• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses, Structures and Properties of Two 2D Coordination Polymers from 5-(Pyridin-2-yl-methyl)aminoisophthalate①

    2014-12-15 08:58:10LIXioJuXUXiHongGUOXioFng
    結(jié)構(gòu)化學 2014年5期

    LI Xio-Ju XU Xi-Hong GUO Xio-Fng

    ?

    Syntheses, Structures and Properties of Two 2D Coordination Polymers from 5-(Pyridin-2-yl-methyl)aminoisophthalate①

    LI Xiao-Jua②XU Xia-HongaGUO Xiao-Fanga

    a(Fujian Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, China)

    Hydrothermal reactions of 5-(pyridin-2-yl-methyl)aminoisophthalic acid (H2paip) with Mn(OAc)2·4H2O and Cu(NO3)2·3H2O produced two 2D complexes, [Mn(paip)]n·nH2O (1) and [Cu(paip)(H2O)]n(2). In complex 1, paip serves as a4-bridge, and its two carboxylate groups in2,2-bridging and chelating modes connect Mn(II) into 1D chains, which are further extended into a 2D layer through coordination of two chelating nitrogen atoms. However, paip in complex 2 acts as a3-bridge to link Cu(II) into a 2D layer, in which two carboxylate groups function in a monodentate mode, and hydrogen bonds between the coordinated water and carboxylate oxygen atoms further extend the 2D layers into a 3D supramolecular network. The frameworks of complexes 1 and 2 are stable up to 470 and 250 ℃, respectively. Magnetic measurement shows that complex 2 possesses a weak antiferromagnetic interaction.

    carboxylate, copper(II), coordination polymer, crystal structure, manganese(II)

    1 INTRODUCTION

    The rational design and synthesis of metal-organic coordination polymers are of great interest owing to their intriguing structures and potential applications in luminescence, magnetism, catalysis,gas storage and separation[1-2]. Molecular self-assembly based on the principle of crystal engineering has proved to be an efficient approach for the formation of coor- dination polymers. The structures and properties of the final products are mainly dependent upon the structural characters of organic ligands and the coor- dination preference of metal ions[3-4]. In the context, many efforts have been devoted to the judicial selection of multidentate ligands containing nitrogen and carboxylate groups. As is well known, the ne- gative charge of carboxylate group may compensate the positive charge from metal ions and mitigate the effect of counterion on self-assembly process. Moreover, carboxylate group also possesses a va- riety of coordination modes and strong coordination ability to transition metal ions, which can produce various robust frameworks. The further coordination of charge-neutral nitrogen atoms to metal ions may satisfy the coordination geometries of metal ions, resulting in the formation of coordination polymers with beautiful aesthetics and useful properties[5-6]. Recently, Lin. have reported a series of coor- dination polymers using ligands containing pyridyl and carboxylate groups, and the complexes exhibited interesting nonlinear optical properties[7]. Despite great progress in coordination polymers was made, the mechanism of molecular assembly of organic ligands and metal ions is still unclear. Lots of other factors, such as temperature, concentration, solvents and pH value, also have important influence on the assembly process[8-10]. Therefore, the exact predic- tion and control of target products remain a formi- dable challenge.

    In the construction of coordination polymers, 5-aminoisophthalate is a promising,-containing ligand[11]. Similar to isophthalate, its two carboxylate groups are predisposed at 120° at the central phenyl ring, which may link metal ions into discrete mascrocycles, zigzag chains, 2D and 3D networks. The amino group may either take part in coordina- tion in a nonlinear mode, or may serve as a hydrogen bonding donor to form a strong hydrogen bond. Interestingly, the amino group is also reactive and is ready to be modified to form amino-substituted isophtalates[12]. Many studies have demonstrated that the electronic and steric characters of five-positioned substitutents of isophthalate have important effect on the structures and functions of the target complexes, and various inert- and coordinated-groups were introduced into the 5-position of isophthalate as substituents[13]. Inspired by their excellent results, we are interested in 5-(pyridin-2-yl-methyl)ami- noisophthalate (paip) (Scheme 1)[14]. Its two,?- donor atoms in five-positioned substitutent of iso- phthalate are inclined to chelate with the metal ions to form a stable five-membered ring, usually resul- ting in the formation of low-dimensional structures. As a continuation of our study in coordination poly- mers from 5-substituted isophthalate[15], herein, we report the syntheses, structures and properties of two 2D coordination polymers, [Mn(paip)]n·nH2O (1) and [Cu(paip)(H2O)]n(2).

    Scheme 1. Coordination codes of paip

    2 EXPERIMENTAL

    2. 1 Materials and physical measurements

    H2paip was synthesized according to literature methods[14]. All other chemicals were purchased from commercial supplies and used as received without further purification. IR spectra (KBr pellets) were recorded on a Magna750 FT-IR spectropho- tometer in the range of 400~4000 cm-1. Powder X-ray diffraction data were recorded on a PANay- tical X’pert pro X-ray diffractometer with graphite- monochromatized Curadiation (= 1.542 ?). Thermal stability studies were carried out on a NETSCHZ STA 449C thermoanalyzer at a heating rate of 10 ℃?min-1under N2atmosphere. C, H and N elemental analyses were determined on an EA1110 CHNS-0CE element analyzer. The polycrystalline magnetic susceptibility data were collected on a Quantum Design MPMS model 6000 magnetometer in the temperature range from 2 to 300 K.

