• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grbner-Shirshov Bases for Universal Algebras*

    2014-12-13 03:18:40BokutChenYuqunSchoolofMathematicalSciencesSouthChinaNormalUniversityGuangzhou510631ChinaSobolevInstituteofMathematicsNovosibirskStateUniversityNovosibirsk630090Russia

    L A Bokut,Chen Yuqun(1.School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China;2.Sobolev Institute of Mathematics,Novosibirsk State University,Novosibirsk 630090,Russia)

    Gr bner bases and Gr bner-Shirshov bases were invented independently by A. I. Shirshov for ideals of free (commutative,anti-commutative)non-associative algebras[1-2],free Lie algebras[2-3]and implicitly free associative algebras[2-3](see also [4 -6]),by Hironaka[7]for ideals of the power series algebras (both formal and convergent),and by Buchberger[8]for ideals of the polynomial algebras.

    As it is well known,Gr bner-Shirshov (GS for short)bases method for a class of algebras is based on a Composition-Diamond lemma (CD-lemma for short)for the class. A general form of a CD-lemma over a field k is as follows.

    Composition-Diamond lemma Let M(X)be a free algebra generated by a set X of a category M of algebras over k,(N,≤)a linear basis (normal words)of M(X)with a monomial ordering ≤,S?M(X)andⅠd(S)the ideal of M(X)generated by S. Then the following statements are equivalent:

    (a)S is a Gr bner-Shirshov basis in(X).

    In some exceptional cases (dialgebras,conformal algebras)(a)?(b)?(c),but not (b)?(a).

    How to establish a CD-lemma for the free algebra(X)?Following the idea of Shirshov,one needs

    1)to define appropriate linear basis (normal words)N of(X);

    2)to find a monomial ordering on N;

    3)to find normal S-words;

    4)to define compositions of elements in S (they may be compositions of intersection,inclusion and left(right)multiplication,or may be else);

    5)to prove two key lemmas:

    Lemma 1 Let S be a GS basis. Then any element of Ⅰd(S)is a linear combination of normal Swords.

    Lemma 2 Let S be a GS basis,[a1s1b1]and[a2s2b2]normal S-words. If w =is trivial modulo(S,w).

    Let the normal words N of the free algebra(X)be a well-ordered set and 0≠f(X). Denote bythe leading word of f. f is called monic if the coefficient ofis 1.

    A well ordering on N is monomial if for any u,v,wwhere w|u=w|xuand w|v=w|xv.

    For example,let X be a well-ordered set and X*the free monoid generated by X. We define the deg-lex ordering on X*:to compare two words first by length and then lexicographically. Then,such an ordering is monomial on X*.

    An S-word u|sis normal if

    There are two kinds of compositions,a (intersection (inclusion))composition (s1,s2)wof two polynomials relative to w =“l(fā)cm”()N(X)and a(left (right)multiplication)composition Comw(s)of one polynomial relative to w =N(X). Namely,for monic polynomial s1,s2,s,and Comw(s)=vs or sv correspondingly.

    For example,let us start with the concepts of nonunique common multiple and least common multiple of two words u,vX*. A common multiple cm(u,v)means that cm(u,v)=a1ub1=a2vb2for some ai,biX*. Then lcm(u,v)means that some cm(u,v)contains some lcm(u,v)as a subword:cm(u,v)=c·lcm(u,v)·d with c,dX*,where u and v are the same subwords in both sides. To be precise,(a trivial lcm(u,v));

    Main applications

    · normal forms;

    · word problems;conjugacy problem;

    · rewriting system;

    · automata theory;

    · embedding of algebras into simple algebras and two-generated algebras;

    · extensions of groups and algebras;

    · PBW type theorems;

    · homology;

    · Dehn function;complexity;growth function;Hilbert series;etc.

    Since 2006,there were some 30 master theses and 4 PhD theses,more then 30 published papers in JA,IJAC,Comm Algebra,Algebra Coll and other Journals and Proceedings. There were organized 2 International conferences (2007,2009)with E Zelmanov as chairman of the program committee and several workshops.We are going to review some of the papers and published three survey papers[9-11]. Our main topic is GS bases method for different varieties (categories)of linear (Ω-)algebras over a field k or a commutative algebra K over k:associative algebras (including group(semigroup)algebras),tensor product of free associative algebras,Lie algebras,dialgebras,conformal algebras,pre-Lie (Vinberg right (left)symmetric)algebras,Rota-Baxter algebras,metabelian Lie algebras,L-algebras,semiring algebras,category algebras,etc. There are some applications particularly to new proofs of some known theorems.

    1 Gr?bner-Shirshov bases theory for some new classes of (universal)algebras

    In this section,we review some new CD-lemmas for tensor product of free associative algebras,Lie algebras over a commutative algebra,dialgebras,pre-Lie(Vinberg right (left)symmetric)algebras,Rota-Baxter algebras,metabelian Lie algebras,L-algebras,semiring algebras,associative algebras with multiple operations,differential algebras,category algebras,non-associative algebras over a commutative algebra,S-act algebras,etc. There are some applications for mentioned algebras.

    In[12],GS bases method was initiated for a category of k-algebra with the free object k?k.Here N(X,Y)= Y*X*is a set of normal words of k?k. For any u=uYuX,v=vYvXN(X,Y),lcm(u,v)=lcm(uY,vY)lcm(uX,vX)and it is no need the composition of multiplication.

    In[13],GS bases method was found for Lie algebras over a commutative algebra K. For this category free objects are“double”free Lie algebras,i.e.,free Lie algebra Liek[Y](X)over free commutative algebra k[Y]. Then N(Y,X)=[Y]NLSW(X),where NLSW(X)is the set of non-associative (Lie)Lyndon-Shirshov(LS for short)words in X. There are both kinds of compositions mentioned above,(f,g)wand Comw(f).Actually this case is more difficult than the case of Lie algebras over a field. There are two proofs for the last case. In the original Shirshov's proof[3],it was used implicitly that one element set {s},sLiek(X)is a GS basis in the free associative algebra k[2]. Another proof[6]based on so called PBW theorem in a form of Shirshov:If S?Liek(X)?k is a Lie GS basis then S is an associative GS basis in k as well(and visa versa). Both results are not valid for double free Lie algebras. For the second,it follows from counter examples to PBW theorem over commutative algebras[14-15]. For the first,in general there are (infinitely)many non-trivial compositions (s,s)wfor a Lie polynomial s over a commutative algebra. Namely,if ˉs=uYuX,uY≠1 then for any w1=aXuXcXuXbXALSW(X)(associative Lyndon-Shorshov word)a“semi-trivial”composition (s,s)w=[aXscXuXbX]-[aXuXcXsbX],where w=uYw1,is non-trivial.

