• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The First Hybrid Wells-Dawson-type Polytungstate Monosupported by Cd-coordination Complex via Di-bridging O-atom①

    2014-12-17 10:30:06CHENWuHuaZHANGZhuSenHUZhiBiaoMIJinXiao
    結(jié)構(gòu)化學 2014年10期

    CHEN Wu-Hua ZHANG Zhu-Sen HU Zhi-Biao MI Jin-Xiao

    ?

    The First Hybrid Wells-Dawson-type Polytungstate Monosupported by Cd-coordination Complex via Di-bridging O-atom①

    CHEN Wu-Huaa, b, cZHANG Zhu-SencHU Zhi-BiaocMI Jin-Xiaoa, b②

    a(361005)b(361005)c(364000)

    Polyoxometalates (POMs) with Cd-coordination complexes acting as supporting units are rarely reported. The linkage of the supporting units with inorganic building block (polyanion) is generally established on terminal O-atoms, but scarcely via bridging O-atoms. By introducing liquid small organic molecule (pyridine, C5NH5) as assistant “structure-directing agent”, we obtaineda novel organic-inorganic hybrid polytungstate, (Hpy)4[Cd(phen)2(P2W18O62)]·H2O (1,≈ 3, py = pyridine, phen = 1,10-phenanthroline), under hydrothermal conditions. The single-crystal X-ray diffraction analysis shows that 1 is the first compound containing an asymmetric heteropolyanion, [Cd(phen)2(P2W18O62)]4–, a Wells-Dawson-type polyanion monosupported by Cd-coordination complex via di-bridging O-atoms.

    hybrid compound, Wells-Dawson-type, Cd-coordination complex, monosupported structure, bi-bridging O-atom

    1 INTRODUCTION

    Nowadays, among metal-organic frameworks (MOFs), a kind of supported/capped polyoxometa- lates (POMs) also attracts much interest due to their potential to form similar 0~3 dimensional POM----POM (= transition metal,= organic ligand) frameworks via metal nodes[1–4]. The syner- gistic effect among organic units, inorganic building blocks (polyanions), and metals in the POM----POM framework may provide advanced POM- based materials with additional properties besides the known characteristics of POMs[5–10]. For instan- ces, Wang. reported two Cu-supported hybrid compounds, KH2[(D-C5H8NO2)4(H2O)Cu3][W12O40]·5H2O (D-1) and KH2[(L-C5H8NO2)4(H2O)Cu3][W12O40]·5H2O (L-1)[11], possessing both POM and chiral characteristics. Rodriguez-Albelo. repor- ted a Zn-capped compound, [NBu4]3[PMoV8MoVI4O36(OH)4Zn4(BDC)2]·2H2O[12], possessing both POM and zeolite properties. Therein, the transition metals () played pivotal roles in connecting inorganic building blocks with organic ligands, forming 0~3 dimensional spatial structures. To date, more and more analogous compounds have been synthesized and reported. As for supported POMs, Cu-supported [Cu(I)(BBTZ)][Cu(I)(HBBTZ)2][SiMo12O40]·2.5H2O[13],Ni-supported K[PW12O40[Ni(1,10-phen)2(OH)]2]·2H2O[14],Ag-sup-ported H0.5[{Ag3L2(DMF)3}{Ag2L(DMF)1.5}{Ag0.5(DMF)(H2O)0.25}(P2Mo18O62)]·1.25H2O[15]and Co- supported [Co2(H2O)2(btb)4(HPMoVI10MoV2O40)][16]and [Co2(btx)5(HPMoVI10MoV2O40)][16]have been successfully synthesized and investigated. However, Cd-supported POMs have been rarely reported obviously. To the best of our knowledge, only about twenty-odd Cd-supported POMs have been reported and they can be divided into the following three classes: i) Nine compounds[17-23]derived from the well-known {V18O42} cluster shell, such as [Cd(dien)]2[Cd(dien)(H2O)]2[As4V16O42(H2O)]·2H2O[17], H3[L/D-Cd(Cl)(H2O)(phen)2][{L/D-Cd(H2O)-(phen)2}2{V16O38(Cl)}]·3.5H2O[18], and H2[Cd(bipy)3][Cd(H2O)(bipy)2]{[Cd(H2O)(bipy)2]-(V16O38Cl)}·1.5H2O[19]reported by Yang and co- workers, Peng and co-workers, and Wang and co-workers., respectively. ii) Seven com- pounds derived from another famous sandwich-type [(Mo6P4)2] dimmer (= Cd) like [Cd3(4,4?- Hbpy)2(4,4?-bpy)2(H2O)8][Cd(H2PO4)2(HPO4)4-(PO4)2(MoO2)12(OH)6]·7H2O[24], (Hdien)2{[Cd(H2O)- (Hdien)]2Cd[(H2PO4)(HPO4)2(PO4)(MoO2)6(OH)3]2}·8H2O[25], and [Cd2.5(btp)2(H2O)3][Cd0.5(PO4)-(HPO4)3(MoO2)6(OH)3]·2H2O[26]were reported by Wangand co-workers., Xia and co-workers., and Tian and co-workers. correspondingly. iii) Five compounds[27-31]derived from the classical Keggin-type inorganic building block, [(12O42)2] (= Mo/W,= P/Si/B). For example, [(BW12O40)Cd(2,2-bpy)2(H2O)][Cd(2,2-bpy)3]1.5·0.5H2O[27]and [Cd(Htrz)3]2[SiW12O40]·2H2O[28]were reported by Xuand co-workers, and Qin and co-workers, respectively. Among the above- mentioned Cd-supported POMs, only two examples are polytungstate and no Cd-supported Wells- Dawson-type POM has been reported previously. Moreover, all the linkages of polyanions and Cd-coordination complexes in the above-mentioned compounds are established on terminal O-atoms (Ot), i.e., none of them are linked via bridging O-atoms (Ob).

    In addition, design and synthesis of a new suppor- ted POM is a challenging task because it is quite difficult to control the metal nodes in connecting both organic ligands and inorganic building blocks. Many subtle and unexpected factors such as tem- perature, pH, solvent and counterion may signifi- cantly affect the self-assembly of these POMs[25]. In particular, the introduction of diverse organic com- pounds in synthesizing POMs may lead to various structural POM-based products[16]. Sometimes, liquid small organic molecules are good “structure- directing agents” for their excellent solubility, less steric hindrance, flexible coordination, good H-bond-forming ability, charge balance,. Based on our ongoing study on related materials[32–35], by introducing liquid small organic molecules (pyridine (py)), tuning pH systematically and optimizing reac- tion conditions, we fortunately obtained 1 (Fig. 1) in a one-pot reaction under mild hydrothermal condi- tions. The single-crystal X-ray diffraction analysis shows that compound 1 is the first Wells-Dawson- type polytungstate monosupported by Cd-coor- dination complex via bi-bridging O atoms. Com- pound 1 is decorated by mixed organic units and represents an interesting latticed steric configuration (Fig. 2). These results were further confirmed by powder X-ray diffraction (PXRD), elemental analy- ses, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The thermal properties of compound 1 were also investigated by thermogravimetric analysis (TGA).