    2. 2 Synthesis

    Synthesis of {[Mn(paip)]·H2O}n(1) A mixture of H2paip (68.1 mg, 0.25 mmol) and Mn(OAc)2·4H2O (61.3 mg, 0.25 mmol) in CH3CH2OH (3 mL) and H2O (9 mL) was placed in a Teflon-lined stainless steel vessel (30 mL), and then heated to 180 ℃ for 4 days. After being cooled to room temperature at a rate of 3 ℃?h-1, pale yellow crystals of 1 were obtained. The crystals were collected by filtration, washed with H2O and dried in air. Yield: 34.8 mg (41%). Elemental analysis (%): calcd. for C14H12N2O5Mn (343.19): C, 49.00; H, 3.52; N, 8.16. Found (%): C, 49.07; H, 3.93; N, 8.04. IR (KBr, cm-1): 3421(vw), 3289(w), 3075(vw), 2917(vw), 1612(s), 1559(vs), 1428(vs), 1382(vs), 1244(vw), 1155(vw), 1048(w), 1016(w), 782(m), 726(s), 611(w), 553(w), 458(vw).

    Synthesis of [Cu(paip)(H2O)]n(2)A mixture of H2paip (68.1 mg, 0.25 mmol), Cu(NO3)2·3H2O (120.8 mg, 0.50 mmol) in CH3CH2OH (6 mL) and H2O (6 mL) was placed in a Teflon-lined stainless steel vessel (30 mL) followed by heating to 160 ℃ for 3 days. Cooling to room temperature at a rate of 3 ℃?h-1resulted in green acicular crystals of 2. The crystals were collected by filtration, washed with H2O and dried in air. Yield: 25.3 mg (29%). Elemental analysis (%): calcd. for C14H12N2O5Cu (351.80): C, 47.80; H, 3.44; N, 7.96. Found (%): C, 47.58; H, 3.64; N, 7.86. IR (KBr, cm-1): 3467(m), 3189(s), 2976(vw), 2901(vw), 1615(s), 1586(vs), 1574(s), 1489(vw), 1418(m), 1333(vs), 1106(vw), 1033(w), 917(vw), 772(m), 726(w), 623(vw), 531(w).

    2. 3 X-ray crystal structural determination

    The single crystals of complexes 1 and 2 were mounted on a glass fiber for X-ray diffraction analy- sis. Data were collected on a Rigaku AFC7R equip- ped with a graphite-monochromated Mo-radia- tion (= 0.71073 ?) from a rotating generator at 293(2) K. Intensities were corrected forfactors and empirical absorption using thescan technique. The structures were solved by direct methods using Siemens, and refined on2with full- matrix least-squares techniques using Siemens. All non-hydrogen atoms were refined anistropically. The hydrogen atoms of water in 2 were located from the difference Fourier map and refined isotropically. The positions of other hydro- gen atoms were generated geometrically (C–H bond fixed at 0.96 ?), assigned isotropic thermal parame- ters, and allowed to ride on their parent carbon atoms before the final cycle of refinement. Crystal data as well as details of data collection and refine- ment for complexes 1 and 2 are summarized in Table 1. The selected bond distances and bond angles are given in Table 2.

    Table 1. Crystal Data and Structure Refinement Results for Complexes 1 and 2

    a= ∑|F| – |F|/∑|F|.b= ∑[(F2–F2)2]/∑[(F2)2]1/2

    Table 2. Selected Bond Lengths (?) and Bond Angles (o) for Complexes 1 and 2

    Symmetry transformations used to generate the equivalent atoms for 1: (A) –, –, –; (B)–1,,; (C) –,, –+1/2; for 2: (A) –+1, –+2, –+1; (B) –+1,–1/2, –+1/2

    3 RESULTS AND DISCUSSION

    3. 1 Structural description of[Mn(paip)]n·nH2O (1)

    Single-crystal X-ray structural analysis shows that complex 1 crystallizes in the monoclinic space group2/. As shown in Fig. 1, the asymmetric unit con- sists of one crystallographically independent Mn(II)ion and one paip. Mn(II) is in a distorted octahedral geometry. It is coordinated by two chelating nitrogen atoms, two chelating carboxylate oxygen atoms and two2,2-carboxylate oxygen atoms from different paip. The equatorial plane is defined by pyridyl nitrogen atom, two chelating carboxylate oxygen atoms and one-coordinated oxygen atom of2,2-carboxylate. The mean deviation of Mn(II) from the equatorial plane is 0.0147 ?. The amino nitrogen atom and-coordinated oxygen atom of the other2,2-carboxylate occupy the axial posi- tions with O(2C)–Mn–N(1A) bond angle being 165.37(11)°. The Mn(1)–N(1A) bond in 2.426(3) ? is longer than Mn(1)–N(2A) of 2.223(3) ?, sug- gesting that the pyridyl nitrogen atom possesses strong coordination ability than the amine nitrogen atom. The bond distance of 2.426(3) ? is slightly large, but it is comparable with the reported Mn–N bond distances[16]. The Mn–O bond distances from chelating carboxylate oxygen atoms are larger than that from2,2-carboxylate oxygen atoms, which are probably ascribed to the effect of steric hindrance around Mn(II). The longest Mn–O bond distance is 2.339(3) ?, which is comparable with those in Mn(II) coordination complexes containing chelating car- boxylate groups[16]. Paip bridges four Mn(II) ions through its chelating carboxylate,2,2-carboxylate and,-chelating donor atoms in five-positioned substitutent (Scheme 1a). The pyridyl ring is highly twisted with respect to the phenyl ring with the dihedral angle between them being 81.1o. It should be mentioned that two2,2-carboxylate groups from different paip bridge two equivalent Mn(II) centers to form a dinuclear Mn(II)-carboxylate unit. The Mn???Mn distance is 4.258 ?, which is comparable with those in the coordination complexes consisting of dinuclear Mn(II)-carboxylate units[16]. The di- nuclear Mn(II) units are connected by chelating carboxylate group of paip into a 1D chain, in which the closest Mn???Mn distance is 7.846 ?. Further coordination of chelating nitrogen atoms in paip results in the formation of a corrugated 2D layer (Fig. 1b), and such 2D layers are arranged in an offset packing mode along theaxis (Fig. 1c).

