• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The dopamine system and alcohol dependence

    2014-12-09 06:28:35HuiMAGangZHU
    上海精神醫(yī)學(xué) 2014年2期
    關(guān)鍵詞:病因?qū)W多巴胺綜述

    Hui MA , Gang ZHU*

    ?Review?

    The dopamine system and alcohol dependence

    Hui MA1,2, Gang ZHU2,*

    dopamine, alcohol dependence, neurobiochemistry, review

    1. Introduction

    Alcohol is one of the most widely used psychoactive substances in the world. Alcohol-induced changes in brain functions can lead to disordered cognitive functioning, disrupted emotions and behavioral changes. Moreover, these brain changes are important contributing factors to the development of alcohol use disorders, including acute intoxication, long-term misuse and dependence. According to a survey sponsored by the World Health Organization, approximately 50% of the world adult population drank alcohol in 2004 and 76 million individuals met criteria for alcohol-related mental or behavioral disorders listed in the 10th Revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10).[1]A report on the relative contribution of different conditions to the ‘global burden of disease’ (which considers both premature mortality and disability) found that in 2010 alcohol ranked third out of the 25 major causes of the global burden of disease. In high-income countries the relative importance of alcohol-related health problems compared to other health problems is usually greater than in low- and middle-income countries.[2]Alcohol dependence, one of the most important alcohol-related conditions, is widely recognized as a growing global problem with serious medical, economic and social consequences.

    Ethanol is a liposoluble neurotropic substance which penetrates the blood-brain barrier and inhibits central nervous system (CNS) functions; it is directly toxic to the brain. The etiology and pathology of alcohol dependence is the outcome of a complex interplay of biological, psychological and socio-environmental factors. CNS neurotransmitters play an important role in the development of alcohol addiction. Previous studies identified a wide range of neurotransmitters related to alcohol metabolism including dopamine, 5-HT,γ-aminobutyric acid, glutamate, endogenous opioid transmitter, acetylcholine and norepinephrine.[3]This review summarizes research progress in understanding the relationships linking the dopaminergic system and alcohol consumption.

    2. The dopamine system and brain reward circuitry

    The dopamine (DA) system in the CNS includes the nigrostriatal pathway, the mesolimbic pathway and the tuberoinfundibular pathway. Dopamine is mainly produced in the substantia nigra, projected along the nigrostriatal pathways and stored in the striatum. Five subtypes of DA receptors have been identified and cloned. All of them function both individually and interactively as G-protein coupled receptors.

    There has been continuous research since the 1970s on the role DA plays in the brain reward system.The reward reinforcement circuitry is part of the limbic system that includes the ventral tegmental area (VTA),nucleus accumbens (NAc), ventral striatum, bed nucleus of the stria terminalis, hippocampus, amygdale, and other brain structures. DA is the main neurotransmitter of this system.[4-8]The reward system modulates primary physiological functions related to survival including the intake of food and water and sexual behavior. It is also the target of psychoactive substances including alcohol,cocaine, amphetamine and opioids. The mesolimbic DA pathway (the NAc is the central regulation structure for the reward effect) and the mesocortical pathway are the key structures that modulate the reward reinforcement circuitry.[4-8]

    3. Influence of alcohol consumption on the dopaminergic system

    Several studies have confirmed a dose-response relationship between alcohol intake and DA release in the NAc.[9-11]Other experiments have also found that injection of ethanol in the NAc induces local DA release in a dose-response fashion.[11-12]In 2000 Yoshimoto and colleagues[13]reported a doserelated elevation of extracellular DA levels in the amygdala after intraperitoneal injection of ethanol and a delayed elevation of DA after ethanol injection in the central amygdaloid nucleus via a microdialysis membrane.[13]These results suggest that the amygdala,part of the reward circuitry, plays a central role in the alcohol-induced effects on the brain. Yim and colleagues[14]documented the process of DA release in the brain induced by various doses of ethanol (0-2.0 g/kg). They found that extracellular DA levels did not respond to ethanol in a linear fashion with high doses (1 and 2 g/kg); the DA level returned to baseline within 90 minutes while the ethanol level was still elevated.[14]This suggests acute tolerance to ethanol-induced DA release in the NAc and that ethanol-induced DA release is dependent on the concentration of ethanol. Research by Yim and Gonzales[10]exploring the underlying mechanism of ethanol-induced DA release using animal models found that ethanol increases DA via the promotion of synaptic terminal DA release rather than via the inhibition of DA transporters.[10]Other studies found that ethanol can also indirectly increase DA levels by affecting GABAergic neurons and opioid receptors in the NAc.[15-17]

    Other lines of research related to alcohol withdrawal reinforce this model of alcohol-related changes in DA.Electrophysiological studies found that acute ethanol intake can increase DA neuron discharge in the nigra and VTA; this discharge is reduced during alcohol withdrawal and restored after restarting ethanol intake.[18]Animal studies also found that alcohol withdrawal is related to reduced release of DA in the striatal.[19]This suggests that the negative mood during alcohol withdrawal is related to the inhibition of DA in the limbic system and that the voluntary alcohol intake of animals experiencing withdrawal may be reinforced by restoration of DA levels in relevant brain areas after re-initiation of alcohol intake.

    Researchers have successfully bred several lines of rats to aid in research about alcohol use and alcohol dependence[4,20]: (a) alcohol-preferring (P) / alcoholnonpreferring (NP) rats; (b) high-alcohol-drinking (HAD)/ low-alcohol-drinking (LAD) rats; (c) University of Chile bibulous (UChB) /University of Chile abstainer (UChA)rats, (d) Alko alcohol (AA) / Alko non-alcohol (ANA) rats,(e) Sardinian alcohol-preferring (sP) / Sardinian alcohol–nonpreferring (sNP) rats, (f) high alcohol consuming(HARF) / low alcohol consuming (LARF) rats and so forth.Alcohol-preferring rats are of special importance for research on the role of DA in alcohol preference because rats highly susceptible to alcohol dependence have defects of the DA system in the mesolimbic pathways.[4,20-22]Using these rat models, researchers have located lower extracellular baseline DA levels in the cerebral cortex and NAc in P rats;[21,22]in the striatal, olfactory tubercle and NAc in HAD rats;[22,23]and in the NAc in UChB rats.[24]Smith and Weiss[25]injected ethanol intraperitoneally to P rats, NP rats and genetically heterogeneous Wistar rats for five consecutive days and found elevated extracellular DA levels in P rats and Wistar rats but not in NP rats. Bustamante and colleagues[20]found that intraperitoneal injection of saline water to UChB and UChA did not induce any changes in the extracellular DA levels in the NAc, but injection of ethanol induced significant increase in DA levels in both lines of rats.Furthermore, ethanol affects the release of DA in the CNS more in UChB rats than UChA rats. Tuomainen and colleagues found[26]that microdialysis of ethanol (of varying concentrations) in the NAc area induced doserelated increases in extracellular levels of DA among AA and ANA rats, and the inceases in AA rats were more than those in ANA rats. Katner and Weiss[27]studied HAD/LAD, AA/ANA, and Wistar rats, and found elevated extracellular basal DA levels induced by intraperitoneal injection of ethanol; moreover, the degree of elevation of DA levels predicted subsequent alcohol drinking behavior. In summary, these studies suggest that ethanol-induced increases in extracellular DA in the CNS NAc and amygdala play a role in ethanol preference.