    A key lemma in our proof is

    Lemma 3 Let S be a Lie GS basis in Liek[Y](X)and (asb)a normal S-word. Then

    As an application,it was given another proofs that Shirshov's and Cartier's examples of Lie algebras over commutative algebras are not embeddable into associative algebras over the same commutative ones. Also it was proved that Cohn's examples[17]LieK(x1,x2,x3|y3x3=y1x1+y2x2)for K =k[y1,y2,y3|=0],chk=p=2,3,5,have the same property.

    In[18],CD -lemma was established for metabelian Lie algebras.

    A Lie algebra L is called a metabelian Lie algebra if (L2)2=0.

    Let Lie(2,2)(X)be a free metabelian Lie algebra on X over k. A linear basis of any free polynilpotent Lie algebra L = Lie (n1,n2,…,nk)(X),(((Ln1)n2)…)nk= 0,was found in [19]using Shirshov's method[3]. For Lie(2,2)it is N(X)={xi,((xi1,xi2)…xim),i1>i2≤i3≤…≤im},where X={xi|iⅠ}is a linear ordered set. For u,vN(X)there are 5 types of lcm(u,v). Three of them was found by Talapov[20]and another 2 he missed. Actually from the CD-lemma for metabelian Lie algebras it does not follow Shirshov's result that the word problem is solvable for this class of algebras. Shirshov proved the residual finiteness of any finitely presented metabelian Lie algebra. Then the result follows.

    Let (A,?,·,θ,1)be a semiring,i.e.,(A,?,θ)is a commutative monoid,(A,·,1)is a monoid,and θ·a=a·θ =θ,· is distributive relative to ?from left and right:(a ?b)c=ac ?bc,c(a ?b)=ca ?cb. The semiring (A,?,·,θ,1)is commutative if (A,·,1)is a commutative monoid.

    The class of semirings is a variety. So a free semiring Rig generated by a set X is defined as usual as for any variety of universal systems.

    In[21],CD-lemma was proved for free semiring algebras kRig. It gives GS bases method for semirings Rig. The same was found for commutative semirings kRig[X|S]. As applications there were rediscovered normal forms of elements for two semirings from papers by Blass[22],R1=Rig[x|x =1 ?x2]and Miore-Leinster[23],R2=Rig[x|x= 1 ?x ?x2]. For R1a GS basis is S1={1 ?x2=x,x ?x4=x ?x3,x5=1 ?x4,1 ?x3?xn= xn,n =3,4}. For R2a GS basis is S2={x4=1 ?1·x2,x·x3=1·x2,1·x2·xn=xn,n =1,2,3}.

    An Ω-algebra A is a k-linear space with the linear operator set Ω on A.

    In[24],we establish GS bases method for associative Ω-algebras,where Ω consists of n-ary operations,n≥1.

    There are two kinds of compositions:intersection and inclusion.

    As applications,we give linear bases for free Rota-Baxter k-algebra of weight λ and λ-differential algebra,where a Rota-Baxter k-algebra is an associative algebra R with a k-linear operation P:R →R satisfying the Rota-Baxter relation:

    and a λ-differential algebra over k is an associative kalgebra R together with a k-linear operator D:R →R such that

    D(xy)=D(x)y+xD(y)+λ D(x)D(y),?x,yR.

    In[25],GS bases method for Rota-Baxter algebras over a field of characteristic 0 is found.

    There are four kinds of compositions:intersection,inclusion and left (right)multiplication.

    As application,we prove that every countably generated Rota-Baxter algebra with weight 0 can be embedded into a two-generated Rota-Baxter algebra.

    Another important application is PBW theorem for dendriform algebra which is a conjecture of L Guo.

    A dendriform algebra is a k-linear space D with two binary operations ?and ?such that for any x,y,zD,

    Suppose that (D,?,?)is a dendriform algebra over k with a linear basis X={xi|iⅠ}. Let xi?xj={xi?xj},xi?xj={xi?xj},where {xi?xj}and {xi?xj}are linear combinations of xX. Then D has an expression by generators and defining relations

    Denote by

    where RB(X)is the free Rota-Baxter algebra generated by X. Then U(D)is the universal enveloping Rota-Baxter algebra of D.

    The following result is obtained[26]:every dendriform algebra over a field of characteristic 0 can be embedded into its universal enveloping Rota-Baxter algebra.

    A non-associative A is called a right-symmetric(or pre-Lie)algebra if A satisfies the following identity(x,y,z)=(x,z,y)for the associator (x,y,z)=(xy)zx(yz).

    In[27],GS bases method is found for Pre-Lie algebras. As an application,we give a GS basis for the universal enveloping right-symmetric algebra of a Lie algebra. From this it follows PBW theorem for Lie algebra and right-symmetric algebra (Segal's theorem).

    GS bases method for differential algebras is established[28].

    As applications,there are given linear bases for free Lie-differential algebras and free commutative-differential algebras,respectively.

    An L-algebra is a k-linear space L equipped with two binary k-linear operations ?,?:L?L→L verifying the so-called entanglement relation:

    In [29],GS bases method for L-algebras is found.

    There are two kinds of compositions:inclusion and right multiplication.

    As applications,we give linear bases of a free dialgebra (Loday's theorem)and the free product of two L-algebras,and the following embedding theorems for L-algebras are obtained:1)Every countably generated L-algebra over a field k can be embedded into a twogenerated L-algebra. 2)Every L-algebra over a field k can be embedded into a simple L-algebra. 3)Every countably generated L-algebra over a countable field k can be embedded into a simple two-generated L-algebra. 4)Three arbitrary L-algebras A,B,C over a field k can be embedded into a simple L-algebra generated by B and C if |k|≤dim(B* C)and |A|≤|B* C|,where B* C is the free product of B and C.

    A k-linear space D equipped with two bilinear multiplications ├and ┤is called a dialgebra,if both├and ┤are associative and

    In[30],GS bases method for dialgebras is given. As results,we give linear bases for the universal enveloping algebra of a Leibniz algebra (Aymon-Grivel's theorem),the bar extension of a dialgebra,the free product of two dialgebras,and Clifford dialgebra. We obtain some normal forms for algebras mentioned the above.