    Fig. 1a. Coordination environment of Mn(II) with the thermal ellipsoids at 50% probability in complex 1

    Fig. 1b. 2D layer structure in complex 1

    Fig. 1c. Packing diagram viewed along theaxis in complex 1

    3. 2 Structural description of[Cu(paip)(H2O)]n (2)

    Single-crystal X-ray structural analysis shows that complex 2 crystallizes in the monoclinic space group21/. It is isostructural with the reported Zn(II), Co(II) and Ni(II) complexes from paip, but the coordination geometry of Cu(II) and coordination mode of paip are different[13]. As shown in Fig. 2a, Cu(II) is in a distorted square-pyramidal geometry, while metal ions in the reported paip complexes are in a distorted octahedral coordination arrangement. In complex 2, two chelating nitrogen atoms and two monodentate carboxylate oxygen atoms from different paip comprise the equatorial plane, with the mean deviation of Cu(II) from the equatorial plane to be 0.1343 ?. Water molecule occupies the apical position with the Cu–O(1W) bond distance being 2.257(4) ?, which is longer than the Cu–O and Cu–N bond distances in the equatorial plane. The Cu–O and Cu–N bond distances are similar to the reported typical values in Cu(II) coordination poly- mers[8, 16]. Different from that in 1, paipbridges three metal ions through its two monodentate carboxylate and two chelating nitrogen atoms (Scheme 1b). However, two carboxylates in the reported paip complexes adopt the chelating and monodentate modes, respectively. As a result, paip connects Cu(II) ions into a 2D corrugated layer (Fig. 2b), which is further extended into a 3D supramolecular network by strong hydrogen bonds among coordinated water molecules and carboxylate oxygen atoms (O(1W)– H(1W1)???O(1)i2.836(6) ?, O(1W)–H(1W2)???O(2)ii2.661(6) ?; N(2)–H(2N)???O(4)iii2.913(5) ?; sym- metry codes: (i) –,–1/2, –+1/2; (ii) –+1,–1/2, –+1/2; (iii) –, –+2, –+1).

    Fig. 2a. Coordination environment of Cu(II) with the thermal ellipsoids at 50% probability in complex 2

    Fig. 2b. View of the 2D layer in complex 2

    3. 3 IR spectra

    In the IR spectra, the absorption bands at 3289 cm-1for 1 and 3189 cm-1for 2 were assigned as the O–H stretching of water molecules. The typical antisymmetric stretching bands of carboxylate groups are at 1612, 1559 cm-1for 1 and 1615, 1586 cm-1for 2, while their symmetric stretching bands are located at 1428(vs) and 1382(vs) for 1 and 1418(m) for 2. The separations (Δ) betweenasym(CO2) andsym(CO2) are 184, 177 cm-1in 1 and 197, 168 cm-1in 2. The IR peaks indicate the presence of bridging modes in paip, which are consistent with their crystal structures.

    3. 4 X-ray powder diffraction

    In order to check the purity of complexes 1 and 2, the as-synthesized samples were measured by powder X-ray diffraction (PXRD) at room tempera- ture. As shown in Figs. 3a and 3b, the peak positions of the experimental patterns are in agreement with the simulated ones from single-crystal X-ray diffraction, which clearly demonstrates good purity of 1 and 2.

    3. 5 Thermogravimetric analysis

    Thermal stability of complexes 1 and 2 was stu- died on polycrystalline samples under nitrogen atmosphere. As shown in Fig. 4, thermogravimetric analysis (TGA) curve of complex 1 shows the first weight loss of 5.4% before 180 ℃, which cor- responds to the removal of lattice water molecules (calcd. 5.2%). Complex 1 is stable up to 470 ℃. In complex 2, the weight loss of 4.9% at 150~220℃ is ascribed to the removal of coordinated water molecules (calcd: 5.1%). The framework begins to collapse above 250 ℃. Obviously, complex 1 pos- sesses much higher thermal stability than 2.