    2 EXPERIMENTAL

    2.1 General procedures

    All starting materials were purchased commer- cially and used without further purification. The elemental analyses were carried out using a Perkin- Elmer 2400 elemental analyzer (for C, H and N). The EDS spectrum was recorded using afield-emission scanning electron microscope (FESEM) (Fig. 3a). Powder XRD data were collec- ted using a Philips X’Pert-PRO X-ray diffractometer equipped with Cu-radiation (= 1.54178 ?) (Fig. 3b). The FT-IR spectrum (KBr pellets) was recorded using a Nicolet Impact 410 FTIR in the range of 400~4000 cm–1(Fig. 3c). FT-Raman spectrum was measured with a BRUKER 110·S-1spectrometer (Fig. 3d). XPS analysis was performed using a Physical Electronicsquantum 2000scanning ESCA microprobe equipped with a standard focused mono- chromatic Al(1486.7 eV) X-ray source (Fig. 4a~c).Both IR and Raman spectra were recorded with a spectral resolution of 2 cm–1. TGA was per- formed in N2atmosphere in the temperature range of 30~980 ℃ using a TG 209 F1 thermogravimetric analyzer at a heating rate of 10 ℃·min–1(Fig. 4d).

    Fig. 1. (a) Asymmetric monosupported [Cd(phen)2(P2W18O62)]4–polyanion; (b) Configuration of four protonated Hpy molecules; (c) View of the fundamental building unitsin the asymmetric unit of (Hpy)4[Cd(phen)2(P2W18O62)]·H2O (n ≈ 3) (1)

    Fig. 2. (a) Crystal structure of compound 1viewed along theaxis and the display of H-bonds (dotted lines);(b) a simulated latticed configuration of compound 1 viewed along theaxis;(c) “Chair” configuration composed of six [Cd(phen)2]2+units

    Fig. 3. (a) EDS spectrum of compound 1; (b)Experimental and simulated powder X-ray diffraction patterns of compound 1; (c) FTIR spectrum of compound 1; (d) Raman spectrum of compound 1

    2.2 Synthesis and characterization

    A mixture of Na2WO4·2H2O (1.61 g, 4.88 mmol), Cd(NO3)2·4H2O (0.23 g, 0.93 mmol), H3PO4(1.8 mL, 85 %, 26.31 mmol), 1,10-phenanthroline (0.13 g, 0.72 mmol), pyridine (1 mL, 12.42 mmol), and H2O (15 mL, 833.33 mmol) in a molar ratio of~7:1.3:36:1:18:1200 was prepared and sealed in a 30 mL Teflon-lined stainless steel autoclave with~75% filling. Then, the resulting gel with a pH value of about 5.5 was heated to and held at 160 ℃ in an oven for 4 d. Finally, it was cooled to room temperature at a rate of10 ℃·h–1. The resulting products, containing a mixture of powder and green crystals, were recovered by filtration, washed with distilled water and dried in air at ambient tempera- ture (45% yield based on W). The powder XRD pattern of the manually selected crystals together with the simulated XRD pattern obtained from the single-crystal structure analysis are shown in Fig. 3b. The diffraction peaks fit well with the simulated ones in terms of peak position, indicating the purity of the sample used and a proper crystal-structure analysis given below. Anal. Calcd. (%) for compound 1: W, 51.74; Ag, 6.76; P, 0.97; H, 1.19; N, 3.94; C, 19.89; O, 15.51. Found (%): H, 1.33; N, 3.76; C, 20.01.

    It is worth mentioning that the acquirement of compound 1 is asomewhat tricky andlucky event.Above all, the order of adding reactants is a critical factor for synthesizing compound 1. The reactants, Cd(NO3)2·4H2O, phen and distilled water should be firstly mixed under slowly stirring for~120 min at constant temperature of~60 ℃. This key procedure ensures the effective coordination of phen with Cd2+ions. Next, Na2WO4and py were added in by vigorous stirring for 30 min, whereas H3PO4should be added in the last step without stirring. Otherwise, H3PO4would react with phen and py directly, resulting in a large amount of light green gel im- purity instead of compound 1. Note that the reaction is clearly pH-dependent. The pH of the reaction system was adjusted by controlling the amount of H3PO4and nitrogen-containing organic base. The crystals of compound 1 were obtained only at pH = 5~7. Additionally, the pressure and temperature of the reaction system may be the other two critical factors for successfully obtaining compound 1. This experiment was conducted in a 23 mL (instead of 30 mL) Teflon-lined stainless-steel autoclave strictly following the same other conditions, mainly affor- ding grey crystals ((Hpy)6(P2W18O62) (2)). When the reaction temperature was fixed at 190 ℃ (instead of 160 ℃) under similar reaction conditions (namely, 23 mL Teflon-lined stainless-steel auto- clave), mainly colorless crystals of [Cd(phen)3](P2W18O62) (3) were obtained. The structures of compounds 2 and 3, containing only one of the two organic components, were also con- firmed by single-crystal X-ray diffraction analyses.