    GS bases method for small categories is established[31]. As applications,we give linear bases for the simplicial category (a classical result)and the cyclic category (A. Cohen's theorem)respectively.

    GS bases method for non-associative algebras over commutative algebras is given[32]. As an application,it is shown that each countably generated non-associative algebra over an arbitrary commutative algebra K can be embedded into a two-generated non-associative algebra over K.

    In [33],it is investigated the relationship between the GS bases in free associative algebras,free left modules and“double-free”left modules (that is,free modules over a free algebra). We first give the Chibrikov's CD-lemma for modules and then we show that the Kang-Lee's CD-lemma follows from this lemma. As applications,we give linear bases for the following modules:the highest weight module over a Lie algebra sl2,the Verma module over a Kac-Moody algebra,the Verma module over the Lie algebra of coefficients of a free conformal algebra,and a universal enveloping module for a Sabinin algebra.

    A λ-differential associative algebra with multiple operators is a λ-differential algebra R with a set Ω of multi-linear operators.

    GS bases method for λ-differential associative algebras with multiple operators is established[34]. As an application,a linear basis for the free λ-differential Rota-Baxter algebra is given and then normal forms is obtained for such an algebra which is the same as one in[24].

    Let A be an associative algebra over a field k and S a monoid of linear operators on A. Then A is called an S-act algebra if A is an S-act with the action s(a)satisfying

    In[35],the“double free”S-act algebra (i.e.,a free S-act algebra,where S is a free semigroup)is constructed. Then GS bases theory for S-act algebras is established,where S is an arbitrary semigroup. As an application,a GS basis of free Chinese monoid-act algebra is given and hence a linear basis of free Chinese monoid-act algebra is obtained.

    2 Applications

    In this section,we review some applications of GS bases method (CD-lemmas)mentioned in the above section and CD-lemma for associative algebras.

    In[36],it is generalized the Shirshov's composition lemma for associative algebras by replacing the monomial ordering for“S-partially monomial”ordering of words. As applications,we give a new proof of Britton lemma for HNN extensions of groups. Also a GS basis of the alternating group is obtained.

    In[37],it is dealing with Schreier extensions of group

    of A by B. If B is a cyclic or a free abelian group,there are classical necessary and sufficient conditions for C to be a Schreier extension of A by B in terms of the factor set of B. In[38],it is mentioned that for any B it is difficult to find an analogous conditions.Actually this problem was solved in[37]using the GS bases technique. As applications there were given new proofs of above conditions for cyclic and free abelian cases,as well as for the case of HNN-extensions.

    The same kind of result was established for Schreier extensions of associative algebras[39]. An algebrais called a (singular)extension of the algebra M by B if M2=0,M is an ideal ofand/M?B as algebras. In [39],singular extensions are studied from the GS bases viewpoint. Namely,even though extensions correspond to cocycles,the reconstruction of an extension from a cocycle can be applied to every 2-cochain of B with coefficients in M. This means that every 2-cochain φ gives rise to a certain associative algebra A(φ)presented by generators and relations. The main observation of the paper[39]is that the relations of A(φ)form a GS basis if and only if the cochain φ is a cocycle (so the algebra A(φ)is a singular extension of B by M). This implies the main result of this paper:an algorithmic procedure to check the extension condition.

    Let Uq(AN)be the Drinfeld-Jimbo quantum group of type AN. In [40],by using GS bases,we give a simple (but not short)proof of the Rosso-Yamane theorem on PBW basis of Uq(AN)(see also[41]).

    In[42],a simple analysis of the word problem for Novikov'sp1p2(P)and Boone's groups G(T,q)based on Gr?bner-Shirshov bases technique is given(see also[43 -44]).

    In[45],a GS basis for the Chinese monoid is obtained and an algorithm for normal form of the Chinese monoid is given. It gives new proof of some results in Cassaigne,etc[46].

    In[47],an alternative approach to the definition of LS words (both associative and Lie)were found via free anti-commutative algebra AC(X)over a field.Namely for some ordering of non-associative words,we have Lie(X)=AC(X|S),where S is an anti-commutative GS basis and Ⅰrr(S)=NLSW(X). Moreover,a linear basis N(X)in this ordering of AC(X)consists of words[u]with the property u =(v)k,where vALSW(X),k≥1. The ordering is fulfilled the property[u]>[v]if u >v lexicographically (a prefix of an associative word is greater than the word).

    The same kind of result was established in[48]for Hall basis of a free Lie algebra for an ordering with condition[u]>[v]if u >v in the deg-lex ordering.

    In[49],a free inverse semigroup

    was studied. A GS basis and normal forms were found for the semigroup. This gives simple proofs of substantial refinements of results in Polyakova-Schain[50].

    In [51],by using GS bases,a straightforward proof for Artin-Markov normal form theorem for braid groups is given (see also[52]).

    In[53],by using CD-lemma for L-algebras[29],we give a GS basis of the free dendriform diaglebra as a quotient algebra of an L-algebras. Then we obtain the Hilbert series and Gelfand-Kirillov dimension of the free dendriform dialgebra generated by a finite set.

    In[54],by using GS bases,we show that in the following classes,each (resp. countably generated)algebra can be embedded into a simple (resp. twogenerated)algebra:associative differential algebras,associative Ω-algebras,associative λ-differential algebras. We show that in the following classes,each countably generated algebra over a countable field k can be embedded into a simple two-generated algebra:associative algebras,semigroups,Lie algebras,associative differential algebras,associative Ω-algebras,associative λ-differential algebras. Also we prove that any countably generated module over a free associative algebra k can be embedded into a cyclic k-module,where |X| >1. We give other proofs of the well known theorems:each countably generated group(resp. associative algebra,semigroup,Lie algebra)can be embedded into a two-generated group (resp.associative algebra,semigroup,Lie algebra)(Higman-Neumann-Neumann theorem,Malcev theorem,Shirshov theorem).

    In[55],we prove that two-generator one-relator groups with depth less than or equal to 3 can be effectively embedded into a tower of HNN-extensions in which each group has the effective standard normal form in the sense of Bokut-Kukin[56]. We give an example to show how to deal with some general cases for one-relator groups.

    In[57],we give a GS basis of the braid group Bn+1in Adyan-Thurston generators. As results,a new algorithm for getting the Adyan-Thurston normal form is obtained,and a new proof that the braid semigroupis the subsemigroup in Bn+1is given.