    Fig. 3a. PXRD patter for complex 1

    Fig. 3b. PXRD patter for complex 2

    3. 6 Magnetic properties

    The magnetic susceptibilities of complex 1 were measured in 2~300 K at an applied field of 1000 Oe. The plots ofmandmversusare shown in Fig. 5. Themvalue at 300 K is 8.43 cm3·K·mol-1. Upon cooling,Tvalue decreases smoothly above 50 K, and then goes down quickly to a minimum value of 1.07 cm3·K·mol-1at 2 K, indicating the antiferromagnetic coupling between Mn(II) ions[16]. The temperature dependence of magnetic suscepti- bilities in the temperature range of 10~300 K follows the Curie-Weiss lawm=m/(?) with a Weiss constant= ?6.49 K and a Curie constantm= 8.69 cm3·mol-1·K. From the viewpoint of crystal structure, complex 1 can be considered as an isolated spin dimer system, and the magnetic susceptibility in the whole temperature range was fitted according to spin Hamiltonian ? = –2?1?2(S1 = S2 = 5/2), whereis the exchange coupling parameter between S1 and S2. The results of the best fitting gave= 1.975(1),= ?0.556(1) cm-1and= 1.39×10-6, which are very close to those from coordination polymers consisting of dinuclear Mn(II)-carboxylate units[15, 16].

    Fig. 4. TGA curves of complexes 1 and 2

    Fig. 5. Temperature dependence of magnetic suscep tibility in the form ofmandmversusin complex 1. The solid line is the fitting result described in the text

    4 CONCLUSION

    Two 2D Mn(II) and Cu(II) coordination polymers based on paip were hydrothermally synthesized and characterized. Two,-donor atoms in paip chelate with metal ions to form a stable five-membered ring, but carboxylate groups show different coordination modes. Two carboxylate groups behave in2,2- bridging and chelating modes in 1, while they serve as a bis-monodentate bridge in 2. Thus, paip con- nects four six-coordinated Mn(II) in 1 and three five-coordinated Cu(II) in 2 into 2D structures. Thermal stability of complex 1 is much higher than that of complex 2. In summary, this study has demonstrated that isophthalate derivatives contai- ning chelating,?-donor atoms are promising ligands in the construction of low-dimensional coor- dination polymers.

    (1) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks.2012, 112, 1126–1162.

    (2) Zhan, C.; Zou, C.; Kong, G. Q.; Wu, C. D. Four honeycomb metal-organic frameworks with a flexible tripodal polyaromatic acid.2013, 13, 1429–1437.

    (3) Wang, X. Y.; Li, B. L.; Zhu, X.; Gao, S. Extended networks of Co2+and Mn2+bridged by NCS–/N3–anions and flexible long spacers: syntheses, structures, and magnetic properties.. 2005, 3277–3286.

    (4) Zhang, X.; Ma, G. C.; Kong, F. Z.; Yu, Z. Y.;Wang, R. H.A two-fold interpenetrating metal-organic framework based on tetranuclear zinc-carboxylate clusters.. 2012,22, 44–47.

    (5) Chen, S. S.; Zhao, Y.; Fan, J.; Okamura, T.; Bai, Z. S.; Chen, Z. H.; Sun, W. Y. Construction of coordination frameworks based on 4-imidazolyl tecton 1,4-di(1H-imidazol-4-yl)benzene and varied carboxylic acids.. 2012, 14, 3564–3576.

    (6) He, H.; Collins, D.; Dai, F.; Zhao, X.; Zhang, G.; Ma, H.; Sun, D. Construction of metal-organic frameworks with 1D chain, 2D grid, and 3D porous framework based on a flexible imidazole ligand and rigid benzenedicarboxylates.2010, 10, 895–902.

    (7) Evans, O. R.; Lin, W. B. Crystal engineering of NLO materials based on metal-organic coordination networks.2002, 35, 511–522.

    (8) Feller, R. K.; Cheetham, A. K. Polytypism, homochirality, interpenetration, and hydrogen-bonding in transition metal (Mn(II), Ni(II), Cu(II), Zn(II)) 5-hydroxyisophthalate coordination polymers containing 4,4?-bipyridyl.2008, 2034–2043.

    (9) Cai, F. H.; Ge, Y. Y.; Jia, H. Y.; Li, S. S.; Sun, F.; Zhang, L. G.; Cai, Y. P. Construction of three high dimensional supramolecular networks from temperature-driven conformational isomers.. 2011, 13, 67–71.

    (10) Shen, W. Z.; Chen, X. Y.; Cheng, P.; Yan, S. P.; Zhai, B.; Liao, D. Z.; Jiang, Z. H. A structural and magnetic investigation of ferromagnetically coupled copper(II) isophthalates.2005, 2297–2305.

    (11) Li, X. J.; Yuan, D. Q.; Zhang, X. D.; Cao, R. Synthesis, crystal structure and magnetic property of a three-dimensional manganese(II) complex.2006, 59, 969–976.

    (12) Chen, M. S.; Bai, Z. S.; Okamura, T.; Su, Z.; Chen, S. S.; Sun, W. Y.; Ueyama, N. Metal-organic frameworks with pyridyl- and carboxylate-containing ligands: syntheses, structures and properties.. 2010, 12, 1935–1944.

