九爱精品视频在线观看| 午夜福利乱码中文字幕| 黄色配什么色好看| 男女边摸边吃奶| 国产精品秋霞免费鲁丝片| 欧美少妇被猛烈插入视频| 亚洲,一卡二卡三卡| 欧美精品亚洲一区二区| 女的被弄到高潮叫床怎么办| 国产精品香港三级国产av潘金莲 | 美女xxoo啪啪120秒动态图| 热re99久久国产66热| 97精品久久久久久久久久精品| 日韩制服丝袜自拍偷拍| 国产色婷婷99| 夫妻性生交免费视频一级片| 亚洲人成电影观看| 成年女人毛片免费观看观看9 | 91成人精品电影| 午夜福利一区二区在线看| 狠狠婷婷综合久久久久久88av| 欧美日韩成人在线一区二区| 精品久久久久久电影网| 亚洲欧洲精品一区二区精品久久久 | 精品人妻在线不人妻| 久久久久国产网址| 久久人妻熟女aⅴ| 日韩中字成人| 激情五月婷婷亚洲| 色视频在线一区二区三区| 五月天丁香电影| 亚洲精品国产av蜜桃| 久久精品aⅴ一区二区三区四区 | 观看av在线不卡| 久久久国产一区二区| 久久青草综合色| 最近的中文字幕免费完整| 精品亚洲乱码少妇综合久久| 久热这里只有精品99| 久久久国产精品麻豆| 免费人妻精品一区二区三区视频| 亚洲欧洲国产日韩| 黑人欧美特级aaaaaa片| 亚洲四区av| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 女性生殖器流出的白浆| 18在线观看网站| 爱豆传媒免费全集在线观看| 久久午夜福利片| 美女视频免费永久观看网站| 亚洲第一青青草原| 日韩人妻精品一区2区三区| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 免费日韩欧美在线观看| 国产爽快片一区二区三区| 在线观看免费视频网站a站| 午夜福利在线免费观看网站| 汤姆久久久久久久影院中文字幕| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 成人二区视频| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| av免费观看日本| 国产人伦9x9x在线观看 | 叶爱在线成人免费视频播放| 青草久久国产| 有码 亚洲区| 欧美人与性动交α欧美软件| 久久久久久久大尺度免费视频| 精品一品国产午夜福利视频| 国产有黄有色有爽视频| 搡女人真爽免费视频火全软件| 久久热在线av| 亚洲四区av| 国产精品久久久av美女十八| 亚洲精品美女久久av网站| 天天操日日干夜夜撸| 美女国产视频在线观看| 久久韩国三级中文字幕| 飞空精品影院首页| 国产伦理片在线播放av一区| 日韩人妻精品一区2区三区| 午夜激情久久久久久久| 久久精品国产综合久久久| 黄网站色视频无遮挡免费观看| 欧美在线黄色| 亚洲国产精品一区二区三区在线| 国产成人91sexporn| 亚洲,一卡二卡三卡| 国产日韩欧美视频二区| 国产色婷婷99| 久久人妻熟女aⅴ| 免费不卡的大黄色大毛片视频在线观看| 一二三四中文在线观看免费高清| 婷婷成人精品国产| 十八禁网站网址无遮挡| 如日韩欧美国产精品一区二区三区| 欧美日韩视频高清一区二区三区二| 国产精品免费视频内射| 久久国产精品男人的天堂亚洲| 你懂的网址亚洲精品在线观看| 欧美bdsm另类| 精品少妇久久久久久888优播| 久久精品夜色国产| 国产欧美日韩综合在线一区二区| 久久影院123| 久久人人爽人人片av| 午夜福利一区二区在线看| 天堂中文最新版在线下载| 七月丁香在线播放| 日日摸夜夜添夜夜爱| 热re99久久精品国产66热6| av视频免费观看在线观看| 满18在线观看网站| 大片电影免费在线观看免费| 久久午夜福利片| 午夜精品国产一区二区电影| 亚洲在久久综合| 成人手机av| 校园人妻丝袜中文字幕| 亚洲三区欧美一区| 久久毛片免费看一区二区三区| 亚洲一码二码三码区别大吗| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| 美女午夜性视频免费| 欧美精品一区二区大全| 成人18禁高潮啪啪吃奶动态图| 人妻 亚洲 视频| 成年人免费黄色播放视频| 日本午夜av视频| 国产av国产精品国产| 在线观看www视频免费| 黄色一级大片看看| 日本午夜av视频| 国产精品久久久久久av不卡| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 精品久久久久久电影网| 一本大道久久a久久精品| 丁香六月天网| 免费女性裸体啪啪无遮挡网站| 欧美精品国产亚洲| 美女国产高潮福利片在线看| 午夜福利乱码中文字幕| 久久久久久久久久久久大奶| xxx大片免费视频| 热99国产精品久久久久久7| 少妇的逼水好多| 亚洲人成电影观看| 亚洲 欧美一区二区三区| 18禁观看日本| 国产成人精品在线电影| 亚洲av男天堂| 亚洲精品国产av成人精品| 精品视频人人做人人爽| 国产黄色免费在线视频| 好男人视频免费观看在线| 国产又爽黄色视频| 国产欧美日韩一区二区三区在线| 国产 精品1| 成年动漫av网址| 亚洲人成电影观看| 久久久久久久精品精品| 亚洲国产欧美日韩在线播放| 国产成人精品福利久久| 日韩不卡一区二区三区视频在线| 99九九在线精品视频| 一级爰片在线观看| 国产成人精品无人区| 男女国产视频网站| 精品国产超薄肉色丝袜足j| 亚洲成色77777| 亚洲一级一片aⅴ在线观看| 中文乱码字字幕精品一区二区三区| 欧美97在线视频| 亚洲精品视频女| 成人漫画全彩无遮挡| 久热久热在线精品观看| 不卡视频在线观看欧美| 国产麻豆69| 日韩免费高清中文字幕av| 国产免费又黄又爽又色| 国产精品 国内视频| 9色porny在线观看| www.