    2.3 Single-crystal structure determination

    A suitable single crystal of the synthesized com- pound was carefully selected under an optical micro- scope and glued to a thin glass fiber with epoxy resin. Single-crystal X-ray diffraction data were collected using a Bruker Smart APEX II image-plate area detector equipped with a graphite-mono- chromatic Mo(= 0.71073 ?) radiation in anscan mode (using oscillation frames) in the range of= 3.31~27.52° at room temperature. A total of 149171 independent reflections were collec- ted in the ranges of –14≤≤11, –27≤≤23 and –36≤≤34, of which 12456 observed reflections with2()were used in the structure determina- tion and refinement. The structure was solved by direct methods and refined on2by full-matrix least-squares method using the SHELXS-97 and SHELXL-97 programs[36, 37]. The non-hydrogen atoms (except O(57), C(9), C(22) and C(40)) were refined anisotropically, and the H atoms isotropically. All the H atoms were generated geometrically. The final cycle of refinement shows that compound 1 crystallizesin the orthorhombic system with= 12.116(2),= 23.341(5),= 30.546(2) ?,= 2863.2(12) ?3, space group212121and= 4 at 173(2) K. The final full-matrix least-squares refine- ment converged to= 0.0739,= 0.1348 (= 1/[2(F2) + (0.0426)2+ 83.616], where= (F2+ 2F2)/3),= 1.068, (Δ)max= 3.011, (Δ)mix= –3.593 e/?3and (Δ)max= 0.006. Selected bond lengths and bond angles of compound 1 are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Compound 1

    3 RESULTS AND DISCUSSION

    3.1 Structure description

    The single-crystal X-ray diffraction analysis shows that compound 1 crystallizes in the orthor- hombic space group212121. The asymmetric unit of compound 1 (Fig. 1) consists of one asymmetric monosupported polyanion, [Cd(phen)2(P2W18O62)]4–(Fig. 1a), four discrete protonated pyridine cations ([C5NH6]+) (Fig. 1b) and approximately three H2O molecules.

    The classical Wells-Dawson-type polyoxoanion, [P2W18O62]6–, has point group symmetry3hand contains two identical [-PW9O31]3–units, which can be derived from the well-known Keggin-structural [-PW12O40]6–anions by removing a set of three corner-sharing WO6octahedra. All the W centers exhibit a {WO6} octahedral environment. The W–O distances are 1.67(2)~1.80(2) ? for the terminal O atoms (W–Ot), 1.83(2)~2.08(2) ? for the bi-brid- ging O atoms (W–Ob), and 2.32(2)~2.46(2) ? for the center O atoms (i.e., the O atoms bonding to two/three W atoms and one P atom, W–Oc). The P–O bond lengths vary between 1.53(2)and 1.66(2) ?, while the O–P–O bond angles are in the range of 103.7(12)~115.9(13)°. All the above bond lengths and bond angles fall in the normal ranges. The bond valence sum calculations on the tungsten sites affor- ded the values of 5.55~6.16 for all the W atoms with an average value of 5.80[38]. This indicates that the 18 independent W atoms are in the oxidation state of +6.

    As shown in Fig. 1a, the asymmetric monosup- ported polyanion, [Cd(phen)2(P2W18O62)]4–, is the most prominent feature of compound 1. This is the first case in which Cd-coordination complexes, [Cd(phen)2]2+, are successfully linked to Wells- Dawson-type polyanions, [P2W18O62]6–, by a bi-bri- dging O atom (i.e., O(37)). The bond distance of W–O(37) at 1.92(2) ? is somewhat longer than those of the other 11 di-bridging “belt” O atoms. This may result from the extra linking of O(37) with the Cd-coordination complex. Two phen ligands crosswise coordinate with a Cd2+ion, and their dihedral angle is 125.6°, with the Cd–O bond almost equally dividing it. The five-coordinated Cd2+ion (connecting with O(37) and four N atoms from two phen ligands) shows a slightly distorted quartet cone. The Cd–O distance at 2.45(2) ? and Cd–N distances from 1.99(3)to2.15(3) ? are within the normal range. Four protonated pyridine molecules play very important roles of organic compensating cations and “structure-directing agents” in forming the asym- metric polyanion, [Cd(phen)2(P2W18O62)]4–. Their tetrahedral configuration (Fig. 1b) surrounds almost half of the Wells-Dawson-type polyanions, [P2W18O62]6–(Fig. 1c). Together by taking the [Cd(phen)2]2+fragment (in the other half of poly- anions) into account, this type of distribution well neutralizes the negative charge of [P2W18O62]6–and stabilizes the compound, well conforming the prin- ciple of the lowest energy.

    From a topological point of view, the structure of compound 1 represents a latticed configuration among Cd-coordination complexes and polyanions (Fig. 2a and 2b). Viewed along theaxis, six [Cd(phen)2]2+fragments (roughly surrounding two [P2W18O62]6–) represent a side-viewed “chair-form” configuration (Fig. 2c). The H2O molecules and organic compensating cations (protonated pyridine, [C5NH6]+) also act as important joint parts to stabilize the crystal packing and form an infinite 3D network via electrostatic attractions and abundant H-bonds. Fig. 2a (dotted lines) shows a large num- ber of intra- and intermolecular H-bonds in the crystal packing of compound 1. Various H-bonding parameters with symmetry code are listed in Table 2.

    Table 2. Hydrogen Bond Lengths (?) and Bond Angles (°)

    Symmetry codes: #1: ?+1,+1/2, ?+3/2; #2: ?+1/2, ?+1,?1/2; #3: ?,+1/2, ?+3/2; #4:?1,,; #5:+1/2, ?+3/2, ?+2; #6: ?+3/2, ?+1,+1/2; #7:?1/2, ?+1/2, ?+2; #8:+1,,

    3.2 FTIR and Raman spectra

    The FTIR spectrum (Fig. 3c) of compound 1 shows the characteristic bands between 1000 and 700 cm–1, indicating that the polyoxoanion has a Wells-Dawson structure[39]. The band at~958 cm–1can be attributed to the characteristic stretching vibrations of W=Otbond, and those at~910 and 794 cm–1to the asymmetric stretching vibration of W–Ob–W and W–Oc–W. The band at 1087 cm–1results from the vibrations of P–O bond, and those at 1603, 1521, and 1426 cm–1are due to the bending vibrations of 1,10-phenanthroline and pyridine molecules. Moreover, broad bands at~3520 and 3070 cm–1can be assigned to the stretching vibrations of O–H, N–H, and C–H bonds of the two types of protonated organonitrogen units and small inorganic molecule, H2O.

    The Raman spectrum (Fig. 3d) of compound 1 shows the presence of a strong peak at 456 cm–1due to the vibration of the terminal W=O groups. The relative weak band at~1640 cm–1can be attributed to the bending vibrations of organic units and H2O molecules.

    3.3 XPS spectroscopy

    To further demonstrate the ingredient and elemental valence states, the XPS spectrum of compound 1 was also recorded. The two peaks at 35.61 and 37.67 eV shown in Fig. 4a can be attributed to the W4region, W6+(47/2) and W6+(45/2)[40], respectively; those at 404.89 and 411.57 eV (Fig. 4b) are assigned to Cd2+(35/2) and Cd2+(33/2), respectively; while that at 133.57 eV shown in Fig. 4c is owing to P5+(23/2)[40]. The XPS spectral analyses are consistent with the abovemen- tioned composition of compound 1.