    (13) Lama, P.; Aijaz, A.; Sanudo, E. C.; Bharadwaj, P. K.Synthesis, structure, and magnetic properties of cobalt(II) coordination polymers from a new tripodal carboxylate ligand: weak ferromagnetism and metamagnetism.. 2010, 10, 283–290.

    (14) Kuai, H. W.; Cheng, X. C.; Feng, L. D.; Zhu, X. H.Synthesis, characterization, and crystal structure of three coordination polymers from 5-(pyridin-2-ylmethyl)aminoisophthalic acid.. 2011, 637, 1560–1565.

    (15) Li, X. J.; Cai, Y. Z.; Fang, Z. L.; Wu, L. J.; Wei, B.; Lin, S. Three two-folded interpenetrating 3D metal-organic frameworks consisting of dinuclear metal units: syntheses, structures, and magnetic properties.2011, 114517–4524.

    (16) Reddy, K. R.; Rajasekharan, M. V.; Arulsamy, N.; Hodgson, D. J.Synthesis and structural investigations of [Mn3O4(phen)4(H2O)2](NO3)4·2.5H2O: a water-bound complex obtained by cerium (IV) oxidation.. 1996, 35, 2283–2286.

    22 November 2013;

    3 May 2014 (CCDC 951228 and 951229)

    ① This work was supported by the National Natural Science Foundation of China (21001025), the Natural Science Foundation of Fujian Province (2010J05017) and Provincial Education Department of Fujian (JA12070)

