• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Chemical Study on the Structural Characteristics and Stability of AlSn±Clusters①

    2014-12-15 09:06:26ZHAOGuoXiangYANGLiJunWANGYanFangMAWenJin
    結(jié)構(gòu)化學(xué) 2014年5期

    ZHAO Guo-Xiang YANG Li-Jun WANG Yan-Fang MA Wen-Jin

    ?

    Quantum Chemical Study on the Structural Characteristics and Stability of AlS±Clusters①

    ZHAO Guo-Xiang YANG Li-Jun WANG Yan-Fang MA Wen-Jin②

    (,041004,)

    The geometric configurations and electronic structures of AlS±(= 1~10) clusters were studied by the B3LYP (DFT) method at the 6-311G** level. The changing rules of the ground state structure features, charge transfer and bonding characteristics of the aluminum-sulfur doped clusters were discussed in detail. The ground states of AlS±(> 2) are all AlcoreSshellplanar or solid double ring structures formed by inserting one Al atom to the Sand S-m(<) rings at the same time. Their molecular orbitals are mainly composed of Al- and-states mixed with S-states. Finally, the stabilities of AlS±clusters have been obtained by analyzing the energy of the ground state structures.

    DFT, AlS±cluster, ground state structure, stability

    1 INTRODUCTION

    In recent years, the relevant theories and expe- riments about the metal-nonmetal binary clusters have captured great interest with the development of researches on binary clusters[1]. Since doping metal atoms into nonmetal clusters can greatly chan- ge their electronic structures and physicochemical properties[2-10], people would like to reveal the formation mechanism and stability rules of these kinds of binary clusters in theory. Sulfur owns many isomers[11-17], and sulfur clusters doped with metal aluminum have important application prospects in molecular catalysis, chemical nitrogen fixation, superconducting materials and so on[18], so the theoretical and experimental researches on sulfur binary clusters have drawn wide attention.

    Guichemerre[19]studied the electronic states of AlS and AlS±by using the MRCI method, and obtained the spectral parameters of electronic states. Liu[20]got the time of flight mass spectrum of AlS–through the time of flight mass spectrometry measurement. Nakajima[21-23]obtained the ionization energy, affinity energy and the relevant photoelectron spectrum of AlS–clusters by using themethod and the photoelectron spec- troscopy measurements. Zhang[24]studied the geometric configurations and the vertical and adiabatic ionization energies of AlS–clustersusing the B3LYP method as well as mass spectrometry and X-ray photoelectron spectroscopy experiments. Jensen[25, 26]studied the geometric configura- tions and oscillation frequency of Al4S6and Al8S12clustersby using HF and B3LYP methods, respec- tively. Zhang[27]got the geometric configura- tions, the time of flight mass spectrum, the enthalpy and ionization energy of (Al2S3)clustersvia themethod and made the experiments of pho-toelectron spectroscopy. Ault[28]studied the geometric configurations and oscillation frequency of Al2S3using the LDF method, also obtaining the powder of Al2S3through the reaction of (CH3)3Al and H2S at high temperature. Zhong[29]studied the geometric configurations of AlSclus- ters and the electronic properties of oxide by using the B3PW91 method.Li[30]studied the geo- metric configurations of AlSclusters by using the B3LYP method, and compared the structure with other sulfur clusters.

    In this article, the ground state structures and stability rules are prospected through theory study on the AlS±(= 1~10) clusters. The obtained results can provide some useful references for understanding the formation mechanism and the physical and chemical properties of AlS±clusters, also for the theoretical and experimental studies of finding larger clusters.

    2 CALCULATION METHODS

    The optimization process is carried out with the following three steps: firstly, the possible struc- tures considering all the designed configurations with different spin multiplicity were optimized at the B3LYP/3-21G[31, 32]level, and the optimization pro- cess does not consider the symmetry in order to verify the possibility of all calculated structures; secondly, the split basis sets with polarization and diffuse functions were adopted in the stable struc- tures which are obtained in the first step, and weuse the point group adjustment on the possible symmetry, re-optimize the structures at the B3LYP/6-31G* level and decide the stable structures with lower energy; in the end, the obtained structures with lower energy were optimized by using the B3LYP/6-311G** method and proceeded with the calculation of frequency, finally affording the ground state structures of AlS±(= 1~10) clusters. All the calculations were carried out with the Gaussian 03 program[33].

    3 RESULTS AND DISCUSSION

    3. 1 Geometricconfigurations of the ground state structures

    3. 1. 1 Selection and confirmation of the ground state structures

    In studying the properties of the clusters, the ground state structures including geometric confi- gurations and electronic structures should be firstly determined. Theoretically, various AlS±cluster topology structures with different sizes should be input as possible initial configurations. Therefore, all the possible geometric configurations of AlS±(≤4) were designed by the method of exhaustion. The calculated results show similarity on the changing rules of geometric configurations and stability of AlS[29, 30]. With increasing the geometric sizes of AlS±clusters, the quantity of the initially designed possible configurations increases greatly. The initial configurations of AlS±(>5) are obtained by two methods. One refers to the reported theory results of AlSclusters, and the other is to find certain rules in the features ofgeometric configurations of AlS±with lower energy during optimizing the AlS±clusters.