自偷自拍.com| 亚洲av日韩在线播放| 欧美另类一区| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 校园人妻丝袜中文字幕| 亚洲av在线观看美女高潮| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区| a级毛片黄视频| 宅男免费午夜| 一区二区av电影网| 大陆偷拍与自拍| 欧美日韩成人在线一区二区| 日本爱情动作片www.在线观看| 中文字幕亚洲精品专区| 夫妻性生交免费视频一级片| 777米奇影视久久| 亚洲成人一二三区av| 亚洲成色77777| xxx大片免费视频| 欧美成人午夜精品| 久久久久国产网址| 色吧在线观看| 亚洲欧美一区二区三区国产| 国产成人一区二区在线| 国产欧美日韩综合在线一区二区| 精品卡一卡二卡四卡免费| 一个人免费看片子| freevideosex欧美| 欧美日韩视频高清一区二区三区二| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| av网站在线播放免费| 亚洲av综合色区一区| 五月开心婷婷网| 人人妻人人澡人人看| 9191精品国产免费久久| 新久久久久国产一级毛片| 九草在线视频观看| 一本色道久久久久久精品综合| 欧美日韩精品网址| 日本黄色日本黄色录像| 性少妇av在线| 久久人人爽人人片av| 女性生殖器流出的白浆| 亚洲一级一片aⅴ在线观看| 久久精品夜色国产| 黄色配什么色好看| xxx大片免费视频| 国产一级毛片在线| 国产熟女欧美一区二区| 成人影院久久| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线| 欧美精品国产亚洲| 国产无遮挡羞羞视频在线观看| 最近中文字幕2019免费版| 激情五月婷婷亚洲| 999久久久国产精品视频| 黄频高清免费视频| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合一区二区三区 | 亚洲国产日韩一区二区| 精品一区二区免费观看| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验| 看非洲黑人一级黄片| 亚洲av免费高清在线观看| 亚洲第一青青草原| 色婷婷av一区二区三区视频| 18在线观看网站| 久久精品久久精品一区二区三区| 国产野战对白在线观看| 亚洲精品日韩在线中文字幕| 久久韩国三级中文字幕| 久久这里有精品视频免费| 欧美精品一区二区免费开放| av电影中文网址| 精品人妻在线不人妻| 久久这里只有精品19| 欧美日韩精品网址| 欧美激情极品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲五月色婷婷综合| 亚洲av电影在线进入| 多毛熟女@视频| www.自偷自拍.com| 国产精品国产三级专区第一集| av国产久精品久网站免费入址| 美女午夜性视频免费| 日本午夜av视频| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看av| 一级黄片播放器| 成人亚洲精品一区在线观看| 一边亲一边摸免费视频| 晚上一个人看的免费电影| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 亚洲人成网站在线观看播放| 亚洲美女视频黄频| 少妇熟女欧美另类| 国产av码专区亚洲av| 国产日韩一区二区三区精品不卡| 高清在线视频一区二区三区| 大香蕉久久成人网| 婷婷色综合www| 99国产精品免费福利视频| 国产精品三级大全| 精品亚洲乱码少妇综合久久| 伊人亚洲综合成人网| 国产1区2区3区精品| 少妇的逼水好多| 久久久久视频综合| 久热久热在线精品观看| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 午夜福利乱码中文字幕| 一级毛片 在线播放| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| av国产久精品久网站免费入址| 秋霞伦理黄片| 色吧在线观看| 18禁动态无遮挡网站| 精品福利永久在线观看| 啦啦啦中文免费视频观看日本| 日韩一区二区视频免费看| 亚洲国产欧美在线一区| 999久久久国产精品视频| 18在线观看网站| 久久久久国产精品人妻一区二区| 亚洲人成77777在线视频| 在线观看美女被高潮喷水网站| 午夜福利视频在线观看免费| 婷婷色综合大香蕉| 午夜激情av网站| 国产av精品麻豆| 久久99热这里只频精品6学生| 