    . E-mail: xiaojuli@fjnu.edu.cn

    毛片一级片免费看久久久久| 最近手机中文字幕大全| 亚洲精品国产成人久久av| 亚洲国产精品专区欧美| 亚洲天堂av无毛| 91久久精品电影网| 国产熟女欧美一区二区| 欧美人与善性xxx| 91精品一卡2卡3卡4卡| 日本一本二区三区精品| 国产精品蜜桃在线观看| 国产精品蜜桃在线观看| 在线免费观看不下载黄p国产| 毛片女人毛片| 最后的刺客免费高清国语| 国产av国产精品国产| 久久99热这里只频精品6学生| 亚洲最大成人av| 91久久精品国产一区二区三区| 亚洲内射少妇av| 最近中文字幕2019免费版| 国产又色又爽无遮挡免| 亚洲欧美成人精品一区二区| 男女无遮挡免费网站观看| 又黄又爽又刺激的免费视频.| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品中文字幕在线视频 | 秋霞在线观看毛片| 亚洲最大成人手机在线| 六月丁香七月| 久久99热这里只频精品6学生| 偷拍熟女少妇极品色| 一级a做视频免费观看| 美女主播在线视频| 久久久久精品久久久久真实原创| 久久99精品国语久久久| 亚洲电影在线观看av| 精品国产一区二区三区久久久樱花 | 精品少妇黑人巨大在线播放| 人人妻人人爽人人添夜夜欢视频 | 欧美最新免费一区二区三区| 中文资源天堂在线| 色5月婷婷丁香| 特级一级黄色大片| 国产伦理片在线播放av一区| 伦精品一区二区三区| 国产毛片a区久久久久| 久久久久久久久久久免费av| 精品国产露脸久久av麻豆| 国产熟女欧美一区二区| 我的老师免费观看完整版| 国产高潮美女av| 汤姆久久久久久久影院中文字幕| 亚洲成人精品中文字幕电影| 亚洲天堂av无毛| 免费av毛片视频| 各种免费的搞黄视频| 在线观看三级黄色| 国产一区二区亚洲精品在线观看| 2018国产大陆天天弄谢| 成人特级av手机在线观看| 国产高清国产精品国产三级 | 欧美另类一区| 久久综合国产亚洲精品| 91精品伊人久久大香线蕉| 一级毛片电影观看| 免费大片18禁| av一本久久久久| 日本av手机在线免费观看| 69av精品久久久久久| 一本久久精品| 亚洲av免费高清在线观看| 亚洲av免费高清在线观看| 国产黄色视频一区二区在线观看| 丝袜脚勾引网站| 日韩一区二区三区影片| 久久精品夜色国产| 久久久久性生活片| 国产一级毛片在线| 国产欧美日韩一区二区三区在线 | 18禁动态无遮挡网站| 亚洲av在线观看美女高潮| 99久久人妻综合| 成人综合一区亚洲| 看黄色毛片网站| 午夜免费男女啪啪视频观看| 小蜜桃在线观看免费完整版高清| 国产精品国产av在线观看| 十八禁网站网址无遮挡 | 亚洲成人久久爱视频| 97在线人人人人妻| 免费大片黄手机在线观看| 午夜福利在线在线| 久久久久久久午夜电影| 简卡轻食公司| 老女人水多毛片| 免费少妇av软件| 亚洲丝袜综合中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲性久久影院| 国产老妇女一区| 日韩欧美 国产精品| 午夜福利在线在线| 欧美日韩精品成人综合77777| 搡女人真爽免费视频火全软件| 亚洲精品色激情综合| 久久精品综合一区二区三区| 久久综合国产亚洲精品| 亚洲精品国产色婷婷电影| 91在线精品国自产拍蜜月| 老司机影院成人| 狂野欧美激情性bbbbbb| 建设人人有责人人尽责人人享有的 | 少妇裸体淫交视频免费看高清| 深爱激情五月婷婷| 天天躁日日操中文字幕| 在线 av 中文字幕| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 赤兔流量卡办理| 亚洲最大成人中文| 亚洲成人av在线免费| 男的添女的下面高潮视频| 国产 一区精品| 亚洲一级一片aⅴ在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色视频在线播放观看不卡| 韩国高清视频一区二区三区| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 国产成人一区二区在线| 99精国产麻豆久久婷婷| 全区人妻精品视频| 免费高清在线观看视频在线观看| 搡女人真爽免费视频火全软件| 最近最新中文字幕免费大全7| 九色成人免费人妻av| 成人漫画全彩无遮挡| 在线观看免费高清a一片| 男人爽女人下面视频在线观看| 人妻系列 视频| 亚洲av不卡在线观看| 99久久人妻综合| 成人一区二区视频在线观看| 国产精品人妻久久久久久| 五月开心婷婷网| 夜夜看夜夜爽夜夜摸| 亚洲av国产av综合av卡| 少妇人妻一区二区三区视频| 看非洲黑人一级黄片| 大片电影免费在线观看免费| 少妇猛男粗大的猛烈进出视频 | 99视频精品全部免费 在线| 中文字幕av成人在线电影| 亚洲精品成人久久久久久| 国产黄a三级三级三级人| 日韩三级伦理在线观看| 欧美一区二区亚洲| 简卡轻食公司| 成人午夜精彩视频在线观看| 亚洲av欧美aⅴ国产| 有码 亚洲区| 日韩 亚洲 欧美在线| 免费人成在线观看视频色| 我的老师免费观看完整版| 2021天堂中文幕一二区在线观| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡动漫免费视频 | 赤兔流量卡办理| 人人妻人人澡人人爽人人夜夜| 男女边摸边吃奶| 亚洲欧洲国产日韩| 搡老乐熟女国产| 国语对白做爰xxxⅹ性视频网站| 男人和女人高潮做爰伦理| 女的被弄到高潮叫床怎么办| 免费黄频网站在线观看国产| 亚洲无线观看免费| 国产熟女欧美一区二区| 在线观看一区二区三区| 国产亚洲午夜精品一区二区久久 | 白带黄色成豆腐渣| 免费高清在线观看视频在线观看| 日韩三级伦理在线观看| 欧美zozozo另类| 国产成人aa在线观看| 老女人水多毛片| 亚洲色图av天堂| 久久99蜜桃精品久久| 午夜激情久久久久久久| 国产精品久久久久久av不卡| 日韩一区二区三区影片| tube8黄色片| 高清视频免费观看一区二区| 两个人的视频大全免费| 久久久成人免费电影| 我要看日韩黄色一级片| 下体分泌物呈黄色| 久久精品国产亚洲av天美| 看黄色毛片网站| 在线天堂最新版资源| 