    Fig. 1 shows the geometric configurations and symmetries of the ground state structures of AlS±(= 1~10) clusters by using the B3LYP/6-311G**theory. It can be seen that the ground state structures of AlS±(≤2) are all linear (the order is positive and then negative ion structure in the next discussion), among which the Al-S bonds are 0.221 and 0.212 nm, 0.004 and 0.002 nm longer than Al-S in 0.217 and 0.210 nm by using the MRCI[19]method, respectively. The bond lengths of Al-S in the AlS2±structures are 0.277 and 0.207 nm, respectively. The former is 0.069 nm longer than the bond length of Al-S in AlS2(0.208 nm)[30], and the latter is 0.001 nm shorter, which reveals that losing one electron could weaken the Al-S bond strength in a large degree.

    Fig. 1. Geometric configuration and symmetry of the ground state structures of AlS±clusters

    The ground state structures of AlS±(> 2) clusters can be taken as planar or solid double ring structures formed by inserting one Al atom to the Sand S-m(<) rings at the same time. Most of the Al atoms are four-coordinated and most of the S atoms are two-coordinated in the structure. With increasing the cluster size, the ring structures of Sand S-min the ground state change from planar to solid staggered structure through sharing Al atoms. The ranges of the Al-S bond distances are 0.213~0.277 and 0.207~0.230 nm. The average bond distances are 0.231 and 0.222 nm, which are 0.010 and 0.001 longer than that of Al-S (0.221 nm) in a neutral structure[30], respectively. The ranges of S-S bond distances are 0.193~0.218 and 0.210~0.226 nm, with their averages to be 0.207 and 0.216 nm, respectively. Compared with the bond distance of S-S (0.211 nm) in a neutral structure, the former is 0.004 nm shorter, and the latter is 0.005 nm longer.

    As seen from the changing rules of the above aluminum-sulfur binary clusters, the ground state structures of AlS±(= 1~10) clusters are linear or zigzag when≤ 2; the ground state structures of AlS±(>2) are planar or solid double ring. After analyzing the features of geometric configurations of the ground state structures, we can find that: the planar and solid double ringstructures of AlS±clusters can be taken as double-ring structure formed by inserting one Al atom to the Sand S-m(<) rings simultaneously and matching with four S atoms. The sizes of Sand S-mrings in the structure increase in an equal degree, and the structure of AlcoreSshellformed through sharing Al atoms is the most stable, while the stability declines when Al atoms appear in other places of the double-ring structure. After analyzing the symmetry of the ground state structure and the feature of chemical bonds, we can find that the symmetry of the structures of AlSand AlS-mdecreases owing to the distortion caused by Al atoms inserted to the Sand S-mrings[13]to form Al–S bonds. Most of the Al and S atoms are respectively four- and two-coordinated, and this is identical with the reported conclusion in literature[13], which suggests that most S atoms are two-coordinated except for some with 1,3-coordina- tion and the Al atoms are four-coordinated[34]in non-crystal clusters. The studies on the properties of structure and bond formation in this work present a shortcut to find and confirm the larger-sized AlS±clusters more quickly in the future.

    3. 1. 2 Vibrational frequency

    The vibrational frequencies of the structures in Fig. 1 can be calculated at the B3LYP/6-311G** level, and Table 1 shows the obtained values of minimum vibrational frequency () and the corres- ponding vibration frequency with maximum vibra- tional intensity (I) of the ground state structures of AlS±(= 1~10) clusters, and that in paren- thesis shows the symmetry of the vibrational mode. The minimum vibrational frequency () can reflect whether the obtained structures exist or not, while the vibrational frequency with maximum vibrational intensity (I) can reflect the location of the strongest absorption peaks in the infrared spectrum. As seen from Table 1, the minimum vibrational frequencies of the ground state structures of AlS±clusters concentrate in the ranges of 14~428 and 21~552 cm-1, and the vibrational mode is mainly bend vibration of the Al-S bond. The vibrational frequen- cies with the maximum vibrational intensity concen- trate in the 160~674 and 419~746 cm-1ranges, and the vibrational mode is mainly stretching vibration of the Al-S and S-S bonds. All the vibra- tional frequencies are positive, which means that all the optimized structures locate at stable positions on the potential energy surface.

    Table 1. Vibrational Frequencies of the Ground State Structures of AlSn± Clusters

    : vibrational frequency;: vibrational intensity, the symmetry of the vibrational mode is in parenthesis.

    3. 1. 3 Net charge distribution and bond formation of the atoms

    After analyzing the net charge distribution of the atoms in NBO of the ground state structures of AlS±clusters, we can see that Al atoms locate at bridges of the Sand S-mrings, and this is beneficial to charge transfer between the Al and S atoms, and finally makes Al atoms show positive electricity, S atoms show negative electricity and Al–S bond ionize. Therefore, gaining or losing one electron would strengthen or weaken the intensity of Al–S bond, and the variation range means that the bond length is 0.009 nm.