日韩视频在线欧美| 日韩制服骚丝袜av| 在线观看www视频免费| 国产成人精品无人区| av国产久精品久网站免费入址| 国产毛片在线视频| 国产黄频视频在线观看| 欧美精品国产亚洲| 在线亚洲精品国产二区图片欧美| a级毛片在线看网站| 一本久久精品| 人人妻人人澡人人爽人人夜夜| 国产综合精华液| h视频一区二区三区| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 欧美精品一区二区免费开放| 一二三四在线观看免费中文在| 熟女电影av网| 卡戴珊不雅视频在线播放| 十八禁网站网址无遮挡| 国产日韩一区二区三区精品不卡| 国产淫语在线视频| 一本色道久久久久久精品综合| 丝瓜视频免费看黄片| 欧美人与性动交α欧美精品济南到 | 香蕉国产在线看| 亚洲欧美一区二区三区国产| 高清黄色对白视频在线免费看| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| 亚洲情色 制服丝袜| 久久毛片免费看一区二区三区| 一级片'在线观看视频| 国产一区有黄有色的免费视频| 国产极品粉嫩免费观看在线| 成人二区视频| 免费高清在线观看视频在线观看| 丝袜脚勾引网站| 大话2 男鬼变身卡| 性色avwww在线观看| 久久女婷五月综合色啪小说| 免费观看无遮挡的男女| 91精品三级在线观看| 激情五月婷婷亚洲| 久久久精品免费免费高清| 久久久国产一区二区| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡动漫免费视频| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 性色av一级| 麻豆av在线久日| 九色亚洲精品在线播放| av网站免费在线观看视频| 午夜激情av网站| 1024视频免费在线观看| 午夜激情av网站| 天天操日日干夜夜撸| a级毛片黄视频| 边亲边吃奶的免费视频| 久久午夜福利片| 久久久久国产网址| 看免费av毛片| 久久久久精品人妻al黑| 久久99热这里只频精品6学生| 国产精品国产av在线观看| √禁漫天堂资源中文www| 美女午夜性视频免费| 啦啦啦在线观看免费高清www| 免费黄频网站在线观看国产| 18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| 亚洲图色成人| 99热网站在线观看| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品国产精品| 极品人妻少妇av视频| 日日啪夜夜爽| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 国产97色在线日韩免费| 久久久久久久亚洲中文字幕| 爱豆传媒免费全集在线观看| 亚洲第一av免费看| xxx大片免费视频| 国产色婷婷99| 国产激情久久老熟女| 一区福利在线观看| 男女边吃奶边做爰视频| 在线观看免费视频网站a站| 色哟哟·www| 18+在线观看网站| 亚洲情色 制服丝袜| 岛国毛片在线播放| 国精品久久久久久国模美| 国产白丝娇喘喷水9色精品| 亚洲婷婷狠狠爱综合网| 一级毛片黄色毛片免费观看视频| 咕卡用的链子| 丝袜美腿诱惑在线| 人妻人人澡人人爽人人| 精品国产露脸久久av麻豆| 99久久精品国产国产毛片| 久久精品国产亚洲av高清一级| 热99国产精品久久久久久7| 伊人亚洲综合成人网| 国产日韩欧美视频二区| 中文欧美无线码| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 久久综合国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 国产高清国产精品国产三级| 韩国高清视频一区二区三区| 岛国毛片在线播放| 夫妻午夜视频| 18禁动态无遮挡网站| 欧美激情高清一区二区三区 | 日韩三级伦理在线观看| 久久久久久久亚洲中文字幕| 午夜激情久久久久久久| 赤兔流量卡办理| 在线观看美女被高潮喷水网站| 亚洲久久久国产精品| 午夜福利视频精品| 国产高清不卡午夜福利| 欧美 亚洲 国产 日韩一| 国产成人精品久久二区二区91 | 青青草视频在线视频观看| 亚洲精品美女久久av网站| 卡戴珊不雅视频在线播放| 中文字幕另类日韩欧美亚洲嫩草| 在现免费观看毛片| 日韩人妻精品一区2区三区| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 久久久久久久国产电影| 性少妇av在线| 日韩电影二区| 制服人妻中文乱码| 岛国毛片在线播放| videossex国产| 寂寞人妻少妇视频99o| 少妇 在线观看| 日本色播在线视频| 亚洲av在线观看美女高潮| 国产精品人妻久久久影院| 欧美变态另类bdsm刘玥| 观看美女的网站| 欧美最新免费一区二区三区| 老司机影院成人| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久av美女十八| 91久久精品国产一区二区三区| 1024香蕉在线观看| 啦啦啦在线免费观看视频4|