    Fig. 4. (a) XPS spectrum for the Mo6+(3d5/2) and Mo6+(3d3/2) states of compound 1; (b) XPS spectrum for the Cd2+(2d3/2) and Cd2+(2d3/2) states of compound 1; (c) XPS spectrum for the P5+(2p3/2) state of compound 1; (d) TGA curve of compound 1 in N2atmosphere

    3.4 Thermal properties

    The TGA of compound 1 (Hpy)4[Cd(phen)2]-(P2W18O62)·H2O((C5NH6)4[Cd(C12N2H8)2]-(P2W18O62)·H2O,≈ 3) was performed in N2atmosphere in the temperature range of 30~980 ℃. As shown in Fig. 4d, the TGA curves in N2atmos- phere exhibit three steps of weight loss for compound 1. The first weight loss (1.63%) at 115 ℃can be attributed to the release of crystal water and surface-adsorbed H2O molecules. The continued second weight loss (5.29%. Calcd 6.14%) for the sample in the 120~635 ℃ range result from the release of Hpy+([C5NH6]+) cations. The third and last weight loss (8.58%. Calcd. 9.06%) for the sample in the range of 635~949 ℃ is due to the decomposition and release of [Cd(phen)2]2+units. The total weight loss (15.50%) is also consistent with the calculated value (Calcd. 16.23%). The multistep release of organic ingre- dients proves that the phen and py molecules play different roles in compound 1. These results well support the chemical composition of compound 1 from the above crystal structure analyses.

    4 CONCLUSION

    In summary, we report the synthesis and charac- terization of a novel hybrid POM, (Hpy)4[Cd(phen)2](P2W18O62)·H2O (1,≈ 3), containing Wells- Dawson-type polyanions, [P2W18O62]6–, which asymmetrically monosupports Cd-coordination com- plex by bi-bridging O atoms. The critical issues of the synthetic procedures were elaborated, including the species of reagents, pH, temperature, pressure, and particularly the addition sequence of reactants. Moreover, the liquid small organic molecule, py, plays a crucial role of “structure-directing agent” in affording asymmetric monosupported polyanions, [Cd(phen)2(P2W18O62)]4-. We believe that the pre- sent work will be meaningful in expanding the study of other new POM-based materials.

    (1) Lisnard, L.; Dolbecq, A.; Mialane, P.; Marrot, J.; Codjovi, E.;Sécheresse, F. Molecular and multidimensional polyoxotungstates functionalized by {Cu(bpy)}2+groups.. 2005, 3913–3920.

    (2) Hou, G. F.; Wang, X. D.; Yu, Y. H. J.; Gao, S.; Wen, B.; Yan, P. F. A new topology constructed from an octamolybdate and metallomacrocycle coordination complex.. 2013, 15, 249–251.

    (3) Bakri, R.; Booth, A.; Harle, G.; Middleton, P. S.; Wills, C.; Clegg, W.; Harrington, R. W.; Errington, R. J. Rational addition of capping groups to the phosphomolybdate keggin anion [PMo12O40]3-by mild, non-aqueous reductive aggregation.2012, 48, 2779–2781.

    (4) Han, Q.; Ma, P.; Zhao, J.; Wang, J.; Niu, J. A novel 1D tungstoarsenate with mixed organic ligands assembled by hexa-Cu sandwiched keggin units and dinuclear copper-oxalate complexes.. 2011, 14, 767–770.

    (5) Yan, D.; Chen, Q.; Xu, Y.; Sun, Q.; Zhu, D.; Song, Y.; Elangovan, S. P. Hydrothermal synthesis, structure characterizations and catalytic property of a zigzag chain structural cluster compound built on the novel tetra-capped and centered by NiII.. 2011, 14, 1314–1317.

    (6) Xu, Y.; Xu, J. Q.; Yang, G. Y.; Wang, T. G.; Xing, Y.; Ling, Y. H.; Jia, H. Q. Synthesis and structure of [NH4]4H[PMo8VIV4VV2O42]·24H2O.1998, 17, 2441–2445.

    (7) Duan, L. M.; Pan, C. L.; Xu, J. Q.; Cui, X. B.; Xie, F. T.; Wang, T. G. Two- and three-dimensional frameworks constructed from bicapped keggin clusters.. 2003, 14, 2578–2581.

    (8) Liu, Y. B.; Cui, X. B.; Xu, J. Q.; Lu, Y. K.; Liu, J.; Zhang, Q. B.; Zhang, T. G. Hydrothermal synthesis and characterization of three one-dimensional chain materials formed by reduced tetra-capped Keggin polyoxoanions and [(en)2]2+(= Cu, Co and Ni) cations.. 2006, 825, 45–52.

    (9) Yang, W.; Lu, C.; Zhan, X.; Zhuang, H. Hydrothermal synthesis of the first vanadomolybdenum polyoxocation with a “metal-bonded” spherical framework.. 2002, 41, 4621–4623.

    (10) Yu, H. H.; Cui, X. B.; Cui, J. W.; Kong, L.; Duan, W. J.; Xu, J. Q.; Wang, T. G. Hydrothermal synthesis and structural characterization of the first mixed molybdenum-tungsten capped-keggin polyoxometal complex: {[Co(dien)]4[(AsVO4)MoV8WVI4O33(μ2-OH)3]}·2H2O.. 2008, 2, 195–197.

    (11) An, H. Y.; Wang, E. B.; Xiao, D. R.; Li, Y. G.; Su, Z. M.; Xu, L. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes.. 2006, 45, 904–908.

    (12) Dolbecq, A.; Mialane, P.; Lisnard, L.; Marrot, J.; Sécheresse, F. Hybrid organic-inorganic 1D and 2D frameworks with ε-keggin polyoxomolybdates as building blocks.2003, 9, 2914–2920.

    (13) Hao, X. L.; Ma, Y. Y.; Zhang, C.; Wang, Q.; Cheng, X.; Wang, Y. H.; Li, Y. G.; Wang, E. B. Assembly of new organic-inorganic hybrids based on copper-bis(trizole) complexes and keggin-type polyoxometalates with different negative charges.. 2012, 14, 6573–6580.

    (14) Cui, J. W.; Cui, X. B.; Yu, H. H.; Xu, J. Q.; Yi, Z. H.; Duan, W. J. Hydrothermal syntheses and characterizations of two novel heteropolytungstate supported coordination compounds.. 2008, 361, 2641–2647.

    (15) Dang, D. B.; An, B.; Bai, Y.; Niu, J. Y. Assembly of a phospho-molybdic wells-dawson-based silver coordination polymer derived from keggin polyoxoanion cluster.. 2012, 41, 13856–13861.