    The bond formation modes and shapes of HOMO (the highest occupied molecular orbital) and NHOMO (the next highest occupied molecular orbital) of the molecules reflect the features of the structures of the chemical bonds directly, and the changing rules of the geometric configurations and stability information of the molecules can be obtained through analyzing HOMO and NHOMO. Fig. 2 presents the molecular orbital figurations of 2D→3D structure. It can be found that a largebond is formed between Al and S atoms, and the S-Sbond in the HOMO structuresof planar AlS3±and AlS4-. It reveals that HOMO contributes to the formation of both Al-S and S-S bonds. The S chain of NHOMO also hasbond, which proves the contribution of NHOMO to the S-S bond formation. If we further investigate the electron cloud figures of the structures of AlS3±, we can find that the electron cloud density between Al–S and S–S bonds of the AlS3-structure is apparently bigger than that of AlS3+, although their configurations and point groups as well as the bond formation modes of HOMO and NHOMO are totally identical. Thebonds in the HOMO and NHOMO of AlS4+struc- tures stagger with each other, and concentrate be- tween the Al–S and S–S bonds, which means both HOMO and NHOMO contribute to the formation of ST(staggered) solid structure with2dsymmetry. The molecular orbitals of AlS±are mainly com- posed of Al- and-states mixed with S-states.-states from Al and S atoms form bigbond in the rings and S chain, and the electron delocalization effect makes the charge of different atoms well distribute, and also makes the bond lengths of Al-S and S-S become average and eventually enhan- ces the stability of the whole structure.

    Fig. 2. HOMO and NHOMO of the ground state structures of AlS±clusters HOMO: the highest occupied molecular orbital NHOMO: the next highest occupied molecular orbital

    3. 2 Stability of the ground state structure

    3. 2. 1 Thermodynamical properties and energy

    Table 2 presents the values of total energy (ET), zero-point energy (EZ), atom energy (ΔEn±), molar heat capacity (CP) and standard entropy (SΘ) of the ground state structures of AlS±clusters, in order to find the changing rules of the ground state structures of AlS±(= 1~10) clusters with size n. It can be concluded that: the values ofZ, ΔE±,PandΘof AlS±clusters increase with the increment of n in an equal degree. As seen from Table 2, the average increment ranges ofof AlS±clusters with positive and negative electrons are 4.53 and 4.37 kJ·mol-1, and those of ΔE±are 432.95 and 432.46 kJ·mol-1; while forPthey are 21.09 and 21.24 J·mol-1·K-1and forΘthey are 37.67 and 36.55 J·mol-1·K-1, respectively. The average increment rates of the values ofZ, ΔE±,PandΘof the ground state structures of AlS±clusters are basically identical.

    3. 2. 2 Dissociation energy and second-order difference of energy

    The relative stability of AlS±clusters was further investigated through analyzing the variation charac- teristics of the dissociation energy and second-order difference of energy versus the cluster sizes. Consi- dering the following chemical reactions

    AlS±→ AlS-1±+ S (1)

    2(AlS±) → AlS+1±+ AlS-1±(2)

    the energy variation is defined as:

    Δd±= (AlSn-1±+S) –AlSn±(3)

    Δ2E±= (AlSn+1±+AlSn-1±) – 2AlSn±(4)

    The energy variation Δd±in Eq. (3) is the disso- ciation energy of AlS±cluster. The value of Δd±can be used as a sign of the relative stability of the cluster[35]: the greater the numerical value, the better the stability of the corresponding structure. As seen from the relationship of Δd±of AlS±clusters versusin Fig. 3 as calculated according to Eq. (3), the dissociation energy (Δd±) of AlS±clusters shows an alternate oscillation downward trend with the increment of size, among which the Δd±values of AlS2-, AlS4-and AlS6-clusters are rela- tively higher. It concludes that they are more stable than other clusters; also it explains why the AlS-(≤6) clusters are easier to come into being in the experiment[20].

    Table 2. Energy and Thermodynamic Parameters of the Ground State Structures of AlSn±Clusters

    T: total energy;Z: zero-point energy; ΔE±: atom energy;P: molar heat capacity;Θ: standard entropy

    Fig. 3. Δd±of AlS±clusters versusΔd±: dissociation energy

    Fig. 4. Δ2E±of AlS±clusters versusΔ2E±: the second-order difference of energy

    The energy variation Δ2E±in Eq. (4) is the second-order difference of the energy for AlS±cluster. The value of Δ2E±can be used to judge the relative stability of the cluster with better sensi- tivity[36], and the bigger or smaller numerical value reflects the higher or lower relative stability of the structure. As seen from the relationship of Δ2d±of AlS±clusters versusin Fig. 4 as calculated according to Eq. (4), the values of Δ2d±decrease with the increment of n generally; the variation rule of Δ2d±is somewhatsimilar with that of Δd±.When= 3, 5, 7 and 9 as odd numbers, the values of Δ2E±are smaller or the decline is faster; and the values of Δ2E±decline more slowly or appear in peaks when= 2, 4, 6, 8 as even numbers. It con- cludes that the relative stability of the correspon- ding structures of AlS±clusters is worse when= 3, 5, 7, 9 as odd numbers; meanwhile, it is better when= 2, 4, 6 and 8 as even numbers.

    4 CONCLUSION

    In conclusion, the ground state structures of AlS±(= 1~10) clusters are linear or zigzag when≤2; the ground states of AlS±(>2) are AlcoreSshellplanar or solid double ring structures formed by inserting one Al atom into the Sand S-m(<) rings at the same time. The ground state structures of AlS±clusters can be found quickly when the Al atom is inserted into Sand S-m(<) rings simultaneously and matched with four S atoms to act as the matrix of designing the structures of AlS±clusters. The stability of the structures is better when Al atoms locate at the double ring bridge than at other places. The size of the ground state structure of Sand S-mcircles increases equally. Most of the Al atoms are four-coordinated and S atoms are mostly two-coordinated in the structure. The molecular orbitals are mainly composed of Al- and-states mixed with S-states. The stability of the ground state structures of AlS±(= 1~10) clusters decreases with the increment of n as a whole, and the stability of the structures of the corre- sponding clusters when n is an even number is better than that of n as an odd number.