    Not all studies support this conclusion. Some experiments found no difference in DA release in the NAc after intraperitoneal injection of ethanol between P and NP rats. For example, Yoshimoto and colleagues[11]and Gongwer and colleagues[23]found that although HAD and LAD rats differed in their basal level of extracellular DA, they did not differ in CNS DA release after intraperitoneal injection of ethanol. Similarly,Kiianmaa and colleagues[28]found no differential increase of extracellular DA concentration in the NAc between AA and ANA rats after microdialysis of ethanol.These varying results may be due to the use of different animal models or different research protocols.

    Methylphenidate (MP) is a stimulant that inhibits the DA transporter and increases the level of extracellular DA;[29]some researchers suggest that this is associated with the subjective feeling of being ‘high’.[30]Positron emission tomography (PET) using radiolabelled raclopride (11C-RAC)—a D2 antagonist that competes with endogenous DA – can be used to observe changes in extracellular DA levels. Using this method, MP was found to decrease the binding of11C-RAC to receptors in a dose-responsive fashion which indirectly suggested an increased binding of DA to receptors; moreover,the magnitude of DA release was positively correlated with the intensity of MP-induced subjective feeling of being ‘high’.[30]Recently, Setiawan and colleagues have found decreased binding of11C-RAC to DA receptors(which suggest increased extracellular DA levels) among youths at high risk for alcohol dependence.[31]This fi nding in humans parallels the animal studies by Katner and Weiss;[27]both sets of studies provide support for a quantitative dose-response relationship between DA functioning and the intensity of the reward effect after the intake of psychoactive substances (including alcohol).

    In addition to the effect of ethanol on DA release,it can also affect the functioning of DA receptors,particularly D2 and D1 receptors. The D1 receptor binds with excitatory G protein and activates adenylate cyclase (AC) via Gs; AC catalyzes the production of cAMP and cAMP regulates cAMP-dependent protein kinases to open calcium ion channels. D2 receptors bind with inhibitory G protein and thus reduce the production of AC and resulting cAMP.

    Several animal studies report reduced D2 receptor concentration among P rats compared to NP rats in the olfactory tubercle, caudate putamen, NAc, VTA, and the cortex.[32-34]Based on these findings, researchers have inferred a connection between the reduced D2 receptor density in the limbic system and preference for alcohol. This hypothesis has been supported by clinical studies using PET scans that report a 20% reduction in striatal D2 receptor efficiency (i.e., the ratio of D2 receptor density and affinity) in individuals with alcohol dependence compared to controls.[35-36]Another study using single-photon emission computed tomography(SPECT) found low D2/D3 receptor affinity in the left temporal cortex among individuals with Typeialcohol dependence.[37]Using whole-hemisphere autoradiography(WHA), researchers found that compared to controls individuals with Typeialcohol dependence had a 20%reduction of D2/D3 receptor affinity in the NAc region and a 41% reduction in the amygdala.[38]Results from an endocrinological study also showed decreased CNS D2 affinity in alcohol dependence.[39]

    Studies about the relationship of D1 receptors and affinity for alcohol have had inconsistent results.A study reported higher striatal D1 receptor efficiency among alcohol preferring C57BL/6J mice compared to non-alcohol preferring DBA/2J mice.[40]Other studies using autoradiography techniques found no statistically significant differences in D1 receptor affinity at multiple sites in the mesolimbic and nigrostriatal regions between P and NP rats[41], between HAD and LAD rats[42]or between AA and ANA rats.[43]A clinical study using autoradiography found a 23% reduction in D1 receptor affinity in the NAc region among individuals with Typeialcohol dependence and a 14% reduction in D1 receptor affinity among individuals with Type II alcohol dependence compared to controls, but these differences showed no statistical significance.[44]Clearly,more research is needed to clarify the relationship between the D1 receptor and alcohol dependence.

    4. Influence of dopaminergic system to alcohol consumption

    Several studies have shown that changes in the DA system in the CNS can influence drinking behaviors both in animals and in humans. Early animal models have shown that injection of the neurotoxin 6-hydroxydopamine (6-OHDA) in the ventricle or in other brain regions destroys dopaminergic neurons. In 1975,Myers and Melchior found that CNS DA level decreased and rats showed a lower preference for alcohol after bilateral cerebral ventricle injection of 6-OHDA.[45]More recently, Ikemoto and colleagues[46]found that bilateral injection of 6-OHDA in the NAc area of alcohol-na?ve rats(compared with sham-operated controls) induced a 60%decline in alcohol consumption a week later and a 30%decline three weeks later. On the other hand, Quarfordt and colleagues found that selective destruction of the NAc and tuberculum olfactorium using 6-OHDA increased drinking behavior in rats.[47]Yoshimoto and colleagues found similar results in rats after injection of 6-OHDA in the NAc[48]and ventricle.[49]The subsequent increase in alcohol consumption after injection of 6-OHDA in these studies may either be the result of direct destruction of the mechanism that results in tolerance or the result of compensatory drinking due to 6-OHDA-induced damage to DA neurons. In order to pinpoint the specific mechanism, Lanca performed fetal dopaminergic transplants of ventral mesencephalon and found increased DA levels and a 40 to 50% reduction in voluntary alcohol intake; in contrast, this effect was not observed in rats receiving a sham-operation with dopamine-poor transplants.[50]These studies clarified the inverse relationship between DA activities and alcohol consumption, supporting the hypothesis which suggests that increased alcohol intake after 6-OHDA-induced damage is compensating for the damage to DA neurons.