美女主播在线视频| 日本猛色少妇xxxxx猛交久久| 大片免费播放器 马上看| 亚洲精品中文字幕在线视频 | 免费观看a级毛片全部| 久久久精品94久久精品| 一本一本综合久久| videos熟女内射| 国产精品一区二区三区四区免费观看| 免费高清在线观看视频在线观看| 国产av不卡久久| 大片免费播放器 马上看| 热re99久久精品国产66热6| 日韩电影二区| 激情五月婷婷亚洲| 少妇裸体淫交视频免费看高清| 久久影院123| 色播亚洲综合网| 午夜精品国产一区二区电影 | 看十八女毛片水多多多| 街头女战士在线观看网站| 成人特级av手机在线观看| 久久久久精品性色| 新久久久久国产一级毛片| 免费看光身美女| 国产精品一区二区性色av| 欧美日韩精品成人综合77777| 99九九线精品视频在线观看视频| 亚洲婷婷狠狠爱综合网| 欧美3d第一页| 久久久欧美国产精品| 亚洲国产高清在线一区二区三| 日韩中字成人| 成人特级av手机在线观看| 男人爽女人下面视频在线观看| 丝袜喷水一区| 九草在线视频观看| av播播在线观看一区| 国产精品爽爽va在线观看网站| 国产人妻一区二区三区在| 免费少妇av软件| 高清午夜精品一区二区三区| 久久精品国产自在天天线| 久久人人爽av亚洲精品天堂 | 熟女人妻精品中文字幕| av黄色大香蕉| 黄色日韩在线| 久久国产乱子免费精品| 舔av片在线| 午夜爱爱视频在线播放| 蜜桃久久精品国产亚洲av| 日韩成人伦理影院| 自拍偷自拍亚洲精品老妇| 免费观看性生交大片5| 国产精品一区www在线观看| 国产毛片在线视频| 日韩精品有码人妻一区| 禁无遮挡网站| 97在线人人人人妻| 人人妻人人澡人人爽人人夜夜| 日韩制服骚丝袜av| 一个人观看的视频www高清免费观看| 色视频www国产| 免费少妇av软件| 午夜福利在线观看免费完整高清在| 亚洲美女视频黄频| 一级毛片久久久久久久久女| 久久精品国产亚洲网站| 赤兔流量卡办理| 亚洲一区二区三区欧美精品 | 一级爰片在线观看| 女人久久www免费人成看片| 国内揄拍国产精品人妻在线| 久久97久久精品| 亚洲国产成人一精品久久久| 搞女人的毛片| 久久99蜜桃精品久久| 国产视频首页在线观看| 麻豆乱淫一区二区| 80岁老熟妇乱子伦牲交| 国产精品.久久久| 我的老师免费观看完整版| 少妇人妻久久综合中文| 国产精品久久久久久av不卡| 欧美日韩国产mv在线观看视频 | 免费观看性生交大片5| 成人二区视频| 国产成人一区二区在线| 黄片无遮挡物在线观看| 69人妻影院| 狠狠精品人妻久久久久久综合| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 一本色道久久久久久精品综合| 久久国内精品自在自线图片| 尤物成人国产欧美一区二区三区| 亚洲成人av在线免费| 一本色道久久久久久精品综合| 久久久久九九精品影院| 亚洲在线观看片| 夜夜看夜夜爽夜夜摸| 有码 亚洲区| 亚洲欧美日韩另类电影网站 | 欧美成人一区二区免费高清观看| 亚洲精品中文字幕在线视频 | 精品久久久久久久久av| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| .国产精品久久| 精品一区二区免费观看| 一区二区三区四区激情视频| 少妇熟女欧美另类| 波多野结衣巨乳人妻| 国产精品久久久久久久电影| 大码成人一级视频| 简卡轻食公司| 欧美bdsm另类| 亚洲精品影视一区二区三区av| 免费看日本二区| 免费大片黄手机在线观看| 在线观看av片永久免费下载| 高清日韩中文字幕在线| 亚洲综合精品二区| 小蜜桃在线观看免费完整版高清| 深夜a级毛片| 午夜免费鲁丝| 蜜桃亚洲精品一区二区三区| 波野结衣二区三区在线| 日本wwww免费看| 免费观看的影片在线观看| 大又大粗又爽又黄少妇毛片口| 汤姆久久久久久久影院中文字幕| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 波野结衣二区三区在线| 国产视频内射| 天堂网av新在线| 在线看a的网站| 亚洲av.av天堂| av女优亚洲男人天堂| av黄色大香蕉| 日本黄大片高清| a级毛片免费高清观看在线播放| 成人二区视频| 一个人看视频在线观看www免费| 亚洲伊人久久精品综合| 国产人妻一区二区三区在| 在线精品无人区一区二区三 | 黄色日韩在线| 亚洲av成人精品一二三区| 欧美成人一区二区免费高清观看| 午夜精品一区二区三区免费看| 在线观看av片永久免费下载| 超碰av人人做人人爽久久| 中文字幕亚洲精品专区| 久久女婷五月综合色啪小说 | 男插女下体视频免费在线播放| 蜜桃久久精品国产亚洲av| 亚洲国产日韩一区二区| 久久久久久九九精品二区国产| 中国国产av一级| 欧美极品一区二区三区四区| 亚洲av日韩在线播放| av国产精品久久久久影院| 亚洲精品一区蜜桃| 身体一侧抽搐| 久久97久久精品| 成人欧美大片| 91午夜精品亚洲一区二区三区| 69av精品久久久久久| 国产大屁股一区二区在线视频| av播播在线观看一区| 国产亚洲精品久久久com| 国产又色又爽无遮挡免| 免费播放大片免费观看视频在线观看| 99久国产av精品国产电影| 国产毛片在线视频| 成人国产av品久久久| 亚洲精品一二三| 欧美bdsm另类| 美女cb高潮喷水在线观看| 亚洲av中文字字幕乱码综合| 亚洲欧洲国产日韩| 国产成人aa在线观看| 欧美最新免费一区二区三区| 色哟哟·www| 亚洲成人一二三区av| 国产午夜福利久久久久久| 亚洲精品久久午夜乱码| 男女那种视频在线观看| 国产 一区精品| 亚洲av免费高清在线观看| 十八禁网站网址无遮挡 | 赤兔流量卡办理| 免费av毛片视频| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 日韩不卡一区二区三区视频在线| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 国产亚洲91精品色在线| 国产精品久久久久久久久免| 亚洲国产高清在线一区二区三| 亚洲av电影在线观看一区二区三区 | 能在线免费看毛片的网站| 日韩欧美一区视频在线观看 | 欧美一级a爱片免费观看看| 亚洲天堂av无毛| 国产人妻一区二区三区在| 