    (1) Zhai, H. J.; Ni, G. Q.; Zhou, R. F.; Wang, Y. Z. Research progress in mixed/doped clusters.1997, 17, 265–288.

    (2) Zhao, Y. C.; Yuan, J. Y.; Zhang, Z. G.; Xu, H. G.; Zheng, W. J. Structures of manganese polysulfides: mass-selected photodissociation and density functional calculation.. 2011, 40, 2502–2508.

    (3) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 8 transition metal sulfide molecules.2009,113, 5375–5384.

    (4) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes.2009, 113, 3336–3343.

    (5) Wang, J. F.; Jia, J. F.; Ma, L. J.; Wu, H. S. Structure and stability of TiB(= 1~12) clusters: aninvestigation.2012,70,1643–1649.

    (6) Guo, L. The structure and energetic of AlAs(= 1~15) clusters: a first-principles study.2010, 498, 121–129.

    (7) Feng, X. J.; Luo, Y. H. Structure and stability of Al-doped boron clusters by the density-functional theory.2007, 111, 2420–2425.

    (8) Li, X.; Wang, L. S.; Boldyrev, A. I.; Simons, J. Tetracoordinated planar carbon in the Al4C-anion. a combined photoelectron spectroscopy andstudy.1999,121, 6033–6038

    (9) Averkiev, B. B.; Boldyrev, A. I.; Li, X.; Wang, L. S.Probing the structure and bonding in Al6N-and Al6N by photoelectron spectroscopy andcalculations.2007,111, 34–41.

    (10) Averkiev, B. B.; Call, S.; Boldyrev, A. I.; Wang, L. M.; Huang, W.; Wang, L. S.Photoelectron spectroscopy andstudy of the structure and bonding of Al7N-and Al7N.2008,112, 1873–1879.

    (11) Zakrzewski, V. G.; Niessen, W. V. Structures, stabilities and adiabatic ionization and electron affinity energies of small sulfur clusters S3-S5.1994, 88, 75–96.

    (12) Suontamo, R. J.; Laitinen, R. S.; Pakkanen, T. A. Molecular valence calculations on small sulfur clusters S2-S5.() 1994, 313, 189–197.

    (13) Chen, M. D.; Liu, M. L.; Luo, H. B.; Zhang, Q. E.; Au, C. T. Geometric structures and structural stabilities of neutral sulfur clusters.2001, 548, 133–141.

    (14) Bai, Y. L.; Chen, X. R.; Yang, X. D.; Lu, P. F. Structures of small sulfures S(= 2~8) from langevin molecular dynamics methods.2003, 19, 1102–1107.

    (15) Chen, M, D.; Liu, M, H.; Liu, J. W.; Jiao, Y. C.; Zhang, Q. E. Structural stabilities of small cationic sulfur clusters.2002, 15, 357–362.

    (16) Chen, M. D.; Liu, M. H.; Liu, J. W.; Jiao, Y. C.; Zhang, Q. E. Structural stabilities of small cationic sulfur clusters.2002, 21, 557–561.

    (17) Chen, M. D.; Liu, M. H.; Luo, H. B.; Qiu, Z. J.; Zhang, Q. E. Structural stabilities of small cationic sulfur clusters.2001,20, 399–405.

    (18) Cui, M.; Feng, J. K.; Ge, M. F.; Wang, S. F.; Sun, J. Z.of lead-sulfur binary PbS-1+(= 2~4) clusters.1999, 57, 1062–1067.

    (19) Guichemerre, M.; Chambaud, G. Theoretical study of the electronic states of AlS, AlS+, AlS-.2000, 104, 2105–2111.

    (20) Liu, Z. Y.; Wang, C. R.; Huang, R. B.; Zheng, L. S. Mass distributions of binary aluminium cluster anions AlX-(X = O, S, P, As, C).1995, 141, 201–208.

    (21) Nakajima, A.; Taguwa, T.; Nakao, K.; Hoshino, K.; Iwata, S.; Kaya, K. Photoelectron spectroscopy of AlS1–clusters (= 1~9).1995, 102, 660–665.

    (22) Nakajima, A.; Zhang, N.; Kawamata, H.; Hayase, T.; Nakao, K.; Kaya, K. Photoelectron spectroscopy and mass distributions of aluminum-sulfur cluster anions (AlS-).1995, 241, 295–300.

    (23) Nakajima, A.; Taguwa, T.; Nakao, K.; Hoshino, K.; Iwata, S.; Kaya, K. Photoelectron spectroscopy of binary-metal cluster anions containing sulfur atom.1996, 3, 417–421.

    (24) Zhang, Z. G.; Xu, H. G.; Feng, Y.; Zheng, W. Communications: investigation of the superatomic character of Al13via its interaction with sulfur atoms.. 2010, 132, 161103.

    (25) Jensen, J. O. Vibrational frequencies and structural determination of Al4S6.() 2003, 664, 37–45.