    In[58],by using the CD-lemma for non-associative algebras invented by A. I. Shirshov in 1962,we give GS bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra,respectively. As applications,we show I. P.Shestakov's result that any Akivis algebra is linear and D. Segal's result that the set of all good words in X**forms a linear basis of the free Pre-Lie algebra PLie(X)generated by the set X.

    In[59],a Lie GS basis is found for any free partially commutative Lie algebra.

    In[60],we give two explicit (quadratic)presentations of the plactic monoid in row and column generators correspondingly. Then we give direct independent proofs that these presentations are GS bases of the plactic algebra in deg-lex orderings of generators. From CD-lemma for associative algebras it follows that the set of Young tableaux is the Knuth normal form for plactic monoid.

    Kukin construction. Let P=sgp be a semigroup. Consider the Lie algebra

    where S consists of the following relations:

    Here,?zu」means the left normed bracketing.

    Drinfeld-Kohno construction. Let n >2 be an integer. The Drinfeld-Kohno Lie algebra Lnover Z is defined by generators tij=tjifor distinct indices 1≤i,j≤n-1,and relations

    where i,j,k,l are distinct.

    In[61],GS bases for Drinfeld-Kohno Lie algebra Lnand Kukin Lie algebra APare obtained. As an application,we show that Lnis an iterated semidirect product of free Lie algebras. Another application is Kukin's result:if semigroup P has the undecidable word problem then the Lie algebra APhas the same property. It gives another proof of the theorem of the first author that the word problem for Lie algebras is algorithmically undecidable (1972). For semigroups and groups there are famous results by Markov-Post (1947)and Novikov (1955)respectively.

    3 Some prospects

    We are trying to establish Gr?bner-Shirshov bases theory for Novikov algebras,strict monoidal categories,modules over an associative conformal algebra,associative n-conformal algebras,Nijenhuis algebras,etc. We will give some new applications of the mentioned Composition-Diamond lemmas,for example, automatic structures for some semigroups,PBW theorems,homology for some semigroup algebras,Dehn functions for some groups,embedding algebras into two generated simple algebras,word problems for some algebras,and so on.

    [1]Shirshov A I. Some algorithmic problem for ε-algebras[J]. Sibirskii Matematichskii Zhurnal,1962,3:132 -137.

    [2]Bokut L A,Latyshev V,Shestakov I,et al.Selected works of A.I. Shirshov[M].Trs:Bremner M,Kotchetov M V.Basel,Boston,Berlin:Birkh?user,2009.

    [3]Shirshov A I. Some algorithmic problem for Lie algebras[J]. Sibirskii Matematichskii Zhurnal,1962,3(2):292-296.

    [4]Bergman G M. The diamond lemma for ring theory[J].Advances in Mathematics,1978,29:178 -218.

    [5]Bokut L A. Imbeddings into simple associative algebras[J]. Algebra Logika,1976,15:117 -142.

    [6]Bokut L A,Chen Y Q. Gr?bner-Shirshov bases for Lie algebras:After A.I. Shirshov[J]. Southeast Asian Bulletin of Mathematics,2007,31:1057 -1076.

    [7]Hironaka H.Resolution of singularities of an algebraic variety over a field if characteristic zero:Ⅰ,Ⅱ[J]. Mathematische Annalen,1964,79:109 -203;205 -326.

    [8]Buchberger B.An algorithmical criteria for the solvability of algebraic systems of equations[J]. Aequationes Mathematicae,1970,4:374 -383.

    [9]Bokut L A,Chen Y Q. Gr?bner-Shirshov bases:Some new results[C]∥Shum K P,Zelmanov E,Zhang J P,et al. Advance in Algebra and Combinatorics. Singapore:World Scientific,2008:35 -56.

    [10]Bokut L A,Chen Y Q. Gr?bner-Shirshov bases and their calculation[J]. Bulletin of Mathematical Sciences,doi:10.1007/s13373 -014 -0054 -6.

    [11]Bokut L A,Chen Y Q,Shum K P. Some new results on Gr?bner-Shirshov bases[C]∥Hemakul W,Wahyuni S,Sy P W. Advances in Algebraic Structures. Singapore:World Scientific,2012:53 -102.

    [12]Bokut L A,Chen Y Q,Chen Y S. Composition-Diamond lemma for tensor product of free algebras[J]. Journal of Algebra,2010,323:2520 -2537.

    [13]Bokut L A,Chen Y Q,Chen Y S. Gr?bner-Shirshov bases for Lie algebras over a commutative algebra[J]. Journal of Algebra,2011,337:82 -102.

    [14]Cartier P. Remarques sur le théorème de Birkhoff-Witt[J]. Annali della Scuola Norm Sup di Pisa série Ⅲ,1958,Ⅻ:1 -4.

    [15]Shirshov A I. On the representation of Lie rings in associative rings[J]. Uspekhi Matematicheskikh Nauk,1953,8(5):173 -175.

    [16]Shirshov A I. On free Lie rings[J]. Mathematical Sbornik,1958,45(2):113 -122.

    [17]Cohn P M. A remark on the Birkhoff-Witt theorem[J].Journal of the London Mathematical Society,1963,38:197-203.

    [18]Chen Y S,Chen Y Q. Gr?bner-Shirshov bases for metabelian Lie algebras[J]. Journal of Algebra,2012,358:143 -161.

    [19]Bokut L A. A basis of free polynilpotent Lie algebras[J].Algebra Logika,1963,2(4):13 -19.

    [20]Talapov V V. Algebraically closed metabelian Lie algebras[J]. Algebra Logika,1982,21(3):357 -367.

    [21]Bokut L A,Chen Y Q,Mo Q H. Gr?bner-Shirshov bases for semirings[J]. Journal of Algebra,2013,378:47 -63.

    [22]Blass A. Seven trees in one[J]. Journal of Pure and Applied Algebra,1995,103:1 -21.

    [23]Fiore M,Leinster T. An objective representation of the Gaussian integers[J]. Journal of Symbolic Computation,2004,37:707 -716.

    [24]Bokut L A,Chen Y Q,Qiu J J. Gr?bner-Shirshov bases for associative algebras with multiple operations and free Rota-Baxter algebras[J]. Journal of Pure and Applied Algebra,2010,214:89 -100.

    [25]Bokut L A,Chen Y Q,Deng X M. Gr?bner-Shirshov bases for Rota-Baxter algebras[J]. Siberian Mathematical Journal,2010,51:978 -988.