    Research about the influence of DA receptor agonists and antagonists on alcohol consumption has had inconsistent results. Some studies find that injection of d-amphetamine (a non-specific DA receptor agonist) or quinpirole (a specific D2/D3 receptor agonist) in the NAc area can increase the frequency of alcohol-related reinforcement behaviors.[51]And local injection of raclopride (RAC, a specific D2/D3 receptor antagonist) reduces alcohol-related reinforcement behaviors.[52]These results both support hypotheses about the positive correlation between DA activity and alcohol reinforcement. However, other studies using microinjection have found that both DA receptor agonists and antagonists can reduce voluntary alcohol intake in animal models.[52-54]For example, Samson and Hodge[52]found that administration of the antagonist RAC in the NAc reduced voluntary drinking in a doseresponse fashion, while local injection of the agonist quinpirole in the VTA also reduced voluntary drinking.Kaczmarek and Kiefer found that local injection of amphetamine or RAC in the NAc both reduced ethanol intake in rats.[53]Hodge and colleagues found a bidirectional effect of quinpirole injected in the NAc area on voluntary alcohol intake: quinpirole increased alcohol intake at lower dosages and decreased alcohol intake at higher dosages.[54]The underlying mechanism of this bidirectional effect may be that presynaptic receptors are only activated when quinpirole reaches a certain concentration, after which point there is a doserelated inhibition of DA. This highlights the importance of dosage when studying the relationship between drinking and DA receptor agonists and antagonists.

    5. Gene variants related to DA systems and alcohol dependence

    Twin studies, linkage studies and large-sample prospective population studies have found that genetic factors play important roles in the development of alcohol dependence. Two groups of genes have been related to alcohol dependence. One group of genes encode enzymes involved in alcohol metabolism,including alcohol dehydrogenase, aldehyde dehydrogenase and cytochromes P4502E1. The second group of genes encode neurotransmitters (and the receptors for these neurotransmitters) that respond to alcohol and its metabolites, (e.g., DA, GABA, 5-HT, and opium).[55]D1,D2 and D4 receptors and DA transporter polymorphisms have been shown to play a role in alcohol dependence,but there remains controversy about the pathways via which these effects are produced. In 1990 Blum and colleagues first proposed that: “the D2 receptor A1 allele is closely related to the development of alcohol dependence”. They found that the D2 receptor A1 allele was associated with a 8.7 higher odds of developing alcoholism.[56]This fi nding has been replicated by many case-control studies and other works have shown that gene polymorphisms that inhibit the expression of the D2 receptor are associated with increased risk of alcohol dependence.[57,58]In support of this hypothesis,a recent study found increased alcohol intake among D2L receptor knock-out mice.[59]In contrast, other studies failed to find any association between the D2 receptor and alcohol dependence.[60,61]Possible reasons for these contradictory findings include differences in sample characteristics (e.g., types of alcohol dependence,selection of controls, and race/ethnicity) and other methodological differences across studies. Parallel work with D1 receptors by El-Ghundi and colleagues found lower alcohol preference and intake among D1 knockout mice compared to wild-type mice.[62]Using a case-control design, Zhong and colleagues studied three genetic polymorphisms of D2 (TAQI A, TAQI B,-141CINS/DEL), the 48bp variable number tandem repeat (VNTR) of the 3rd exon of the D4 receptors, and the 40bp VNTR of the non-coding region at the end of the DA transporter gene 3’ in a sample of Chinese Han individuals living in Yunnan province. They found that the D2 TaqIB genotype and allele frequencies were associated with alcohol dependence and that carriers of the B2 allele had a lower risk of alcohol dependence, but no differences were found for the other polymorphisms between cases and controls.[55]

    6. Summary and prospect

    Anatomy, physiology, pharmacology, and behavior studies have found ample evidence for the connection between the neurotensin (NT) and DA systems. A casecontrol study conducted by our research team[63]in a sample of Chinese Han individuals found that the GG genotype of the single nucleotide polymorphism(SNP) rs6011914C/G and the G allele and GG genotype of the SNP rs2427422A/G of the NTR1 receptor were associated with alcohol dependence; linkage disequilibrium was found between rs6090453C/G,rs6011914C/G and rs2427422A/G; and the haplotypes rs6090453C/rs6011914C/rs2427422A and rs6090453C/rs6011914C/rs2427422G were found associated with alcohol dependence.[63]These findings suggest that the NT system may affect the development of alcohol dependence via the dopaminergic system and shed some new light on the mechanism linking the DA system functioning to alcohol dependence.

    Animal studies have found that selective D2 receptor agonist bromocriptine can reduce alcohol intake and acute ethanol tolerance in alcoholic rats.[64]Clinical studies also found that bromocriptine can relieve symptoms of alcohol dependence and related problems in humans.[65]In contrast, another study reported the treatment effect of tiapride, a selective D2/D3 receptor antagonist, in alcohol dependence.[66]Other double-blinded placebocontrolled studies did not find any treatment effect of either DA agonist[67]or antagonist[68]compared to placebos, and documented some serious side effects of the drugs. Given these contradictory findings,dopaminergic drugs have not been recommended for the clinical treatment of alcohol dependence. Currently,the United States Food and Drug Administration(FDA) has approved acamprosate, tetraethylthiuram disulfide (TETD, disulfiram) and naltrexone as treatment mediations for alcohol dependence and alcohol misuse.The mechanism of action of these agents is related to their effects on the CNS glutamatergic system.[69,70]

    All psychoactive drugs can activate the mesolimbic DA system, but the DA system is not the only system involved in the positive reinforcement network in the NAc. Previous research about the neurobiochemisty of alcohol dependence has focused on the DA system,but many of the findings have been contradictory.This may be related to varying methodologies, to nonlinear dosage effects, to non-transferability of animal results to humans, to different target groups (most previous studies have used samples from Western countries), and to the possible confounding effects of other inter-related neurotransmitter systems. Further research aimed at clarifying the interaction between the DA system, the glutamatergic system and other neurotransmitter systems is needed before it will be possible to improve the effectiveness of interventions for preventing and treating alcohol dependence.

    Conflict of interest

    Authors declare no conflict of interest related to this manuscript.

    Funding

    The authors did not receive any financial support for preparing this review.

    1. World Health Organization. Global status report on alcohol 2004. Geneva, Switzerland. 2004

    2. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859): 2224-2260. doi: http://dx.doi.org/10.1016/S0140-6736(12)61766-8

    3. Chen F, Andrew JL, Liang JH. [Research progress in central neurotransmitters related to alcohol abuse and addiction]. Zhong Guo Yao Wu Yi Lai Xing Za Zhi. 2007;16(1):5-11. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1007-9718.2007.01.003

    4. Tupala E, Tiihonen J. Dopamine and alcoholism:neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(8): 1221-1247. doi: http://dx.doi.org/10.1016/j.pnpbp.2004.06.022

    5. Wise RA. Roles for nigrostriatal--not just mesocorticolimbic--dopamine in reward and addiction. Trends Neurosci.2009;32(10): 517-524. doi: http://dx.doi.org/10.1016/j.tins.2009.06.004

    6. Taber KH, Black DN, Porrino LJ, Hurley RA. Neuroanatomy of dopamine: reward and addiction. J Neuropsychiatry Clin Neurosci. 2012;24(1): 1-4. doi: http://dx.doi.org/10.1176/appi.neuropsych.24.1.1