    (26) Jensen, J, O. Vibrational frequencies and structural determination of Al8S12.2004, 60, 2547–2552.

    (27) Zhang, N.; Shi, Y.; Gao, Z.; Kong, F.; Zhu, Q. Aluminum-sulfur cluster ions: formation and photolysis.. 1994, 101, 1219–1224.

    (28) Ault, B. S. Matrix isolation study of the reaction of (CH3)3Al with hydrogen sulfide and mercaptans: synthesis and spectra of molecular Al2S3.1994, 98, 77–80.

    (29) Zhong, M. M.; Kuang, X. Y.; Wang, Z. H.; Shao, P.; Ding, L. P. Probing the structural and electronic properties of aluminum-sulfur AlS(2 ≤+≤6) clusters and their oxides.. 2013,19, 263–274.

    (30) Li, T. X.; Wang, L.; Wang, F.; Chen, J.; Jiang, Z. Y.; Li, L. S. Density functional theory study of neutral AlS(= 2~9) clusters.2011, 20, 033101.

    (31) Becke, A. D. Density functional thermochemistry III. The role of exact exchange correlation functions.1993, 98, 5648–5652.

    (32) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density.1988, 37, 785–789.

    (33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. J.; Pople, A.; Gaussian, Inc.; Wallingford CT 2004.

    (34) Gutiérrez, G.; Johansson, B. Molecular dynamics study of structural properties of amorphous Al2S3.2002, 65, 104202.

    (35) Bonacic, K. V.; Fantucci, P.; Koutecky, J. Quantum chemistry of small clusters of elements of groups 1a, 1b, and 11a: fundamental concepts, predictions, and interpretation of experiments.1991, 91, 1035–1042.

    (36) Wang, J. F.; Wang, G. H.; Zhao, J. J. Structure electronic properties of Ge(= 2~25) clusters from density-functional theory..2001, 64, 205411.

    7 January 2013;

    11 March 2014

    ① The project was supported by the Natural Science Foundation of Shanxi Province (No. 2012011009-4)