    [26]Chen Y Q,Mo Q H. Embedding dendriform algebra into its universal enveloping Rota-Baxter algebra[J]. Proceedings of the American Mathematical Society,2011,139:4207 -4216.

    [27]Bokut L A,Chen Y Q,Li Y. Gr?bner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras[J]. Journal of Mathematical Sciences,2010,166:603 -612.

    [28]Chen Y Q,Chen Y S,Li Y. Composition-Diamond lemma for differential algebras[J]. The Arabian Journal for Science and Engineering,2009,34:135 -145.

    [29]Bokut L A,Chen Y Q,Huang J P. Gr?bner-Shirshov bases for L-algebras[J]. International Journal of Algebra and Computation,2013,23:547 -571.

    [30]Bokut L A,Chen Y Q,Liu C H.Gr?bner-Shirshov bases for dialgebras[J]. International Journal of Algebra and Computation,2010,20:391 -415.

    [31]Bokut L A,Chen Y Q,Li Y. Gr?bner-Shirshov bases for categories[C]∥Bai C M,Loday J L. Operads and Universal Algebra. Singapore:World Scientific,2012,9:1 -23.

    [32]Chen Y Q,Li J,Zeng M J. Composition-Diamond lemma for non-associative algebras over a polynomial algebra[J]. Southeast Asian Bulletin of Mathematics,2010,34:629 -638.

    [33]Chen Y Q,Chen Y S,Zhong C Y. Composition-Diamond lemma for modules[J]. Czechoslovak Mathematical Journal,2010,60:59 -76.

    [34]Qiu J J,Chen Y Q. Composition-Diamond lemma for λdifferential associative algebras with multiple operators[J]. Journal of Algebra and its Applications,2010,9:223 -239.

    [35]Zhang X. Gr?bner-Shirshov bases for S-act algebras[J].Southeast Asian Bulletin of Mathematics,2010,34:791 -800.

    [36]Chen Y Q,Zhong C Y. Gr?bner-Shirshov basis for HNN extensions of groups and for the alternative group[J].Communications in Algebra,2008,36:94 -103.

    [37]Chen Y Q. Gr?bner-Shirshov basis for Schreier extensions of groups[J]. Communications in Algebra,2008,36:1609 -1625.

    [38]Hall M Jr. The theory of groups[M]. New York:The Macmillan Company,1959.

    [39]Chen Y Q. Gr?bner-Shirshov basis for extensions of algebras[J]. Algebra Colloquium,2009,16:283 -292.

    [40]Chen Y Q,Shao H S,Shum K P. On Rosso-Yamane theorem on PBW basis of Uq(AN)[J]. CUBO A Mathematical Journal,2008,10:171 -194.

    [41]Bokut L A,Malcolmson P. Gr?bner-Shirshov basis for quantum enveloping algebras[J]. Israel Journal of Mathematics,1996,96:97 -113.

    [42]Chen Y Q,Chen W S,Luo R I. Word problem for Novikov's and Boone's group via Gr?bner-Shirshov bases[J]. Southeast Asian Bulletin of Mathematics,2008,32:863 -877.

    [43]Bokut L A. On a certain property of the Boone group:Ⅱ[J]. Algebra Logika,1967,6(1):1 -24.

    [44]Bokut L A. On the Novikov groups[J]. Algebra Logika,1967,6(1):25 -38.

    [45]Chen Y Q,Qiu J J. Gr?bner-Shirshov basis for the Chinese monoid[J]. Journal of Algebra and its Applications,2008,7:623 -628.

    [46]Cassaigne J,Espie M,Krob D,et al. The Chinese monoid[J]. International Journal of Algebra and Computation,2001,11:301 -334.

    [47]Bokut L A,Chen Y Q,Li Y. Lyndon-Shirshov words and anti-commutative algebras[J]. Journal of Algebra,2013,378:173 -183.

    [48]Bokut L A,Chen Y Q,Li Y. Anti-commutative Gr?bner-Shirshov basis of a free Lie algebra[J]. Science in China:Series A,2009,52:244 -253.

    [49]Bokut L A,Chen Y Q,Zhao X G. Gr?bner-Shirshov beses for free inverse semigroups[J]. International Journal of Algebra and Computation,2009,19:129 -143.

    [50]Poliakova O,Schein B M. A new construction for free inverse semigroups[J]. Journal of Algebra,2005,288:20-58.

    [51]Chen Y Q,Mo Q H. Artin-Markov normal form for braid group[J]. Southeast Asian Bulletin of Mathematics,2009,33:403 -419.

    [52]Bokut L A,Chaynikov V V,Shum K P. Markov and Artin normal form theorem for braid groups[J]. Communications in Algebra,2007,35:1 -11.

    [53]Chen Y Q,Wang B. Gr?bner-Shirshov bases and Hilbert series of free dendriform algebras[J]. Southeast Asian Bulletin of Mathematics,2010,34:639 -650.

    [54]Bokut L A,Chen Y Q,Mo Q H. Gr?bner-Shirshov bases and embeddings of algebras[J]. International Journal of Algebra and Computation,2010,20:875 -900.

    [55]Chen Y Q,Zhong C Y. Gr?bner-Shirshov basis for some one-relator groups[J]. Algebra Colloquium,2011,19:99-116.

    [56]Bokut L A,Kukin G P. Algorithmic and combinatorial algebra[M]. Dordrecht:Kluwer Academic Publishers,1994.

    [57]Chen Y Q,Zhong C Y. Gr?bner-Shirshov bases for braid groups in Adyan-Thurston generators[J]. Algebra Colloquium,2013,20:309 -318.

    [58]Chen Y Q,Li Y. Some remarks on the Akivis algebras and the Pre-Lie algebras[J]. Czechoslovak Mathematical Journal,2011,61:707 -720.

    [59]Chen Y Q,Mo Q H. Gr?bner-Shirshov bases for free partially commutative Lie algebras[J]. Communications in Algebra,2013,41:3753 -3761.

    [60]Bokut L A,Chen Y Q,Chen W P,et al. New approaches to plactic monoid via Gr?bner-Shirshov bases[J]. Journal of Algebra,arXiv:1106.4753.

    [61]Chen Y Q,Li Y,Tang Q Y. Gr?bner-Shirshov bases for some Lie algebras[J]. Siberian Mathematical Journal,arXiv:1305.4546.