    7. Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord. 2012;4(1): 19. doi: http://dx.doi.org/10.1186/1866-1955-4-19

    8. Charlet K, Beck A, Heinz A. The dopamine system in mediating alcohol effects in humans. Curr Top Behav Neurosci. 2013;13:461-488. doi: http://dx.doi.org/10.1007/7854_2011_130

    9. Yan QS. Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol. 1999;19(1):1-7. doi: http://dx.doi.org/10.1016/S0741-8329(99)00006-3

    10. Yim HJ, Gonzales RA. Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol. 2000;22(2): 107-115. doi: http://dx.doi.org/10.1097/01.ALC.0000075825.14331.65

    11. Yoshimoto K, McBride WJ, Lumeng L, Li TK. Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol. 1992;9(1): 17-22. doi: http://dx.doi.org/10.1016/0741-8329(92)90004-T

    12. Yim HJ, Schallert T, Randall PK, Gonzales RA. Comparison of local and systemic ethanol effects on extracellular dopamine concentration in rat nucleus accumbens by microdialysis.Alcohol Clin Exp Res. 1998;22(2): 367-374. doi: http://dx.doi.org/10.1111/j.1530-0277.1998.tb03662.x

    13. Yoshimoto K, Ueda S, Kato B, Takeuchi Y, Kawai Y, Noritake K,et al. Alcohol enhances characteristic releases of dopamine and serotonin in the central nucleus of the amygdala.Neurochem Int. 2000;37(4): 369-376. doi: http://dx.doi.org/10.1016/S0197-0186(00)00037-1

    14. Yim HJ, Robinson DL, White ML, Jaworski JN, Randall PK,Lancaster FE, et al. Dissociation between the time course of ethanol and extracellular dopamine concentrations in the nucleus accumbens after a single intraperitoneal injection.Alcohol Clin Exp Res. 2000;24(6): 781-788

    15. Cowen MS, Lawrence AJ. The role of opioid-dopamine interactions in the induction and maintenance of ethanol consumption. Prog Neuropsychopharmacol Biol Psychiatry.1999;23(7): 1171-1212. doi: http://dx.doi.org/10.1016/S0278-5846(99)00060-3

    16. Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA. 1992;89(6):2046-2050

    17. Adermark L, Clarke RB, Olsson T, Hansson E, Soderpalm B,Ericson M. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens. Addict Biol. 2011;16(1): 43-54. doi:http://dx.doi.org/10.1111/j.1369-1600.2010.00206.x

    18. Weiss F, Parsons LH, Schulteis G, Hansson E, S?derpalm B,Ericson M. Ethanol self-administration restores with drawalassociated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci.1996;16(10): 3474-3485

    19. Rossetti ZL, Hmaidan Y, Gessa GL. Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol. 1992;221(2-3): 227-234. doi: http://dx.doi.org/10.1016/0014-2999(92)90706-A

    20. Bustamante D, Quintanilla ME, Tampier L, et al. Ethanol induces stronger dopamine release in nucleus accumbens(shell) of alcohol-preferring (bibulous) than in alcoholavoiding (abstainer) rats. Eur J Pharmacol. 2008;591(1-3): 153-158. doi: http://dx.doi.org/10.1016/j.ejphar.2008.06.069

    21. Murphy JM, McBride WJ, Lumeng L, Li TK. Contents of monoamines in forebrain regions of alcohol-preferring(P) and -nonpreferring (NP) lines of rats. Pharmacol Biochem Behav. 1987;26(2): 389-392. doi: http://dx.doi.org/10.1016/0091-3057(87)90134-1

    22. Strother WN, Lumeng L, Li T-K, McBride WJ. Dopamine and serotonin content in select brain regions of weanling and adult alcohol drinking rat lines. Pharmacol Biochem Behav.2005;80(2): 229–237. doi: http://dx.doi.org/10.1016/j.pbb.2004.11.003

    23. Gongwer MA, Murphy JM, McBride WJ, Lumeng L, Li TK.Regional brain contents of serotonin, dopamine and their metabolites in the selectively bred high- and low-alcohol drinking lines of rats. Alcohol. 1989;6(4): 317-320. doi:http://dx.doi.org/10.1016/j.pbb.2004.11.003

    24. Quintanilla ME, Bustamante D, Tampier L, Israel Y, Herrera-Marschitz M. Dopamine release in the nucleus accumbens(shell) of two lines of rats selectively bred to prefer or avoid ethanol. Eur J Pharmacol. 2007;573(1-3): 84-92. doi: http://dx.doi.org/10.1016/j.ejphar.2007.06.038

    25. Smith AD, Weiss F. Ethanol exposure differentially alters central monoamine neurotransmission in alcohol-preferring versus -nonpreferring rats. J Pharmacol Exp Ther. 1999;288(3): 1223-1228

    26. Tuomainen P, Patsenka A, Hyyti? P, Grinevich V, Kiianmaa K.Extracellular levels of dopamine in the nucleus accumbens in AA and ANA rats after reverse microdialysis of ethanol into the nucleus accumbens or ventral tegmental area. Alcohol.2003;29(2): 117-124. doi: http://dx.doi.org/10.1016/S0741-8329(03)00017-X

    27. Katner SN, Weiss F. Neurochemical characteristics associated with ethanol preference in selected alcohol-preferring and–nonpreferring rats: a quantitative microdialysis study.Alcohol Clin Exp Res. 2001;25(2): 198-205. doi: http://dx.doi.org/10.1111/j.1530-0277.2001.tb02199.x

    28. Kiianmaa K, Nurmi M, Nyk?nen I, Sinclair JD. Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats.Pharmacol Biochem Behav. 1995;52(1): 29-34. doi: http://dx.doi.org/10.1016/0091-3057(95)00097-G

    29. Madras BK, Fahey MA, Bergman J, Canfield DR, Spealman RD. Effects of cocaine and related drugs in nonhuman primates. I. [3H] cocaine binding sites in caudate–putamen. J Pharmacol Exp Ther. 1989;251(1):131-141

    30. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Wong C,et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J Pharmacol Exp Ther. 1999;291(1): 409-415

    31. Setiawan E, Pihl RO, Dagher A, Schlagintweit H, Casey KF,Benkelfat C, et al. Differential striatal dopamine responses following oral alcohol in individuals at varying risk for dependence. Alcohol Clin Exp Res. 2014;38(1); 126-34. doi:http://dx.doi.org/10.1111/acer.12218

    32. Stefanini E, Frau M, Garau MG, Garau B, Fadda F, Gessa GL.Alcohol-preferring rats have fewer dopamine D2 receptors in the limbic system. Alcohol. 1992;27(2): 127-130