    . E-mail: ma_w_j@163.com

    丰满少妇做爰视频| 国产高清国产精品国产三级| 成年动漫av网址| 秋霞在线观看毛片| 亚洲欧美日韩卡通动漫| 久久久国产一区二区| 一区二区av电影网| 亚洲av日韩在线播放| 90打野战视频偷拍视频| 精品人妻熟女毛片av久久网站| 国产精品不卡视频一区二区| 91成人精品电影| 久热久热在线精品观看| 免费日韩欧美在线观看| 国产精品国产三级国产av玫瑰| 五月开心婷婷网| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 亚洲七黄色美女视频| 高清视频免费观看一区二区| 亚洲 国产 在线| 很黄的视频免费| 最近最新中文字幕大全免费视频| 波多野结衣av一区二区av| 国产成+人综合+亚洲专区| 法律面前人人平等表现在哪些方面| 在线观看免费日韩欧美大片| 亚洲av电影在线进入| 精品国产一区二区三区四区第35| 欧美日韩精品网址| 丁香六月欧美| 久久久久久亚洲精品国产蜜桃av| 黄色视频,在线免费观看| 国产高清激情床上av| 999久久久精品免费观看国产| 欧美乱色亚洲激情| 91大片在线观看| 在线观看午夜福利视频| 欧美日本中文国产一区发布| av中文乱码字幕在线| 亚洲午夜理论影院| 欧美中文综合在线视频| 成年人黄色毛片网站| 色94色欧美一区二区| 777久久人妻少妇嫩草av网站| 午夜精品在线福利| 天堂√8在线中文| 在线播放国产精品三级| 母亲3免费完整高清在线观看| 高清视频免费观看一区二区| 国产无遮挡羞羞视频在线观看| 9色porny在线观看| 亚洲成a人片在线一区二区| 午夜福利在线观看吧| 视频区欧美日本亚洲| 他把我摸到了高潮在线观看| 大型黄色视频在线免费观看| 黑人欧美特级aaaaaa片| 一级,二级,三级黄色视频| 热99久久久久精品小说推荐| 精品人妻1区二区| av电影中文网址| 久久久久久久久免费视频了| 久久草成人影院| 很黄的视频免费| 日韩视频一区二区在线观看| 亚洲全国av大片| 欧美成人午夜精品| 下体分泌物呈黄色| 亚洲av片天天在线观看| 男女高潮啪啪啪动态图| 国产国语露脸激情在线看| 日韩人妻精品一区2区三区| 欧美日韩亚洲综合一区二区三区_| 国产91精品成人一区二区三区| 国产在线一区二区三区精| 亚洲熟女毛片儿| 色婷婷久久久亚洲欧美| 免费观看精品视频网站| 91老司机精品| 两性夫妻黄色片| 亚洲精品自拍成人| 久久人妻福利社区极品人妻图片| 男女床上黄色一级片免费看| 人妻 亚洲 视频| 日韩成人在线观看一区二区三区| 亚洲中文日韩欧美视频| xxx96com| 亚洲精品乱久久久久久| 亚洲欧美激情综合另类| 一级片免费观看大全| 亚洲性夜色夜夜综合| 岛国毛片在线播放| 久久久久精品人妻al黑| 亚洲久久久国产精品| 身体一侧抽搐| 九色亚洲精品在线播放| 色老头精品视频在线观看| av电影中文网址| 欧美最黄视频在线播放免费 | 1024视频免费在线观看| 精品国产美女av久久久久小说| 村上凉子中文字幕在线| 好男人电影高清在线观看| 国产99白浆流出| 9热在线视频观看99| 午夜福利影视在线免费观看| 亚洲成国产人片在线观看| 免费在线观看亚洲国产| 男人的好看免费观看在线视频 | 国产在视频线精品| 亚洲av成人一区二区三| 黄片播放在线免费| 亚洲avbb在线观看| 久久这里只有精品19| 欧美乱妇无乱码| 国产欧美日韩综合在线一区二区| 久久草成人影院| 在线av久久热| 黄色片一级片一级黄色片| 男女高潮啪啪啪动态图| 搡老熟女国产l中国老女人| 久久国产精品影院| 韩国精品一区二区三区| 精品一品国产午夜福利视频| 91精品三级在线观看| 香蕉丝袜av| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国语在线视频| 人人澡人人妻人| 无人区码免费观看不卡| 夜夜夜夜夜久久久久| 丰满迷人的少妇在线观看| 免费在线观看视频国产中文字幕亚洲| 老司机在亚洲福利影院| 成人特级黄色片久久久久久久| av中文乱码字幕在线| 亚洲精品一二三| 99精国产麻豆久久婷婷| 欧美亚洲 丝袜 人妻 在线| 国产极品粉嫩免费观看在线| 777米奇影视久久| 久久影院123| 无限看片的www在线观看| 亚洲熟女毛片儿| 国产精品影院久久| 欧美老熟妇乱子伦牲交| 中文字幕人妻丝袜制服| 国产精品成人在线| 国产精品免费大片| 看免费av毛片| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲高清精品| av欧美777| 精品国产一区二区三区久久久樱花| 99riav亚洲国产免费| 精品久久蜜臀av无| 一级毛片精品| 欧美日韩瑟瑟在线播放| 日韩欧美国产一区二区入口| 80岁老熟妇乱子伦牲交| 亚洲人成77777在线视频| 亚洲一区二区三区欧美精品| 亚洲一区高清亚洲精品| 国产成人av激情在线播放| 中文字幕精品免费在线观看视频| 亚洲欧美精品综合一区二区三区| 国产精品影院久久| 人妻一区二区av| 人成视频在线观看免费观看| 日本vs欧美在线观看视频| 国产片内射在线| 女性被躁到高潮视频| 老汉色∧v一级毛片| 亚洲国产看品久久| 欧美激情高清一区二区三区| 一进一出抽搐动态| 黄色丝袜av网址大全| 99国产精品一区二区三区| 天堂俺去俺来也www色官网| 亚洲第一av免费看| 国产欧美亚洲国产| 亚洲av欧美aⅴ国产| 久久精品国产99精品国产亚洲性色 | 国产有黄有色有爽视频| 99香蕉大伊视频| 欧美黄色淫秽网站| 成人影院久久| 一级毛片高清免费大全| 黄网站色视频无遮挡免费观看| 国产又色又爽无遮挡免费看| 99精品欧美一区二区三区四区| 狠狠狠狠99中文字幕| 无人区码免费观看不卡| 黄色丝袜av网址大全| 免费在线观看视频国产中文字幕亚洲| 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 黄色视频,在线免费观看| 电影成人av| 国产成人免费观看mmmm| 两个人看的免费小视频| 手机成人av网站| 十八禁高潮呻吟视频| 高清视频免费观看一区二区| 欧美精品人与动牲交sv欧美| 国产成人免费观看mmmm| 免费观看精品视频网站| 手机成人av网站| 久久久国产欧美日韩av| 亚洲av成人av| 中国美女看黄片| 亚洲精品乱久久久久久| 99精品在免费线老司机午夜| 