    国产乱人伦免费视频| 欧美人与性动交α欧美精品济南到| 日韩欧美一区二区三区在线观看 | 日韩欧美一区二区三区在线观看 | 中文字幕高清在线视频| 色精品久久人妻99蜜桃| 美女高潮喷水抽搐中文字幕| 99riav亚洲国产免费| av欧美777| 欧美国产精品va在线观看不卡| 制服人妻中文乱码| 成人亚洲精品一区在线观看| 亚洲三区欧美一区| 国产激情欧美一区二区| 欧美亚洲 丝袜 人妻 在线| 欧美日韩亚洲综合一区二区三区_| 亚洲国产毛片av蜜桃av| 亚洲精品久久午夜乱码| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| 天堂动漫精品| 777久久人妻少妇嫩草av网站| 国产精品亚洲一级av第二区| 国产99白浆流出| 亚洲 国产 在线| 亚洲国产毛片av蜜桃av| 久久天堂一区二区三区四区| 老汉色av国产亚洲站长工具| 天天添夜夜摸| 岛国毛片在线播放| 欧美黄色片欧美黄色片| 亚洲熟妇中文字幕五十中出 | 久久久久久久午夜电影 | 亚洲成人免费av在线播放| 一进一出抽搐动态| 亚洲自偷自拍图片 自拍| 男女床上黄色一级片免费看| 人妻丰满熟妇av一区二区三区 | 99国产极品粉嫩在线观看| 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 亚洲人成77777在线视频| 亚洲成人手机| 最近最新中文字幕大全电影3 | 国产一卡二卡三卡精品| 亚洲专区中文字幕在线| 欧美日韩瑟瑟在线播放| 久久午夜综合久久蜜桃| 在线av久久热| 99久久国产精品久久久| 在线观看午夜福利视频| 欧美日韩乱码在线| av有码第一页| 性色av乱码一区二区三区2| 夜夜爽天天搞| 人人妻人人澡人人看| 狂野欧美激情性xxxx| 黑人猛操日本美女一级片| 国产精品电影一区二区三区 | 80岁老熟妇乱子伦牲交| 日韩熟女老妇一区二区性免费视频| 大型黄色视频在线免费观看| 国产精品一区二区免费欧美| 亚洲一码二码三码区别大吗| 老汉色∧v一级毛片| 亚洲熟妇中文字幕五十中出 | 国产一区有黄有色的免费视频| 日本a在线网址| 人人妻,人人澡人人爽秒播| netflix在线观看网站| 午夜成年电影在线免费观看| 99久久综合精品五月天人人| 99国产精品一区二区蜜桃av | 村上凉子中文字幕在线| 亚洲精品中文字幕在线视频| 色综合婷婷激情| 成人影院久久| 亚洲熟女精品中文字幕| 久久国产精品大桥未久av| 伦理电影免费视频| 热99re8久久精品国产| 免费在线观看亚洲国产| 成人18禁高潮啪啪吃奶动态图| 久久亚洲真实| 无人区码免费观看不卡| 欧美人与性动交α欧美精品济南到| 欧美日韩视频精品一区| 国内久久婷婷六月综合欲色啪| 人人妻人人添人人爽欧美一区卜| 久久久精品国产亚洲av高清涩受| 亚洲av成人不卡在线观看播放网| 捣出白浆h1v1| 18禁观看日本| 亚洲av日韩在线播放| 亚洲情色 制服丝袜| 人人妻人人爽人人添夜夜欢视频| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 亚洲午夜理论影院| 久久久久久亚洲精品国产蜜桃av| 国产精品成人在线| 麻豆国产av国片精品| 大码成人一级视频| 精品午夜福利视频在线观看一区| 午夜久久久在线观看| 久久人人爽av亚洲精品天堂| 午夜福利影视在线免费观看| 无限看片的www在线观看| 亚洲精品在线美女| 国产淫语在线视频| 18禁美女被吸乳视频| 色综合欧美亚洲国产小说| 亚洲中文日韩欧美视频| 999精品在线视频| 另类亚洲欧美激情| 国产成人影院久久av| 久久性视频一级片| 精品国产乱子伦一区二区三区| 少妇粗大呻吟视频| 19禁男女啪啪无遮挡网站| 1024视频免费在线观看| 777米奇影视久久| 日韩一卡2卡3卡4卡2021年| 熟女少妇亚洲综合色aaa.| 亚洲欧美一区二区三区久久| 久久国产精品影院| 国产欧美日韩综合在线一区二区| 国产不卡一卡二| 夫妻午夜视频| 国产一区在线观看成人免费| 成人三级做爰电影| 日本黄色日本黄色录像| 又紧又爽又黄一区二区| 欧美日韩一级在线毛片| 大陆偷拍与自拍| 99国产精品免费福利视频| 99国产精品一区二区蜜桃av | 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久国内视频| 伦理电影免费视频| 国产亚洲一区二区精品| 一a级毛片在线观看| 亚洲七黄色美女视频| 美女 人体艺术 gogo| 看免费av毛片| 乱人伦中国视频| 国产精品二区激情视频| 亚洲五月婷婷丁香| 国产高清videossex| 女人爽到高潮嗷嗷叫在线视频| 精品一区二区三区视频在线观看免费 | 另类亚洲欧美激情| 久久久久久久精品吃奶| 色综合欧美亚洲国产小说| 国产精品电影一区二区三区 | 日本黄色日本黄色录像| 一边摸一边抽搐一进一出视频| 色在线成人网| 在线观看午夜福利视频| 可以免费在线观看a视频的电影网站| 国产av又大| 人人澡人人妻人| 国产1区2区3区精品| 午夜影院日韩av| 91麻豆精品激情在线观看国产 | 又大又爽又粗| 精品国产亚洲在线| 日本wwww免费看| 欧美av亚洲av综合av国产av| 国内久久婷婷六月综合欲色啪| 人人妻人人澡人人爽人人夜夜| 丁香六月欧美| 精品无人区乱码1区二区| 午夜亚洲福利在线播放| 国产区一区二久久| 黄片播放在线免费| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线免费观看网站| 女警被强在线播放| 9191精品国产免费久久| 久久久久久人人人人人| 成人亚洲精品一区在线观看| 别揉我奶头~嗯~啊~动态视频| 黄色毛片三级朝国网站| 老熟妇仑乱视频hdxx| 99热只有精品国产| 亚洲人成电影观看| 久久影院123| 在线观看66精品国产| 自线自在国产av| 午夜福利视频在线观看免费| 免费看十八禁软件| 欧美中文综合在线视频| 一级a爱视频在线免费观看| 国产xxxxx性猛交| 国产一区二区激情短视频| 中文欧美无线码| 国产高清国产精品国产三级| 日本欧美视频一区| 99国产精品一区二区蜜桃av | 妹子高潮喷水视频| 国产精品99久久99久久久不卡| 99国产精品一区二区三区| 国产精品av久久久久免费| 99国产极品粉嫩在线观看| 国产精品一区二区在线不卡| 欧美日韩亚洲综合一区二区三区_| 日本五十路高清| 在线观看免费高清a一片| 久久天躁狠狠躁夜夜2o2o| 欧美老熟妇乱子伦牲交| 日韩三级视频一区二区三区| tocl精华| 一级毛片女人18水好多| 亚洲精品国产区一区二| 日韩三级视频一区二区三区| 