    (16) Wang, X. L.; Zhao, D.; Tian, A. X.; Liu, G. C.; Lin, H. Y.; Wang, Y. F.; Gao, Q.; Liu, X. J.; Li, N. Self-assembly of two keggin-based 3D and 2D complexes with cobalt(II)-bis(trizole) motifs: influenced by the spacer length of the ligands.2012, 388, 114–119.

    (17) Zhou, J.; Zheng, S. T.; Fang, W. H.; Yang, G. Y. A new 2-D network containing {As4V16O42(H2O)} cluster units.. 2009, 34, 5075–5078.

    (18) Dong, B.; Peng, J.; Tian, A.; Sha, J.; Li, L.; Liu, H. Two new inorganic-organic hybrid single pendant hexadecavanadate derivatives with bifunctional electrocatalytic activities.2007, 52, 3804–3812.

    (19) Chen, Y.; Peng, J.; Yu, H.; Han, Z.; Gu, X.; Shi, Z.; Wang, E.; Hu, N. A supramolecular assembly of chiral L/D-[Cd(Cl)(H2O)(phen)2]+and L,L/D,D-dinuclear Cd complex coordinated by phen and {V16O38(Cl)} cluster.2005, 358, 403–408.

    (20) Zheng, S. T.; Zhang, J.; Xu, J. Q.; Yang, G. Y. Hybrid inorganic-organic 1-D and 2-D frameworks with {As8V14O42} clusters as buliding blocks.. 2005, 178, 3740–3746.

    (21) Zheng, S. T.; Zhang, J.; Yang, G. Y. Hydrothermal syntheses and crystal structures of two novel hybrid materials based on secondary transition-metal-incorporated polyoxovanadate cluster backbones: [Cd(dien)2]2[(dien)CdAs8V13O41(H2O)]·4H2O and [Cd(en)2]2[(en)2Cd2As8V12O40].. 2005, 44, 2426–2430.

    (22) Zhou, J.; Zhang, J.; Fang, W. H.; Yang, G. Y. A series of vanadogermanates from 1D chain to 3D framework built by Ge-V-O clusters and transition-metal-complex bridges.. 2010, 16, 13253–13261.

    (23) Zhao, D.; Zheng, S. T.; Yang, G. Y. The first di-cadmium-substituted vanadoarsenate derived from-{As8V14O42} shell.2008, 181, 3071–3077.

    (24) Ma, Y.; Li, Y.; Wang, E.; Lu, Y.; Wang, X.; Xu, X. Self-assembly of four new extended architectures based on reduced polyoxometalate clusters and cadmium complexes.. 2006, 179, 2367–2375.

    (25) Zhang, X.; Yi, Z.; Zhao, L.; Chen, Q.; Wang, X.; Xu, J.; Xia, W.; Yang, C. pH-dependent assembly of a series of inorganic-organic hybrid molybdenum(V) phosphate.. 2010, 12, 595–603.

    (26) Wang, X. L.; Cao, J. J.; Liu, G. C.; Lin, H. Y.; Tian, A. X. Ligands directed versatile cadmium-bis(triazole) metal-organic fragments to generate three new two dimensional complexes based on polymolybdenum phosphate.2013, 402, 6–11.

    (27) Wang, Y.; Xiao, L. N.; Ding, H.; Wu, F. Q.; Ye, L.; Wang, T. G.; Shi, S. Y.; Cui, X. B.; Xu, J. Q.; Zheng, D. F. Hydrothermal synthesis and crystal structure of the first keggin polyoxometalate supported cadmium coordination complex.. 2010, 13, 1184–1186.

    (28) Jiao, Y. Q.; Qin, C.; Sun, C. Y.; Shao, K. Z.; Liu, P. J.; Huang, P.; Zhou, K.; Su, Z. M. Hydrothermal synthesis and structural characterization of a new inorganic-organic hybrid compound with photocatalytic activity based on keggin-type polyanion and cadmium-1,2,4-trizolate units.. 2012, 20, 273–276.

    (29) Tian, A.; Ying, J.; Wang, X.; Peng, J. A new two-fold interpenetrating POM-baseeed structure modified by CdIIand flexible bis(trizole) ligand.. 2011, 14, 118–121.

    (30) Ying, J.; Liu, X. J.; Tian, A. X.; Wang, X. L. Assembly of a new cadmium(II)-bis(triazole) coordination polymer templated by keggin polyoxometalate.. 2011, 637, 613–617.

    (31) Dai, L.; You, W.; Wang, E.; Wang, X.; Han, X.; Li, W.; Fang, Y. 2D rhombus-grid networks constructed from vanadiun-substituted keggin-type polyoxomolybdophosphates and Cd/Zn complex fragments.2009, 362, 4967–4971.

    (32) Hu, Z. B.; Qiu, Z. H.; Chen, W. H. Synthesis, crystal structure and characterization of a mixed-valence keggin-structural 12-molybdophosphoric acid compound: NH4(C4N2H12(C2N2H10)2[MoV4MoVI8PO40]·2H2O..2013, 24, 1193–1204.

    (33) Chen, W. H.; Hu, Z. B.; Zhang, Z. S.; Qiu, Z. H.; Zhou, Y. L.; Zhao, J. H.; Yuan, Q. L.; Xiang, X. Y.; Wang, X. M. Hydrothermal synthesis and crystal structure of a novel polymolybdate with two kinds of organonitrogen ligands.. 2011, 30, 1178–1182.

    (34) Chen, W. H.; Xiang, Y.; Chen, Z. F.; Wu, Q. M.; Zeng, Q. X. Bis(4,4?-bipyridinium)bis(5-hydrogenphosphate)-pentakis(2-oxido)- decaoxidopentamolybdate dihydrate.2007, 63, M2245–U1960.

    (35) Hu, Z. B.; Chen, W. H.; Mi, J. X. A novel mixed-valence and capped-keggin structural polyoxometal complex: {[Co(dien)]4[(PO4)MoV8(WVI0.56MoVI0.44)O33(OH)3]}·H2O (≈ 1).. 2013, 32, 1653–1662.

    (36) Sheldrick, G. M.. University of G?ttingen, G?ttingen, Germany 1990.

    (37) Sheldrick, G. M.. University of G?ttingen, G?ttingen, Germany 1997.

    (38) Brown, I. D.; keeffe, M. O ?.; Navrotsky, A. (eds.)., Vol. 2, Academic Press, New York 1981.