    33. McBride WJ, Chernet E, Dyr W, Lumeng L, Li TK. Densities of dopamine D2 receptors are reduced in CNS regions of alcohol preferring P rats. Alcohol. 1993;10(5): 387-390. doi:http://dx.doi.org/10.1016/0741-8329(93)90025-J

    34. Strother WN, Lumeng L, Li TK, McBride WJ. Regional CNS densities of serotonin 1A and dopamine D2 receptors in periadolescent alcohol-preferring P and alcoholnonpreferring NP rat pups. Pharmacol Biochem Behav.2003;74(2): 335-342. doi: http://dx.doi.org/10.1016/S0091-3057(02)01001-8

    35. Hietala J, West C, Syv?lahti E, N?gren K, Lehikoinen P,Sonninen P, et al. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence.Psychopharmacology (Berl). 1994;116(3): 285-290. doi:http://dx.doi.org/10.1007/BF02245330

    36. Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R,Ding YS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res.1996;20(9): 1594-1598. doi: http://dx.doi.org/10.1111/j.1530-0277.1996.tb05936.x

    37. Kuikka JT, Repo E, Bergstr?m KA, Tupala E, Tiihonen J. Specific binding and laterality of human extrastriatal dopamine D2/D3 receptors in late onset type 1 alcoholic patients. Neurosci Lett. 2000;292(1): 57-59. doi: http://dx.doi.org/10.1016/S0304-3940(00)01423-3

    38. Tupala E, Hall H, Bergstr?m K, S?rkioja T, R?s?nen P, Mantere T, et al. Dopamine D2/D3-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics. Mol Psychiatry. 2001;6(3): 261-267

    39. Balldin JI, Berggren UC, Lindstedt G. Neuroendocrine evidence for reduced dopamine receptor sensitivity in alcoholism. Alcohol Clin Exp Res. 1992;16(1): 71-74

    40. Ng GY, O’Dowd BF, George SR. Genotypic differences in brain dopamine receptor function in the DBA/2J and C57BL/6J inbred mouse strains. Eur J Pharmacol. 1994;269(3): 349-364

    41. McBride WJ, Chernet E, Russell RN, Wong DT, Guan XM,Lumeng L, et al. Regional CNS densities of monoamine receptors in alcohol-naive alcohol-preferring P and-nonpreferring NP rats. Alcohol. 1997;14(2): 141-148

    42. McBride WJ, Chernet E, Russell RN, Chamberlain JK, Lumeng L, Li TK. Regional CNS densities of serotonin and dopamine receptors in high alcohol-drinking (HAD) and low alcoholdrinking (LAD) rats. Alcohol. 1997;14(6): 603-609

    43. Syv?lahti EK, Pohjalainen T, Korpi ER, P?lvim?ki EP, Ovaska T, Kuoppam?ki M, et al. Dopamine D2 receptor gene expression in rat lines selected for differences in voluntary alcohol consumption. Alcohol Clin Exp Res. 1994;18(4):1029-1031

    44. Tupala E, Hall H, Mantere T, R?s?nen P, S?rkioja T, Tiihonen J. Dopamine receptors and transporters in the brain reward circuits of type 1 and 2 alcoholics measured with whole hemisphere autoradiography. Neuroimage. 2003;19(1): 145-155

    45. Myers RD, Melchior CL. Alcohol drinking in the rat after destruction of serotonergic and catecholaminergic neurons in the brain. Res Commun Chem Pathol Pharmacol. 1975;10(2): 363-378

    46. Ikemoto S, McBride WJ, Murphy JM, Lumeng L, Li TK.6-OHDA-lesions of the nucleus accumbens disrupt the acquisition but not the maintenance of ethanol consumption in the alcohol-preferring P line of rats. Alcohol Clin Exp Res.1997;21(6): 1042-1046

    47. Quarfordt SD, Kalmus GW, Myers RD. Ethanol drinking following 6-OHDA lesions of nucleus accumbens and tuberculum olfactorium of the rat. Alcohol. 1991;8(3): 211-217. doi: http://dx.doi.org/10.1016/0741-8329(91)90854-P

    48. Yoshimoto K, Kawamura K, Yayama K, Fujimiya T, Uemura K,Komura S. The effects of neurotoxins 6-hydroxydopamine and 5,7-dihydroxytryptamine into the rat nucleus accumbens on the alcohol drinking behavior. Nihon Hoigaku Zasshi.1995;49(1): 11-19

    49. Yoshimoto K, Kaneda S, Kawai Y, Ueda S, Takeuchi Y, Matsushita H, et al. Treating neonatal rats with 6-hydroxydopamine induced an increase in voluntary alcohol consumption. Alcohol Clin Exp Res. 1999;23(4 Suppl): 2S-6S

    50. Lanca AJ. Reduction of voluntary alcohol intake in the rat by modulation of the dopaminergic mesolimbic system:transplantation of ventral mesencephalic cell suspensions.Neuroscience.1994;58(2): 359-369. doi: http://dx.doi.org/10.1016/0306-4522(94)90043-4

    51. Hodge CW, Samson HH, Haraguchi M. Microinjections of dopamine agonists in the nucleus accumbens increase ethanolreinforced responding. Pharmacol Biochem Behav.1992;43(1): 249-54. doi: http://dx.doi.org/10.1016/0091-3057(92)90665-3

    52. Samson HH, Hodge CW. The role of the mesoaccumbens dopamine system in ethanol reinforcement: studies using the techniques of microinjection and voltammetry. Alcohol Alcohol Suppl 1993;2: 469-274

    53. Kaczmarek HJ, Kiefer SW. Microinjections of dopaminergic agents in the nucleus accumbens affect ethanol consumption but not palatability. Pharmacol Biochem Behav.2000;66(2): 307-312. doi: http://dx.doi.org/10.1016/S0091-3057(00)00182-9

    54. Hodge CW, Samson HH, Chappelle AM. Alcohol selfadministration: further examination of the role of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res.1997;21(6): 1083-1091. doi: http://dx.doi.org/10.1111/j.1530-0277.1997.tb04257.x

    55. Zhong SR, Wu XH, Wang XJ, Bao JJ, Gao CQ, Wu WY, et al.[Association analyses of DRD2 (TAQI A, TAQI B, -141CINS/DEL), DRD4 and DAT genetic polymorphisms with alcohol dependence syndrome in Yunnan Han population]. Zhong Guo Yao Wu Yi Lai Xing Za Zhi. 2009;18(4): 341-370. Chinese 56. Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Jagadeeswaran P, et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA. 1990;263(15): 2055-2060. doi: http://dx.doi.org/10.1001/jama.1990.03440150063027

    57. Berggren U, Fahlke C, Aronsson E, Karanti A, Eriksson M,Blennow K, et al. The taqI DRD2 A1 allele is associated with alcohol-dependence although its effect size is small. Alcohol.2006;41(5): 479-485. doi: http://dx.doi.org/10.1093/alcalc/agl043