久久久久久亚洲精品国产蜜桃av| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 亚洲一码二码三码区别大吗| av一本久久久久| 午夜激情av网站| 亚洲国产看品久久| 一边摸一边抽搐一进一小说 | 午夜两性在线视频| 日韩欧美一区视频在线观看| 国产伦人伦偷精品视频| av片东京热男人的天堂| 久久精品国产综合久久久| 午夜免费成人在线视频| 国产成人精品在线电影| 777米奇影视久久| 777久久人妻少妇嫩草av网站| 亚洲片人在线观看| 国产精品成人在线| 国产精品电影一区二区三区 | 少妇的丰满在线观看| 别揉我奶头~嗯~啊~动态视频| 人成视频在线观看免费观看| 国产亚洲精品第一综合不卡| 精品电影一区二区在线| 丝袜美足系列| 高清在线国产一区| aaaaa片日本免费| 俄罗斯特黄特色一大片| 国产精品香港三级国产av潘金莲| 欧美不卡视频在线免费观看 | 手机成人av网站| 十八禁高潮呻吟视频| 午夜福利在线免费观看网站| 美女扒开内裤让男人捅视频| 婷婷成人精品国产| 91成年电影在线观看| 男人操女人黄网站| 看黄色毛片网站| 精品亚洲成国产av| 男女免费视频国产| 国产成人啪精品午夜网站| 亚洲avbb在线观看| 女人爽到高潮嗷嗷叫在线视频| www.999成人在线观看| 18禁观看日本| 91成年电影在线观看| 黄色片一级片一级黄色片| 小蜜桃在线观看免费完整版高清| 欧美又色又爽又黄视频| 一个人免费在线观看电影| 人妻久久中文字幕网| www日本在线高清视频| 亚洲自拍偷在线| 天美传媒精品一区二区| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 欧美性猛交黑人性爽| 欧美成狂野欧美在线观看| 欧美中文综合在线视频| 网址你懂的国产日韩在线| 国产精品女同一区二区软件 | 一进一出抽搐gif免费好疼| 老熟妇仑乱视频hdxx| 悠悠久久av| 久久久久亚洲av毛片大全| 国产探花在线观看一区二区| 热99re8久久精品国产| 很黄的视频免费| 琪琪午夜伦伦电影理论片6080| 99热只有精品国产| 香蕉丝袜av| 欧美成狂野欧美在线观看| 亚洲最大成人手机在线| 欧美3d第一页| 黄色丝袜av网址大全| av黄色大香蕉| 丁香六月欧美| 中文亚洲av片在线观看爽| av在线蜜桃| 在线播放无遮挡| 麻豆成人av在线观看| 亚洲精品色激情综合| 少妇人妻精品综合一区二区 | 成人无遮挡网站| 免费观看精品视频网站| 亚洲美女黄片视频| 中国美女看黄片| 日日摸夜夜添夜夜添小说| 日韩欧美精品v在线| 18美女黄网站色大片免费观看| 国产又黄又爽又无遮挡在线| 国内少妇人妻偷人精品xxx网站| 日韩高清综合在线| 99久久99久久久精品蜜桃| 午夜福利欧美成人| 久久午夜亚洲精品久久| 好看av亚洲va欧美ⅴa在| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器| 少妇熟女aⅴ在线视频| 久久亚洲精品不卡| 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 国产一区二区在线观看日韩 | 黄色丝袜av网址大全| 不卡一级毛片| 日本a在线网址| 一本精品99久久精品77| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人 | 好看av亚洲va欧美ⅴa在| 精品人妻偷拍中文字幕| 观看美女的网站| 熟女人妻精品中文字幕| 国产精品久久久久久人妻精品电影| 国产欧美日韩一区二区精品| 最近视频中文字幕2019在线8| 淫秽高清视频在线观看| 免费观看的影片在线观看| 中文字幕精品亚洲无线码一区| 99国产极品粉嫩在线观看| 久久精品人妻少妇| 日韩欧美 国产精品| 国产精品亚洲美女久久久| 成人国产综合亚洲| 国产三级在线视频| 久久久久久国产a免费观看| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片 | 变态另类成人亚洲欧美熟女| 九色成人免费人妻av| 国产单亲对白刺激| 国产黄片美女视频| 国产成人福利小说| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩黄片免| 18禁在线播放成人免费| 日韩国内少妇激情av| 五月伊人婷婷丁香| 亚洲精品乱码久久久v下载方式 | 欧美中文日本在线观看视频| 亚洲人成网站在线播放欧美日韩| 中国美女看黄片| 小蜜桃在线观看免费完整版高清| 国产欧美日韩一区二区三| 国内精品久久久久久久电影| 精品一区二区三区人妻视频| av视频在线观看入口| 国产又黄又爽又无遮挡在线| 日韩欧美精品v在线| 亚洲av免费高清在线观看| 久久精品国产综合久久久| 宅男免费午夜| 老司机午夜福利在线观看视频| 网址你懂的国产日韩在线| 一夜夜www| 人妻丰满熟妇av一区二区三区| 国产野战对白在线观看| 18美女黄网站色大片免费观看| 成人精品一区二区免费| 国产精品,欧美在线| 免费在线观看亚洲国产| 精品一区二区三区视频在线观看免费| www.999成人在线观看| 一级毛片女人18水好多| 男女下面进入的视频免费午夜| 岛国视频午夜一区免费看| x7x7x7水蜜桃| 欧美日韩综合久久久久久 | 欧美日韩福利视频一区二区| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 国产精品乱码一区二三区的特点| 日本 av在线| 国产av一区在线观看免费| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 亚洲人成网站在线播放欧美日韩| 色播亚洲综合网| 国产午夜精品论理片| 久久香蕉国产精品| 尤物成人国产欧美一区二区三区| 色噜噜av男人的天堂激情| 亚洲国产精品久久男人天堂| 男女午夜视频在线观看| 亚洲欧美日韩卡通动漫| 国产免费男女视频| 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 国产精品综合久久久久久久免费| 男插女下体视频免费在线播放| 国产99白浆流出| 啪啪无遮挡十八禁网站| 国产免费男女视频| 国产一区二区三区在线臀色熟女| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩欧美在线二视频| 国产野战对白在线观看| 国产淫片久久久久久久久 | 欧美一级毛片孕妇| 又粗又爽又猛毛片免费看| 久久精品91无色码中文字幕| 亚洲国产高清在线一区二区三| 精品免费久久久久久久清纯| 亚洲成av人片在线播放无| 