    (39) Tian, A.; Han, Z.; Peng, J.; Dong, B.; Sha, J.; Li, B. Two novel hybrid inorganic-organic compounds based on wells-dawson polyanion and transition metal (TM) complex with one-dimensional structure: hydrothermal synthesis and characterization.. 2007, 832, 117–123.

    (40) Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E.. Perkin Elmer Corp. MI.: 1978.

    23 May 2014;

    27 June 2014 (CCDC 1003304)

    ① This work was supported by the Foundation of Education Department of Fujian Province (Nos. JB12199 and JA11245), and the National Natural Science Foundation of China (Nos. 21233004 and 40972035)

    . Phone: +86-13696905136, Fax: +86-592-2183937, E-mail: jxmi@xmu.edu.cn

    人人妻人人澡人人爽人人夜夜| 亚洲精品色激情综合| 黄色毛片三级朝国网站| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 在线天堂最新版资源| 26uuu在线亚洲综合色| 欧美精品av麻豆av| 成年人午夜在线观看视频| 自线自在国产av| 亚洲国产日韩一区二区| 婷婷色麻豆天堂久久| 成人国语在线视频| 99久久精品国产国产毛片| 黑人巨大精品欧美一区二区蜜桃 | 日日撸夜夜添| 一级毛片我不卡| 内地一区二区视频在线| 免费高清在线观看日韩| 女人精品久久久久毛片| 久久午夜福利片| 午夜精品国产一区二区电影| 看十八女毛片水多多多| 视频区图区小说| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 日本91视频免费播放| 岛国毛片在线播放| 国产一区二区在线观看av| 久久精品久久精品一区二区三区| 在线亚洲精品国产二区图片欧美| 女性生殖器流出的白浆| 桃花免费在线播放| 老司机亚洲免费影院| 老女人水多毛片| 90打野战视频偷拍视频| 十分钟在线观看高清视频www| 亚洲高清免费不卡视频| 免费黄频网站在线观看国产| 成人亚洲欧美一区二区av| 久久精品国产自在天天线| 黄色怎么调成土黄色| 少妇熟女欧美另类| a级片在线免费高清观看视频| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| av一本久久久久| 97人妻天天添夜夜摸| 日韩精品免费视频一区二区三区 | 丝袜美足系列| 国产亚洲精品第一综合不卡 | 亚洲欧美一区二区三区国产| 亚洲,欧美精品.| 日产精品乱码卡一卡2卡三| 成人影院久久| 久久人人爽人人片av| 久久毛片免费看一区二区三区| 伊人亚洲综合成人网| 免费不卡的大黄色大毛片视频在线观看| 日韩欧美精品免费久久| 亚洲国产看品久久| 在线观看免费日韩欧美大片| 十分钟在线观看高清视频www| 国产一区二区在线观看av| 18+在线观看网站| 深夜精品福利| 波野结衣二区三区在线| 在线看a的网站| 日本与韩国留学比较| 一本—道久久a久久精品蜜桃钙片| 久久ye,这里只有精品| 一级毛片我不卡| 久久精品久久久久久久性| 午夜影院在线不卡| 欧美激情国产日韩精品一区| 免费观看在线日韩| 一区在线观看完整版| 亚洲内射少妇av| 美女福利国产在线| 99热6这里只有精品| 久久精品国产鲁丝片午夜精品| 午夜免费观看性视频| 夫妻性生交免费视频一级片| 婷婷色麻豆天堂久久| 两个人看的免费小视频| 日韩制服丝袜自拍偷拍| 国产成人精品在线电影| 一边亲一边摸免费视频| 麻豆精品久久久久久蜜桃| 午夜福利,免费看| 制服诱惑二区| 最后的刺客免费高清国语| 国产亚洲精品第一综合不卡 | 精品国产国语对白av| 在线观看人妻少妇| 一级,二级,三级黄色视频| 亚洲精品国产色婷婷电影| 麻豆精品久久久久久蜜桃| 精品少妇黑人巨大在线播放| 亚洲美女视频黄频| av女优亚洲男人天堂| 午夜免费观看性视频| 日产精品乱码卡一卡2卡三| 黄片播放在线免费| 亚洲少妇的诱惑av| 久久久久精品人妻al黑| 在线天堂最新版资源| 欧美精品高潮呻吟av久久| 不卡视频在线观看欧美| 婷婷色麻豆天堂久久| 国产成人免费观看mmmm| 18在线观看网站| 熟女电影av网| 日本wwww免费看| 9色porny在线观看| 欧美人与性动交α欧美软件 | 日本免费在线观看一区| 欧美日韩精品成人综合77777| 欧美国产精品一级二级三级| 国产免费福利视频在线观看| 中文字幕人妻熟女乱码| 男女高潮啪啪啪动态图| 高清欧美精品videossex| 18禁动态无遮挡网站| 80岁老熟妇乱子伦牲交| 天堂中文最新版在线下载| 成人国产麻豆网| 欧美性感艳星| 黄色视频在线播放观看不卡| 久久久国产欧美日韩av| 欧美激情极品国产一区二区三区 | 国产精品国产三级国产专区5o| 精品国产一区二区三区四区第35| 免费高清在线观看日韩| 国产一区二区在线观看日韩| 两个人看的免费小视频| 亚洲欧美一区二区三区国产| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 又大又黄又爽视频免费| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 久久狼人影院| 狠狠婷婷综合久久久久久88av| 精品国产乱码久久久久久小说| 久久97久久精品| 日韩 亚洲 欧美在线| 国产亚洲av片在线观看秒播厂| 高清视频免费观看一区二区| 亚洲av欧美aⅴ国产| 十分钟在线观看高清视频www| 国产免费视频播放在线视频| 建设人人有责人人尽责人人享有的| 国产xxxxx性猛交| 熟女电影av网| 女人精品久久久久毛片| 嫩草影院入口| 国产精品蜜桃在线观看| 亚洲欧美成人精品一区二区| 久久久久久久久久久久大奶| 亚洲一级一片aⅴ在线观看| 99九九在线精品视频| 老熟女久久久| 黑丝袜美女国产一区| 最近最新中文字幕免费大全7| 老司机影院成人| 精品视频人人做人人爽| 成年美女黄网站色视频大全免费| 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| 