    58. Kraschewski A, Reese J, Anghelescu I, Winterer G, Schmidt LG, Gallinat J, et al. Association of the dopamine D2 receptor gene with alcohol dependence: haplotypes and subgroups of alcoholics as key factors for understanding receptor function. Pharmacogenet Genomics. 2009;19(7): 513–527.doi: http://dx.doi.org/10.1097/FPC.0b013e32832d7fd3

    59. Bulwa ZB, Sharlin JA, Clark PJ, Bhattacharya TK, Kilby CN, Wang Y, et al. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor. Alcohol. 2011;45(7): 631-639. doi: http://dx.doi.org/10.1016/j.alcohol.2011.06.004

    60. Gelernter J, Kranzler H. D2 dopamine receptor gene (DRD2)allele and haplotype frequencies in alcohol dependent and control subjects: no association with phenotype or severity of phenotype. Neuropsychopharmacology. 1999;20(6): 640-649. doi: http://dx.doi.org/10.1016/S0893-133X(98)00110-9

    61. Blomqvist O, Gelernter J, Kranzler HR. Family-based study of DRD2 alleles in alcohol and drug dependence. Am J Med Genet. 2000;96(5): 659-664. doi: http://dx.doi.org/10.1002/1096-8628(20001009)96:5<659::AIDAJMG12>3.0.CO;2-G

    62. El-Ghundi M, George SR, Drago J, Fletcher PJ, Fan T, Nguyen T, et al. Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol. 1998;353(2-3):149-158. doi: http://dx.doi.org/10.1016/S0014-2999(98)00414-2

    63. Ma H, Huang Y, Zhang B, Wang Y, Zhao H, Du H, et al.Association Between Neurotensin Receptor 1 Gene Polymorphisms and Alcohol Dependence in a Male Han Chinese Population. J Mol Neurosci. 2013;51(2): 408-415.doi: http://dx.doi.org/10.1007/s12031-013-0041-5

    64. Tampier L, Prado C, Quintanilla ME, Mardones J. Effect of bromocriptine on acute ethanol tolerance in UChB rats. Addict Biol. 1999;4(3): 317-321. doi: http://dx.doi.org/10.1080/13556219971524

    65. Lawford BR, Young RM, Rowell JA, Qualichefski J, Fletcher BH, Syndulko K, et al. Bromocriptine in the treatment of alcoholics with the D2 dopamine receptor A1 allele. Nat Med. 1995;1(4): 337-341. doi: http://dx.doi.org/10.1038/nm0495-337

    66. Shaw GK, Waller S, Majumdar SK, Alberts JL, Latham CJ,Dunn G. Tiapride in the prevention of relapse in recently detoxified alcoholics. Br J Psychiatry. 1994;165(4): 515-523.doi: http://dx.doi.org/10.1192/bjp.165.4.515

    67. Naranjo CA, Dongier M, Bremner KE. Long-acting injectable bromocriptine does not reduce relapse in alcoholics.Addiction. 1997;92(8): 969-978. doi: http://dx.doi.org/10.1111/j.1360-0443.1997.tb02976.x

    68. Bender S, Scherbaum N, Soyka M, Ruther E, Mann K,Gatspar M. The efficacy of the dopamine D2/D3 antagonist tiapride in maintaining abstinence: a randomized, doubleblind, placebo-controlled trial in 299 alcohol-dependent patients. Int J Neuropsychopharmacol. 2007;10(5): 653-660.doi: http://dx.doi.org/10.1017/S1461145706007164

    69. Yahn SL, Watterson LR, Olive MF. Safety and efficacy of acamprosate for the treatment of alcohol dependence.Subst Abuse. 2013;6: 1-12. doi: http://dx.doi.org/10.4137/SART.S9345

    70. J?rgensen CH, Pedersen B, T?nnesen H. The efficacy of disulfiram for the treatment of alcohol use disorder. Alcohol Clin Exp Res. 2011;35(10): 1749-1758. doi: http://dx.doi.org/10.1111/j.1530-0277.2011.01523.x

    2013-11-03; accepted: 2014-01-20)

    Hui Ma graduated from China Medical University with a bachelor’s degree in Clinical Medicine in 2000. She obtained her master’s degree in Medical Psychology in 2003 and is currently enrolled in the PhD program in Psychiatry (projected to graduate in June 2014) at China Medical University. She is currently an associate professor at the Center for Mental Health in Yanshan University where she has being working since 2003. Her research interests include psychiatric genetics, biological psychiatry and psychological assessment.

    多巴胺系統(tǒng)和酒精依賴

    馬慧,朱剛

    酒精依賴是一種常見的精神疾病,社會(huì)危害大,疾病負(fù)擔(dān)重。目前致力于酒精依賴的預(yù)防和治療的研究取得的成果比較有限。為了進(jìn)一步完善酒精依賴的治療和預(yù)防措施,有必要對(duì)酒精依賴潛在的生物學(xué)機(jī)制進(jìn)行深入探究。迄今為止,針對(duì)酒精依賴錯(cuò)綜復(fù)雜的病因?qū)W的研究,大部分聚焦于多巴胺系統(tǒng)的關(guān)鍵作用。本綜述總結(jié)了目前國內(nèi)外對(duì)飲酒行為與多巴胺能系統(tǒng)之間關(guān)系的研究,發(fā)現(xiàn)研究結(jié)果并不一致,甚至相互矛盾,可能是由于方法學(xué)的差異、非線性的劑量效應(yīng)、樣本的選取差異以及多巴胺系統(tǒng)與其它神經(jīng)遞質(zhì)系統(tǒng)之間可能存在交互作用等因素造成。

    多巴胺,酒精依賴,神經(jīng)生化,綜述

    Summary:Alcohol dependence is a common mental disorder that is associated with substantial disease burden. Current efforts at prevention and treatment of alcohol dependence are of very limited effectiveness.A better understanding of the biological mechanisms underlying dependence is essential to improving the outcomes of treatment and prevention initiatives. To date, most of the efforts have focused on the key role of the dopamine system in the complex etiological network of alcohol dependence. This review summarizes current research about the relationships between alcohol consumption and the dopaminergic system. We fi nd that many of the currently available studies have contradictory results, presumably due to differences in methodology, non-linear dosage effects, use of different samples, and the possible confounding effects of other neurotransmitter systems.

    http://dx.doi.org/10.3969/j.issn.1002-0829.2014.02.002

    1Center for Mental Health, Yanshan University, Qinhuangdao, Hebei Province, China

    2Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China

    *correspondence: gzhu@mail.cmu.edu.cn

    A full-text Chinese translation will be available at www.saponline.org on May 15, 2014.