国产白丝娇喘喷水9色精品| 噜噜噜噜噜久久久久久91| tube8黄色片| 亚洲av成人精品一二三区| 天堂俺去俺来也www色官网| 国产精品一区二区性色av| 欧美国产精品一级二级三级 | 久久久精品94久久精品| 日本三级黄在线观看| 22中文网久久字幕| 国语对白做爰xxxⅹ性视频网站| 午夜视频国产福利| 久久久成人免费电影| 国产精品久久久久久久久免| 国产免费福利视频在线观看| 国产高清国产精品国产三级 | 噜噜噜噜噜久久久久久91| 国国产精品蜜臀av免费| 久久久久久久精品精品| 亚洲欧美日韩卡通动漫| 精品一区二区三区视频在线| 麻豆精品久久久久久蜜桃| 久热久热在线精品观看| 夜夜看夜夜爽夜夜摸| 久久综合国产亚洲精品| 成年av动漫网址| 亚洲精品亚洲一区二区| 亚洲欧洲国产日韩| 美女国产视频在线观看| 久热久热在线精品观看| 亚洲av中文av极速乱| 久久国内精品自在自线图片| 十八禁网站网址无遮挡 | 国产欧美亚洲国产| 国产高清国产精品国产三级 | 少妇的逼水好多| 亚州av有码| 国产爽快片一区二区三区| 中文字幕av成人在线电影| 一本久久精品| 人妻 亚洲 视频| 亚洲av福利一区| 国产精品久久久久久久久免| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 又黄又爽又刺激的免费视频.| av播播在线观看一区| 国产成人aa在线观看| 三级国产精品欧美在线观看| videossex国产| 尾随美女入室| 国产一区二区亚洲精品在线观看| 中文字幕免费在线视频6| 成年女人看的毛片在线观看| av在线天堂中文字幕| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 久久久久精品性色| 国产av码专区亚洲av| 一本久久精品| 国产精品久久久久久久电影| 97热精品久久久久久| 国产毛片a区久久久久| 亚洲av一区综合| 在线播放无遮挡| 男女国产视频网站| 亚洲人成网站在线观看播放| 久久久久久久午夜电影| 联通29元200g的流量卡| 啦啦啦在线观看免费高清www| 在线观看一区二区三区激情| 七月丁香在线播放| 国产精品伦人一区二区| 婷婷色麻豆天堂久久| 丝袜脚勾引网站| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| kizo精华| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av蜜桃| 日本色播在线视频| 亚洲精品第二区| 人妻夜夜爽99麻豆av| 免费观看的影片在线观看| 欧美日韩综合久久久久久| 亚洲婷婷狠狠爱综合网| 色综合色国产| 日本爱情动作片www.在线观看| 久久久精品免费免费高清| 大片电影免费在线观看免费| 一级爰片在线观看| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看| 午夜福利网站1000一区二区三区| 欧美激情在线99| 国产一区二区三区综合在线观看 | 亚洲精品亚洲一区二区| 麻豆成人午夜福利视频| av.在线天堂| 王馨瑶露胸无遮挡在线观看| 精品少妇黑人巨大在线播放| 九色成人免费人妻av| 青春草视频在线免费观看| 日韩三级伦理在线观看| 97在线人人人人妻| 99久久精品热视频| 亚洲精品乱码久久久v下载方式| 成人黄色视频免费在线看| 久久精品久久久久久久性| av播播在线观看一区| 久久99热6这里只有精品| 午夜日本视频在线| 欧美xxxx性猛交bbbb| 亚洲av欧美aⅴ国产| 亚洲国产精品成人久久小说| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 欧美三级亚洲精品| 亚洲婷婷狠狠爱综合网| 国产老妇女一区| 亚洲四区av| 国产熟女欧美一区二区| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 舔av片在线| 18+在线观看网站| 搡老乐熟女国产| av在线亚洲专区| 欧美一区二区亚洲| kizo精华| 在线观看美女被高潮喷水网站| 中国美白少妇内射xxxbb| 在线观看国产h片| 亚洲国产精品999| 久久精品久久精品一区二区三区| 99久久九九国产精品国产免费| 最近中文字幕高清免费大全6| 日本熟妇午夜| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜| 在线观看免费高清a一片| 免费av不卡在线播放| 欧美xxxx黑人xx丫x性爽| 99精国产麻豆久久婷婷| 禁无遮挡网站| 国产成人精品久久久久久| 国产老妇伦熟女老妇高清| 国产永久视频网站| 日韩 亚洲 欧美在线| 午夜福利高清视频| 麻豆乱淫一区二区| 国产 一区精品| 国产91av在线免费观看| 精品久久久久久电影网| 最近手机中文字幕大全| 国产精品一区二区在线观看99| 国模一区二区三区四区视频| 三级经典国产精品| 精品久久久精品久久久| 国产精品一区二区性色av| 在现免费观看毛片| 久久久亚洲精品成人影院| 国产成人aa在线观看| 蜜臀久久99精品久久宅男| 99热全是精品| 亚洲成人精品中文字幕电影| 男人狂女人下面高潮的视频| 免费观看a级毛片全部| 久久久久久久大尺度免费视频| 日韩精品有码人妻一区| av线在线观看网站| 一本色道久久久久久精品综合| 国产日韩欧美在线精品| 97在线视频观看| 亚洲精品一二三| 91在线精品国自产拍蜜月| 在线a可以看的网站| 成年人午夜在线观看视频| 日韩av在线免费看完整版不卡| 性色av一级| 国内揄拍国产精品人妻在线| 日本三级黄在线观看| 成人国产av品久久久| 在线a可以看的网站| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 午夜福利在线在线| 在线亚洲精品国产二区图片欧美 | 亚洲综合精品二区| 成人毛片60女人毛片免费| 久久精品国产亚洲网站| 欧美日韩视频精品一区| 蜜桃久久精品国产亚洲av| 亚洲av免费在线观看| 国产精品国产av在线观看| 欧美性感艳星| 岛国毛片在线播放| 男插女下体视频免费在线播放| 男的添女的下面高潮视频| 久久久久精品性色| 精品人妻视频免费看|