亚洲色图 男人天堂 中文字幕 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本wwww免费看| 曰老女人黄片| 夫妻性生交免费视频一级片| 久久人人爽av亚洲精品天堂| 夜夜爽夜夜爽视频| 久久这里只有精品19| 在现免费观看毛片| 深夜精品福利| 男女边吃奶边做爰视频| 91成人精品电影| 成人毛片a级毛片在线播放| 久久久久久久精品精品| 久久这里有精品视频免费| 日本色播在线视频| 欧美日韩av久久| 免费大片黄手机在线观看| 大码成人一级视频| 成年av动漫网址| 国产成人精品无人区| 色视频在线一区二区三区| 国产色爽女视频免费观看| 最新的欧美精品一区二区| 91精品伊人久久大香线蕉| 秋霞伦理黄片| 人人妻人人澡人人看| 精品一区二区三区视频在线| 亚洲成色77777| 夫妻午夜视频| 亚洲欧美色中文字幕在线| 街头女战士在线观看网站| av国产久精品久网站免费入址| 男女无遮挡免费网站观看| 哪个播放器可以免费观看大片| 亚洲av免费高清在线观看| 人人妻人人爽人人添夜夜欢视频| 日韩av免费高清视频| 丝袜在线中文字幕| 亚洲精品乱码久久久久久按摩| 热re99久久国产66热| 日韩一区二区视频免费看| 久久精品久久久久久噜噜老黄| 国产片特级美女逼逼视频| 久久久久精品人妻al黑| 久久ye,这里只有精品| 日日啪夜夜爽| 久久99精品国语久久久| 亚洲av免费高清在线观看| 免费看光身美女| 成人国产av品久久久| 久热这里只有精品99| 国产有黄有色有爽视频| 精品久久久久久电影网| 有码 亚洲区| 日本欧美国产在线视频| 韩国精品一区二区三区 | 成人国产av品久久久| 男人添女人高潮全过程视频| 最新的欧美精品一区二区| 国产高清国产精品国产三级| 亚洲成人一二三区av| 免费看光身美女| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 中文字幕制服av| 捣出白浆h1v1| 日韩精品有码人妻一区| 在线观看免费高清a一片| 伊人久久国产一区二区| 一级毛片黄色毛片免费观看视频| 免费不卡的大黄色大毛片视频在线观看| 国产在视频线精品| 日韩电影二区| 母亲3免费完整高清在线观看 | 久久久久精品性色| 国产午夜精品一二区理论片| 国产精品 国内视频| 精品一区在线观看国产| av女优亚洲男人天堂| 精品国产一区二区三区四区第35| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 999精品在线视频| 久久久国产精品麻豆| 国产成人精品婷婷| 咕卡用的链子| 日韩电影二区| 亚洲精品aⅴ在线观看| 一级a做视频免费观看| 性色avwww在线观看| 婷婷成人精品国产| 高清不卡的av网站| 久久精品国产亚洲av天美| 免费高清在线观看日韩| 国产欧美另类精品又又久久亚洲欧美| 色婷婷久久久亚洲欧美| 久热这里只有精品99| 国产欧美日韩综合在线一区二区| 啦啦啦中文免费视频观看日本| 高清毛片免费看| 免费av不卡在线播放| 高清av免费在线| 免费看av在线观看网站| 免费女性裸体啪啪无遮挡网站| 在线观看国产h片| av线在线观看网站| 永久免费av网站大全| av一本久久久久| 麻豆精品久久久久久蜜桃| 欧美变态另类bdsm刘玥| 久久久久久久久久久久大奶| 狂野欧美激情性xxxx在线观看| 韩国av在线不卡| 亚洲,欧美精品.| 国产欧美日韩综合在线一区二区| 欧美日韩国产mv在线观看视频| 成年女人在线观看亚洲视频| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 久久这里有精品视频免费| 伊人亚洲综合成人网| 一区二区三区四区激情视频| 少妇精品久久久久久久| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| 一边亲一边摸免费视频| 水蜜桃什么品种好| 国产又爽黄色视频| 精品福利永久在线观看| av一本久久久久| 国产精品久久久久久精品古装| 夫妻性生交免费视频一级片| 国产成人精品婷婷| 麻豆乱淫一区二区| 岛国毛片在线播放| 精品午夜福利在线看| 一边摸一边做爽爽视频免费| 欧美日本中文国产一区发布| av在线观看视频网站免费| 精品国产露脸久久av麻豆| 亚洲av.av天堂| 曰老女人黄片| 亚洲精华国产精华液的使用体验| 男人操女人黄网站| 91精品国产国语对白视频| 十八禁高潮呻吟视频| 日韩av不卡免费在线播放| 免费大片18禁| 精品亚洲成a人片在线观看| 男的添女的下面高潮视频| 免费大片18禁| 国产亚洲av片在线观看秒播厂| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 日本欧美视频一区| 大香蕉久久成人网| 美女内射精品一级片tv| 国产免费又黄又爽又色| 精品久久久久久电影网| 极品少妇高潮喷水抽搐| 99久久中文字幕三级久久日本| 高清毛片免费看| 欧美bdsm另类| 免费黄网站久久成人精品| 欧美人与性动交α欧美精品济南到 | 精品熟女少妇av免费看| 日本欧美国产在线视频| 成人毛片60女人毛片免费| 99久久精品国产国产毛片| 国产av码专区亚洲av| 嫩草影院入口| 99视频精品全部免费 在线| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 日本-黄色视频高清免费观看| 99九九在线精品视频| 国产精品一区二区在线观看99| 国产成人免费无遮挡视频| 九草在线视频观看| 亚洲高清免费不卡视频| 大陆偷拍与自拍| 热re99久久国产66热| 看十八女毛片水多多多| 日韩欧美精品免费久久| 永久网站在线| a 毛片基地| 国产永久视频网站| 最近的中文字幕免费完整| 日韩一本色道免费dvd| 国产成人aa在线观看| 中文字幕人妻丝袜制服| 啦啦啦中文免费视频观看日本| 欧美变态另类bdsm刘玥| 丰满迷人的少妇在线观看| 丁香六月天网| 看非洲黑人一级黄片| 欧美成人精品欧美一级黄| 婷婷色综合大香蕉| 韩国精品一区二区三区 | 秋霞伦理黄片| av天堂久久9| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 黄片播放在线免费| 高清视频免费观看一区二区| 免费观看无遮挡的男女| 国产av精品麻豆| 最后的刺客免费高清国语| 一级毛片黄色毛片免费观看视频| 女性被躁到高潮视频| 满18在线观看网站| 午夜激情av网站| 男女边摸边吃奶| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看 | 人妻少妇偷人精品九色| 欧美亚洲 丝袜 人妻 在线| 