    猜你喜歡
    病因?qū)W多巴胺綜述
    活力多巴胺
    欣漾(2024年2期)2024-04-27 12:03:09
    正確面對(duì)焦慮
    How music changes your life
    跟蹤導(dǎo)練(四)(4)
    SEBS改性瀝青綜述
    石油瀝青(2018年6期)2018-12-29 12:07:04
    NBA新賽季綜述
    NBA特刊(2018年21期)2018-11-24 02:47:52
    妊娠期高血壓疾病的病因?qū)W及護(hù)理研究進(jìn)展
    交感—腎上腺素能神經(jīng)系統(tǒng)與主動(dòng)脈夾層的關(guān)系研究
    膝關(guān)節(jié)自發(fā)性骨壞死的病因?qū)W研究進(jìn)展
    JOURNAL OF FUNCTIONAL POLYMERS
    成人无遮挡网站| 久久热精品热| 亚洲欧美精品专区久久| 你懂的网址亚洲精品在线观看| 99久国产av精品国产电影| 精品午夜福利在线看| 大话2 男鬼变身卡| 99re6热这里在线精品视频| 久久久国产欧美日韩av| 少妇 在线观看| 美女国产视频在线观看| 国内揄拍国产精品人妻在线| 两个人的视频大全免费| 国产老妇伦熟女老妇高清| 性色avwww在线观看| 国产精品国产三级国产av玫瑰| 亚洲av.av天堂| 亚洲精品,欧美精品| 在线天堂最新版资源| 日韩电影二区| 亚洲精品日本国产第一区| 91久久精品国产一区二区成人| 一区在线观看完整版| 大陆偷拍与自拍| 日本欧美视频一区| 亚洲三级黄色毛片| 老熟女久久久| 在线亚洲精品国产二区图片欧美 | 777米奇影视久久| 亚洲国产av新网站| 最黄视频免费看| 成人黄色视频免费在线看| 九九久久精品国产亚洲av麻豆| 3wmmmm亚洲av在线观看| 成人黄色视频免费在线看| 91aial.com中文字幕在线观看| 精品酒店卫生间| 日韩电影二区| 免费少妇av软件| 天堂俺去俺来也www色官网| 亚洲av免费高清在线观看| 丰满少妇做爰视频| 国产精品熟女久久久久浪| 成年人午夜在线观看视频| 天美传媒精品一区二区| 我要看日韩黄色一级片| 久久午夜综合久久蜜桃| 18禁在线播放成人免费| 亚洲,一卡二卡三卡| 午夜激情久久久久久久| 成人影院久久| 日日撸夜夜添| 少妇高潮的动态图| av黄色大香蕉| 久久久国产欧美日韩av| 国产爽快片一区二区三区| 欧美成人午夜免费资源| 老熟女久久久| 中文在线观看免费www的网站| 国产亚洲av片在线观看秒播厂| 免费黄频网站在线观看国产| 亚洲精品一区蜜桃| 乱人伦中国视频| a级毛色黄片| 中文字幕免费在线视频6| 国产一级毛片在线| 国产欧美日韩一区二区三区在线 | 一区二区三区乱码不卡18| 亚洲欧美日韩卡通动漫| 日日爽夜夜爽网站| 日本爱情动作片www.在线观看| 91久久精品国产一区二区成人| 精品少妇久久久久久888优播| 日本爱情动作片www.在线观看| 国产精品久久久久久av不卡| 一区二区三区免费毛片| 国产精品一区二区在线不卡| 美女国产视频在线观看| 有码 亚洲区| 一区二区av电影网| 久久久久久伊人网av| 国产欧美日韩综合在线一区二区 | 国产熟女午夜一区二区三区 | 国产av一区二区精品久久| 少妇被粗大的猛进出69影院 | 丝袜喷水一区| 99久久人妻综合| 在线观看人妻少妇| 国产精品蜜桃在线观看| 亚洲av综合色区一区| 亚洲成人一二三区av| 欧美丝袜亚洲另类| 啦啦啦啦在线视频资源| 免费看av在线观看网站| 极品教师在线视频| 国产欧美日韩一区二区三区在线 | 亚洲人与动物交配视频| 国产老妇伦熟女老妇高清| 国产在视频线精品| 国产免费一区二区三区四区乱码| 99九九在线精品视频 | 国产av一区二区精品久久| 久久这里有精品视频免费| 亚洲性久久影院| 国产欧美亚洲国产| 在线精品无人区一区二区三| 国产探花极品一区二区| 精品酒店卫生间| 国产伦在线观看视频一区| 久久国产精品男人的天堂亚洲 | 国产精品偷伦视频观看了| 人妻夜夜爽99麻豆av| 我的老师免费观看完整版| 精品人妻偷拍中文字幕| 亚洲精品视频女| 欧美区成人在线视频| 我的老师免费观看完整版| 国产亚洲5aaaaa淫片| 久久精品国产自在天天线| 3wmmmm亚洲av在线观看| 欧美亚洲 丝袜 人妻 在线| 在线观看免费日韩欧美大片 | 亚洲无线观看免费| 久久久a久久爽久久v久久| 夜夜爽夜夜爽视频| 精品久久久噜噜| 精品久久久噜噜| 成年人免费黄色播放视频 | 国产有黄有色有爽视频| av天堂中文字幕网| 老司机影院毛片| 国产有黄有色有爽视频| 成人毛片a级毛片在线播放| 国产免费福利视频在线观看| 插逼视频在线观看| 日韩av在线免费看完整版不卡| 亚洲精品日韩av片在线观看| 免费播放大片免费观看视频在线观看| 一本—道久久a久久精品蜜桃钙片| 久久精品久久久久久噜噜老黄| 夜夜爽夜夜爽视频| 在线观看人妻少妇| 精品一品国产午夜福利视频| 在线播放无遮挡| 高清视频免费观看一区二区| 久久国产精品大桥未久av | 亚洲成人手机| 亚洲四区av| 97精品久久久久久久久久精品| a 毛片基地| 国产精品99久久99久久久不卡 | 亚洲av日韩在线播放| 99re6热这里在线精品视频| 精品酒店卫生间| 你懂的网址亚洲精品在线观看| 国产亚洲5aaaaa淫片| 精品久久久久久久久亚洲| 久久久久精品久久久久真实原创| 日韩三级伦理在线观看| 青青草视频在线视频观看| 午夜91福利影院| 欧美精品亚洲一区二区| 男人狂女人下面高潮的视频| 乱码一卡2卡4卡精品| 欧美高清成人免费视频www| 女人久久www免费人成看片| 我的老师免费观看完整版| 亚洲熟女精品中文字幕| 视频区图区小说| 九色成人免费人妻av| 91在线精品国自产拍蜜月| 国语对白做爰xxxⅹ性视频网站| 曰老女人黄片| 色视频www国产| 亚洲国产精品国产精品| 人人妻人人看人人澡| 成年人免费黄色播放视频 | 一区二区三区精品91| 久久久久久久久大av| 九色成人免费人妻av| 一级毛片久久久久久久久女| 免费观看的影片在线观看| 国产精品一二三区在线看| videos熟女内射| 日韩成人伦理影院| 