久久香蕉精品热| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情极品国产一区二区三区| 一边摸一边抽搐一进一小说 | 少妇粗大呻吟视频| 亚洲av美国av| 老鸭窝网址在线观看| 99久久国产精品久久久| 人妻久久中文字幕网| 99久久99久久久精品蜜桃| 欧美 日韩 精品 国产| av视频免费观看在线观看| 久久精品国产亚洲av高清一级| 18禁黄网站禁片午夜丰满| 人人澡人人妻人| 热re99久久精品国产66热6| 日本欧美视频一区| 国产亚洲欧美在线一区二区| 久久精品成人免费网站| 久久久久久亚洲精品国产蜜桃av| 色播在线永久视频| 飞空精品影院首页| 日韩欧美一区视频在线观看| 国产精品九九99| 青草久久国产| 欧美国产精品一级二级三级| 老司机深夜福利视频在线观看| 午夜免费成人在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 极品人妻少妇av视频| 亚洲欧美日韩高清在线视频| 日本黄色视频三级网站网址 | 日本a在线网址| 国产精品美女特级片免费视频播放器 | 在线观看免费日韩欧美大片| 欧美一级毛片孕妇| 国产免费男女视频| 国产男靠女视频免费网站| 久久久水蜜桃国产精品网| 十八禁人妻一区二区| 搡老乐熟女国产| 变态另类成人亚洲欧美熟女 | 国产精品一区二区在线不卡| 黄色成人免费大全| 另类亚洲欧美激情| 久久亚洲真实| 高清在线国产一区| 国产精品98久久久久久宅男小说| 搡老岳熟女国产| 五月开心婷婷网| 热99re8久久精品国产| 午夜日韩欧美国产| 午夜视频精品福利| 欧美激情 高清一区二区三区| 久久精品91无色码中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 曰老女人黄片| 日韩欧美一区视频在线观看| 人成视频在线观看免费观看| 亚洲avbb在线观看| 一级a爱视频在线免费观看| 国产日韩欧美亚洲二区| 午夜福利在线免费观看网站| 日韩有码中文字幕| 少妇猛男粗大的猛烈进出视频| 免费在线观看影片大全网站| av视频免费观看在线观看| 日韩欧美免费精品| x7x7x7水蜜桃| 少妇猛男粗大的猛烈进出视频| 亚洲av成人不卡在线观看播放网| 午夜福利在线免费观看网站| 亚洲人成伊人成综合网2020| 真人做人爱边吃奶动态| 99久久人妻综合| 国产有黄有色有爽视频| 少妇的丰满在线观看| 亚洲色图av天堂| 久热这里只有精品99| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 在线观看日韩欧美| 精品高清国产在线一区| 欧美日韩亚洲高清精品| 老司机影院毛片| 久久久久国产一级毛片高清牌| 成年人午夜在线观看视频| 精品一区二区三卡| 啪啪无遮挡十八禁网站| 国产精品久久电影中文字幕 | 少妇被粗大的猛进出69影院| 亚洲黑人精品在线| 久久ye,这里只有精品| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利在线观看吧| 91老司机精品| 韩国精品一区二区三区| 天堂中文最新版在线下载| 高清av免费在线| 妹子高潮喷水视频| 午夜福利免费观看在线| 婷婷丁香在线五月| 黄色成人免费大全| 99热只有精品国产| av福利片在线| 免费在线观看视频国产中文字幕亚洲| 久久亚洲精品不卡| 国产精品 国内视频| 国产人伦9x9x在线观看| 天堂俺去俺来也www色官网| 美女高潮到喷水免费观看| 日本vs欧美在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利乱码中文字幕| 国产精品成人在线| 亚洲成人手机| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 久久ye,这里只有精品| 每晚都被弄得嗷嗷叫到高潮| 国产av精品麻豆| 校园春色视频在线观看| 黄色成人免费大全| 捣出白浆h1v1| 女人被狂操c到高潮| 黄色成人免费大全| 久久精品国产清高在天天线| 视频区图区小说| 一级a爱视频在线免费观看| 国产午夜精品久久久久久| 中出人妻视频一区二区| 中文亚洲av片在线观看爽 | 50天的宝宝边吃奶边哭怎么回事| 大型黄色视频在线免费观看| 丰满饥渴人妻一区二区三| 大型黄色视频在线免费观看| tube8黄色片| 成人免费观看视频高清| 欧美日韩视频精品一区| 黄片播放在线免费| 99国产精品一区二区三区| 在线观看一区二区三区激情| 免费女性裸体啪啪无遮挡网站| 精品熟女少妇八av免费久了| 一本综合久久免费| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美激情在线| 在线免费观看的www视频| 美女 人体艺术 gogo| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 男人操女人黄网站| 国产99白浆流出| 久久久久国内视频| 亚洲三区欧美一区| 亚洲人成电影观看| 999久久久精品免费观看国产| 日韩大码丰满熟妇| 97人妻天天添夜夜摸| 久久久久久久精品吃奶| 色老头精品视频在线观看| 国产伦人伦偷精品视频| 色婷婷久久久亚洲欧美| av网站免费在线观看视频| 国产精品国产高清国产av | 国产免费现黄频在线看| 精品高清国产在线一区| 精品国产一区二区三区久久久樱花| 脱女人内裤的视频| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区免费| 国产男女超爽视频在线观看| 无限看片的www在线观看| 国产有黄有色有爽视频| 不卡av一区二区三区| 狠狠婷婷综合久久久久久88av| 好看av亚洲va欧美ⅴa在| 成在线人永久免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩成人在线观看一区二区三区| 久久草成人影院| 亚洲国产看品久久| 亚洲免费av在线视频| 色在线成人网| 免费久久久久久久精品成人欧美视频| 80岁老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 80岁老熟妇乱子伦牲交| 91大片在线观看| 91麻豆精品激情在线观看国产 | 亚洲精品成人av观看孕妇| 中国美女看黄片| 国产精品亚洲一级av第二区| 