久久久精品区二区三区| av福利片在线| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 久久久精品免费免费高清| 国产高清国产精品国产三级| 国产在线视频一区二区| av国产久精品久网站免费入址| 插逼视频在线观看| 五月天丁香电影| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| 国产成人免费观看mmmm| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡| 在线天堂中文资源库| 在线观看免费高清a一片| 色网站视频免费| 久久国内精品自在自线图片| 日韩人妻精品一区2区三区| 一边摸一边做爽爽视频免费| 免费人妻精品一区二区三区视频| 欧美日韩亚洲高清精品| 亚洲国产av影院在线观看| 午夜福利视频在线观看免费| 国产精品三级大全| 色5月婷婷丁香| 久久97久久精品| 亚洲人成77777在线视频| 日韩免费高清中文字幕av| 国产成人精品无人区| 侵犯人妻中文字幕一二三四区| 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 日本av免费视频播放| 精品99又大又爽又粗少妇毛片| 亚洲伊人久久精品综合| 免费人成在线观看视频色| 91久久精品国产一区二区三区| 欧美+日韩+精品| 久久国产亚洲av麻豆专区| 日本-黄色视频高清免费观看| 亚洲综合精品二区| 成人毛片60女人毛片免费| 亚洲五月色婷婷综合| 男人操女人黄网站| 日韩一区二区三区影片| 22中文网久久字幕| 国产黄色免费在线视频| av国产久精品久网站免费入址| 亚洲国产精品999| 制服诱惑二区| 亚洲欧美中文字幕日韩二区| 国产成人精品在线电影| 亚洲 欧美一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲欧洲国产日韩| 日韩一区二区三区影片| 午夜福利网站1000一区二区三区| 精品卡一卡二卡四卡免费| 亚洲国产日韩一区二区| 青春草亚洲视频在线观看| 久久婷婷青草| 免费不卡的大黄色大毛片视频在线观看| 狠狠精品人妻久久久久久综合| 日产精品乱码卡一卡2卡三| 97人妻天天添夜夜摸| 大话2 男鬼变身卡| 一级毛片我不卡| 五月开心婷婷网| 视频中文字幕在线观看| 天天影视国产精品| 久久这里只有精品19| 飞空精品影院首页| 中文欧美无线码| 韩国av在线不卡| 伊人亚洲综合成人网| 曰老女人黄片| 日本-黄色视频高清免费观看| videossex国产| 亚洲成人av在线免费| 卡戴珊不雅视频在线播放| 欧美人与善性xxx| 亚洲国产欧美在线一区| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 国产极品粉嫩免费观看在线| 国产成人免费观看mmmm| 亚洲精品456在线播放app| 亚洲精品自拍成人| 国产精品嫩草影院av在线观看| 久久人人97超碰香蕉20202| 国产伦理片在线播放av一区| 日本猛色少妇xxxxx猛交久久| 日本91视频免费播放| 日韩av不卡免费在线播放| 国产精品人妻久久久影院| av在线app专区| 亚洲一级一片aⅴ在线观看| 国产淫语在线视频| 激情五月婷婷亚洲| 97人妻天天添夜夜摸| 成人毛片a级毛片在线播放| 午夜激情av网站| 亚洲精品久久久久久婷婷小说| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 人妻少妇偷人精品九色| 人成视频在线观看免费观看| 大香蕉97超碰在线| av.在线天堂| 亚洲精品日本国产第一区| 亚洲国产精品一区二区三区在线| 精品一区二区三区视频在线| 日本免费在线观看一区| av卡一久久| 国产男女超爽视频在线观看| 18禁在线无遮挡免费观看视频| 亚洲国产欧美在线一区| 亚洲丝袜综合中文字幕| 啦啦啦在线观看免费高清www| 国产成人精品一,二区| 欧美精品国产亚洲| 日本欧美视频一区| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| www.色视频.com| 精品亚洲成国产av| 少妇的丰满在线观看| 日韩视频在线欧美| 大片电影免费在线观看免费| 亚洲国产看品久久| √禁漫天堂资源中文www| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| 成人国产麻豆网| 国产欧美日韩一区二区三区在线| 日本色播在线视频| 在线观看www视频免费| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 亚洲人与动物交配视频| 18在线观看网站| 亚洲av综合色区一区| 69精品国产乱码久久久| 18禁动态无遮挡网站| 日韩不卡一区二区三区视频在线| 亚洲图色成人| 久久久久久伊人网av| 免费少妇av软件| 黑人猛操日本美女一级片| 欧美激情 高清一区二区三区| 天美传媒精品一区二区| www.av在线官网国产| 嫩草影院入口| 国产精品久久久久久久电影| 女性被躁到高潮视频| 一级,二级,三级黄色视频| 麻豆精品久久久久久蜜桃| 国产 一区精品| 自线自在国产av| 亚洲av.av天堂| 亚洲三级黄色毛片| av天堂久久9| 日韩,欧美,国产一区二区三区| 精品少妇内射三级| 人体艺术视频欧美日本| 亚洲综合精品二区| a级毛片在线看网站| 久久精品国产鲁丝片午夜精品| 久久午夜综合久久蜜桃| 免费女性裸体啪啪无遮挡网站| 美女视频免费永久观看网站| 高清av免费在线| 成人亚洲精品一区在线观看| 一边摸一边做爽爽视频免费| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 久久精品国产自在天天线| 午夜视频国产福利| 美国免费a级毛片| 亚洲熟女精品中文字幕| 午夜福利乱码中文字幕| 99九九在线精品视频| 两性夫妻黄色片 | 精品福利永久在线观看| 乱人伦中国视频| 欧美性感艳星| 寂寞人妻少妇视频99o| 成年av动漫网址| 久久午夜综合久久蜜桃| 亚洲国产精品一区二区三区在线| 老熟女久久久| 中文字幕最新亚洲高清| 亚洲欧美精品自产自拍| 久久久久久人妻| 国产视频首页在线观看| 日本-黄色视频高清免费观看| 三上悠亚av全集在线观看| 搡老乐熟女国产| 男女免费视频国产| 久久精品国产亚洲av天美| 黑人欧美特级aaaaaa片| 国产成人精品无人区| 亚洲精品一区蜜桃| 天美传媒精品一区二区| 日韩av不卡免费在线播放| tube8黄色片| 91精品国产国语对白视频| av在线观看视频网站免费| 男人添女人高潮全过程视频| 9191精品国产免费久久| 亚洲色图 男人天堂 中文字幕 | 成人国语在线视频| 九草在线视频观看| 欧美成人午夜精品| 亚洲综合色网址| 亚洲成人av在线免费|