十八禁网站免费在线| 色尼玛亚洲综合影院| 久久久久久九九精品二区国产| 母亲3免费完整高清在线观看| 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清| 两人在一起打扑克的视频| 国产亚洲精品一区二区www| 午夜福利高清视频| 男女之事视频高清在线观看| 国内久久婷婷六月综合欲色啪| 国产毛片a区久久久久| 岛国在线观看网站| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影| 3wmmmm亚洲av在线观看| 淫秽高清视频在线观看| 女警被强在线播放| 可以在线观看毛片的网站| 精品电影一区二区在线| 国产精品三级大全| 最近在线观看免费完整版| 欧美极品一区二区三区四区| 欧美精品啪啪一区二区三区| 日韩成人在线观看一区二区三区| 最近视频中文字幕2019在线8| 老鸭窝网址在线观看| 蜜桃久久精品国产亚洲av| 欧美乱码精品一区二区三区| 三级国产精品欧美在线观看| 国产成人系列免费观看| 久久精品影院6| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线 | 久久国产精品人妻蜜桃| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看 | 首页视频小说图片口味搜索| 午夜免费男女啪啪视频观看 | 91久久精品国产一区二区成人 | 丝袜美腿在线中文| 操出白浆在线播放| 亚洲国产精品久久男人天堂| 国产探花极品一区二区| 一进一出抽搐gif免费好疼| 香蕉丝袜av| 久久久国产成人精品二区| 国产精品99久久99久久久不卡| 国产精品久久久人人做人人爽| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 少妇高潮的动态图| 久久99热这里只有精品18| 免费人成视频x8x8入口观看| 精品99又大又爽又粗少妇毛片 | 国产在视频线在精品| 国语自产精品视频在线第100页| 国产私拍福利视频在线观看| 亚洲精品久久国产高清桃花| www国产在线视频色| 日本黄色视频三级网站网址| 亚洲无线在线观看| 国产高清videossex| 日本 av在线| 久久精品国产99精品国产亚洲性色| 他把我摸到了高潮在线观看| 日本在线视频免费播放| 中文字幕人成人乱码亚洲影| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 可以在线观看的亚洲视频| 五月伊人婷婷丁香| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| 日本在线视频免费播放| 香蕉av资源在线| 久久久久久久久中文| 成年女人永久免费观看视频| 免费看日本二区| 97超视频在线观看视频| 久久人妻av系列| 久久久久久大精品| 中文字幕av在线有码专区| 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 日本精品一区二区三区蜜桃| 又黄又粗又硬又大视频| 51午夜福利影视在线观看| 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 女同久久另类99精品国产91| 在线观看日韩欧美| 日韩欧美 国产精品| 成人无遮挡网站| 757午夜福利合集在线观看| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 夜夜爽天天搞| 熟女电影av网| 色精品久久人妻99蜜桃| 神马国产精品三级电影在线观看| aaaaa片日本免费| 国产欧美日韩一区二区三| 午夜久久久久精精品| av中文乱码字幕在线| 成人亚洲精品av一区二区| 一a级毛片在线观看| 亚洲精品456在线播放app | 亚洲精品美女久久久久99蜜臀| 国产探花在线观看一区二区| 女人十人毛片免费观看3o分钟| 伊人久久精品亚洲午夜| 51午夜福利影视在线观看| 老汉色∧v一级毛片| 成人性生交大片免费视频hd| 不卡一级毛片| 色综合欧美亚洲国产小说| 两个人的视频大全免费| 免费搜索国产男女视频| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 男人舔奶头视频| 最新在线观看一区二区三区| 免费看a级黄色片| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 亚洲最大成人中文| 欧美黑人巨大hd| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟人妻熟丝袜美 | 无限看片的www在线观看| 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 亚洲在线观看片| av视频在线观看入口| 欧美一区二区精品小视频在线| 老司机福利观看| 成年女人永久免费观看视频| 在线观看66精品国产| xxxwww97欧美| 亚洲18禁久久av| 色老头精品视频在线观看| 黄色片一级片一级黄色片| 亚洲激情在线av| 欧美+日韩+精品| 真人一进一出gif抽搐免费| 一a级毛片在线观看| 午夜视频国产福利| 综合色av麻豆| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 国内少妇人妻偷人精品xxx网站| 国产真实乱freesex| 男女做爰动态图高潮gif福利片| 一本精品99久久精品77| 日韩欧美三级三区| 日日夜夜操网爽| 免费av毛片视频| 国产精品99久久久久久久久| 99国产精品一区二区蜜桃av| 欧美日韩精品网址| 黄片大片在线免费观看| 变态另类成人亚洲欧美熟女| 欧美黄色淫秽网站| www日本黄色视频网| 色尼玛亚洲综合影院| 一进一出好大好爽视频| 无限看片的www在线观看| 亚洲黑人精品在线| 在线观看66精品国产| 男人的好看免费观看在线视频| 亚洲精品成人久久久久久| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 午夜精品一区二区三区免费看| 老汉色av国产亚洲站长工具| 亚洲久久久久久中文字幕| 久久99热这里只有精品18| 女人被狂操c到高潮| 亚洲精品国产精品久久久不卡| 亚洲国产日韩欧美精品在线观看 | 国内精品一区二区在线观看| 久久6这里有精品| 伊人久久大香线蕉亚洲五| 女人被狂操c到高潮| 久久久成人免费电影| 99在线视频只有这里精品首页| 神马国产精品三级电影在线观看| 国内久久婷婷六月综合欲色啪| АⅤ资源中文在线天堂| 久久久久精品国产欧美久久久|