夜夜躁狠狠躁天天躁| 国产不卡一卡二| 高清av免费在线| 亚洲片人在线观看| 久久影院123| 深夜精品福利| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 少妇猛男粗大的猛烈进出视频| 午夜福利在线免费观看网站| 欧美人与性动交α欧美软件| 欧美精品人与动牲交sv欧美| 国产视频一区二区在线看| 国产精品偷伦视频观看了| 动漫黄色视频在线观看| 在线观看日韩欧美| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 午夜久久久在线观看| 国产精品久久久人人做人人爽| 最新美女视频免费是黄的| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人 | 国产精品一区二区在线不卡| 久久久久精品人妻al黑| 成人精品一区二区免费| 欧美激情高清一区二区三区| 激情在线观看视频在线高清 | 午夜精品国产一区二区电影| 女人精品久久久久毛片| 久久精品国产亚洲av香蕉五月 | 午夜福利免费观看在线| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久精品吃奶| 激情视频va一区二区三区| 操出白浆在线播放| 国产99久久九九免费精品| 深夜精品福利| 看黄色毛片网站| 99精国产麻豆久久婷婷| 99国产精品一区二区三区| 亚洲国产欧美一区二区综合| 亚洲欧美激情在线| 操出白浆在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 深夜精品福利| 精品国产国语对白av| 男女之事视频高清在线观看| 国产精品一区二区精品视频观看| 1024视频免费在线观看| 亚洲精品中文字幕在线视频| 免费在线观看亚洲国产| 日本欧美视频一区| 国产片内射在线| 亚洲成av片中文字幕在线观看| 免费一级毛片在线播放高清视频 | 捣出白浆h1v1| 99久久99久久久精品蜜桃| 在线看a的网站| 在线观看66精品国产| 麻豆国产av国片精品| 国产深夜福利视频在线观看| 中出人妻视频一区二区| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 精品国产乱码久久久久久男人| 国产精品一区二区精品视频观看| 久久午夜亚洲精品久久| 涩涩av久久男人的天堂| 午夜成年电影在线免费观看| 国产精品二区激情视频| 亚洲欧美一区二区三区久久| 人成视频在线观看免费观看| 999久久久精品免费观看国产| 亚洲人成伊人成综合网2020| 国产一区在线观看成人免费| 久久影院123| 色94色欧美一区二区| 欧美精品啪啪一区二区三区| 国产色视频综合| 欧美+亚洲+日韩+国产| 久久久久视频综合| 91麻豆精品激情在线观看国产 | 日韩制服丝袜自拍偷拍| 免费久久久久久久精品成人欧美视频| 亚洲熟妇中文字幕五十中出 | 精品亚洲成国产av| 成人影院久久| 国产成人精品在线电影| 欧美日韩精品网址| 亚洲人成电影免费在线| 丁香欧美五月| 国产日韩一区二区三区精品不卡| 成在线人永久免费视频| 侵犯人妻中文字幕一二三四区| 精品熟女少妇八av免费久了| 99re在线观看精品视频| xxxhd国产人妻xxx| 欧美激情高清一区二区三区| 日韩中文字幕欧美一区二区| 久久这里只有精品19| 国产xxxxx性猛交| xxx96com| 精品国产乱码久久久久久男人| 黑人巨大精品欧美一区二区mp4| 亚洲人成电影免费在线| avwww免费| 亚洲情色 制服丝袜| 大陆偷拍与自拍| 女同久久另类99精品国产91| 无人区码免费观看不卡| 国产在线一区二区三区精| e午夜精品久久久久久久| 亚洲国产毛片av蜜桃av| 精品一区二区三区av网在线观看| 亚洲精品粉嫩美女一区| 久久国产亚洲av麻豆专区| 色94色欧美一区二区| 九色亚洲精品在线播放| 国产成人av教育| 国产精品香港三级国产av潘金莲| 99精品在免费线老司机午夜| 国产成人精品无人区| 老司机靠b影院| 老司机福利观看| 天堂√8在线中文| 国产精品久久久久成人av| 欧美亚洲 丝袜 人妻 在线| 人人妻,人人澡人人爽秒播| 日韩欧美在线二视频 | av不卡在线播放| 一区二区三区精品91| 男女午夜视频在线观看| 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 麻豆乱淫一区二区| 操美女的视频在线观看| 亚洲av美国av| av不卡在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美在线黄色| 欧美最黄视频在线播放免费 | 制服诱惑二区| 国产又色又爽无遮挡免费看| 99国产精品99久久久久| 亚洲精华国产精华精| 成人国产一区最新在线观看| 夫妻午夜视频| 黄色视频,在线免费观看| 亚洲欧美日韩另类电影网站| 亚洲欧美激情综合另类| 18禁国产床啪视频网站| 国产精品久久久久成人av| 国产熟女午夜一区二区三区| 美女午夜性视频免费| 国产精品电影一区二区三区 | 国产成人欧美| 亚洲avbb在线观看| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 99久久精品国产亚洲精品| 1024香蕉在线观看| 日韩免费高清中文字幕av| 久久午夜亚洲精品久久| av欧美777| 精品国产国语对白av| 中文欧美无线码| 搡老岳熟女国产| 真人做人爱边吃奶动态| 欧美亚洲 丝袜 人妻 在线| 丁香欧美五月| 一级毛片高清免费大全| 高清毛片免费观看视频网站 | 亚洲av美国av| 色老头精品视频在线观看| 午夜老司机福利片| 宅男免费午夜| 高清欧美精品videossex| 国产熟女午夜一区二区三区| 80岁老熟妇乱子伦牲交| 欧美乱色亚洲激情| 欧美人与性动交α欧美精品济南到| 一a级毛片在线观看| 9191精品国产免费久久| 超色免费av| 巨乳人妻的诱惑在线观看| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| 波多野结衣av一区二区av| 亚洲精品久久午夜乱码| 亚洲黑人精品在线| 精品亚洲成a人片在线观看| 黄色怎么调成土黄色| 亚洲精华国产精华精| 天天躁狠狠躁夜夜躁狠狠躁| 日日摸夜夜添夜夜添小说| 在线观看午夜福利视频| 波多野结衣av一区二区av| 免费一级毛片在线播放高清视频 |