国产精品一区二区性色av| 老司机影院毛片| 2022亚洲国产成人精品| 亚洲av男天堂| 搡老乐熟女国产| 一级毛片我不卡| 亚洲人与动物交配视频| 国产精品蜜桃在线观看| 亚洲第一av免费看| 在线精品无人区一区二区三| 午夜福利网站1000一区二区三区| 高清黄色对白视频在线免费看 | 嫩草影院入口| 欧美 日韩 精品 国产| 免费黄频网站在线观看国产| 国产一区二区三区综合在线观看 | 亚洲精品日本国产第一区| 蜜桃久久精品国产亚洲av| 男女无遮挡免费网站观看| 免费大片黄手机在线观看| 男女边摸边吃奶| 一级毛片 在线播放| 激情五月婷婷亚洲| 春色校园在线视频观看| 免费看日本二区| 男人添女人高潮全过程视频| 国产在线视频一区二区| 91久久精品电影网| 成人国产av品久久久| 成人国产麻豆网| 日韩强制内射视频| 热99国产精品久久久久久7| 日韩一区二区三区影片| 日本欧美视频一区| 黄色日韩在线| 又大又黄又爽视频免费| 青春草亚洲视频在线观看| 好男人视频免费观看在线| 国产精品嫩草影院av在线观看| 中文字幕免费在线视频6| 午夜福利,免费看| 永久网站在线| 日本午夜av视频| 黄色怎么调成土黄色| 日韩 亚洲 欧美在线| 国产在线一区二区三区精| 亚洲人成网站在线观看播放| 肉色欧美久久久久久久蜜桃| 这个男人来自地球电影免费观看 | av黄色大香蕉| 免费看光身美女| 熟女电影av网| 成人午夜精彩视频在线观看| 日韩电影二区| 99视频精品全部免费 在线| 国产精品偷伦视频观看了| 一级片'在线观看视频| 亚洲精品久久午夜乱码| 成年人午夜在线观看视频| 国产深夜福利视频在线观看| 人妻一区二区av| 国产免费福利视频在线观看| 少妇丰满av| 久久人人爽av亚洲精品天堂| 一本一本综合久久| 国产在线一区二区三区精| 免费看光身美女| 国产成人精品久久久久久| 精品久久久久久电影网| 高清av免费在线| videossex国产| 水蜜桃什么品种好| 午夜影院在线不卡| 夫妻性生交免费视频一级片| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 夜夜骑夜夜射夜夜干| 如何舔出高潮| 久久av网站| 欧美精品人与动牲交sv欧美| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 久久久久久久久久久丰满| 美女脱内裤让男人舔精品视频| 日韩中字成人| 夫妻午夜视频| 简卡轻食公司| 精品一品国产午夜福利视频| 交换朋友夫妻互换小说| 一级片'在线观看视频| 精品一区二区三区视频在线| 蜜桃在线观看..| 免费观看a级毛片全部| 99九九线精品视频在线观看视频| 午夜激情福利司机影院| 午夜免费男女啪啪视频观看| 日韩欧美 国产精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产最新在线播放| av线在线观看网站| 交换朋友夫妻互换小说| 色婷婷av一区二区三区视频| 啦啦啦视频在线资源免费观看| 国产69精品久久久久777片| 人妻 亚洲 视频| 国产极品粉嫩免费观看在线 | 欧美区成人在线视频| 夫妻午夜视频| 欧美日韩亚洲高清精品| 两个人的视频大全免费| 亚洲精品国产成人久久av| 在现免费观看毛片| 乱人伦中国视频| 少妇高潮的动态图| 3wmmmm亚洲av在线观看| 一级毛片久久久久久久久女| 久久精品夜色国产| 国产淫语在线视频| 全区人妻精品视频| 日韩不卡一区二区三区视频在线| 嫩草影院入口| 亚洲精品乱码久久久v下载方式| 十八禁网站网址无遮挡 | av在线播放精品| 99热全是精品| 久久这里有精品视频免费| 国产av码专区亚洲av| 我的女老师完整版在线观看| 精品久久久精品久久久| 在线观看人妻少妇| 成人毛片a级毛片在线播放| 国产男女内射视频| 久久精品国产亚洲网站| 亚洲,欧美,日韩| 又大又黄又爽视频免费| 久久 成人 亚洲| 一级av片app| 免费av不卡在线播放| 精品久久久久久久久av| 亚洲国产色片| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 2021少妇久久久久久久久久久| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 国产精品一区www在线观看| 色94色欧美一区二区| 黑人猛操日本美女一级片| 另类精品久久| 伦精品一区二区三区| 街头女战士在线观看网站| 日日爽夜夜爽网站| 欧美成人精品欧美一级黄| 国产免费又黄又爽又色| 夜夜看夜夜爽夜夜摸| 视频区图区小说| 国产免费视频播放在线视频| 男女无遮挡免费网站观看| 亚洲av国产av综合av卡| 日韩不卡一区二区三区视频在线| 午夜激情久久久久久久| 水蜜桃什么品种好| 人人妻人人看人人澡| 少妇丰满av| 亚洲高清免费不卡视频| 伊人久久国产一区二区| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频 | 一区在线观看完整版| 18禁在线播放成人免费| 色视频www国产| 性高湖久久久久久久久免费观看| 亚州av有码| 午夜老司机福利剧场| 狠狠精品人妻久久久久久综合| 精品人妻熟女毛片av久久网站| 毛片一级片免费看久久久久| 熟女人妻精品中文字幕| av在线老鸭窝| 日日啪夜夜撸| 中国国产av一级| 最近的中文字幕免费完整| 久久婷婷青草| 成人毛片60女人毛片免费| 99久久中文字幕三级久久日本| 国产在视频线精品| 精品亚洲成a人片在线观看| 国产白丝娇喘喷水9色精品| 国产极品粉嫩免费观看在线 | 国产精品国产三级专区第一集| 搡老乐熟女国产| 在线观看www视频免费| 国产成人精品福利久久| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 97在线人人人人妻| 日本免费在线观看一区| 五月玫瑰六月丁香| 国产淫片久久久久久久久| h视频一区二区三区| 少妇人妻一区二区三区视频| 中文字幕av电影在线播放| 乱人伦中国视频| 亚洲久久久国产精品| 一区在线观看完整版| 少妇猛男粗大的猛烈进出视频| 久久精品国产鲁丝片午夜精品| 九九在线视频观看精品| 激情五月婷婷亚洲| 韩国高清视频一区二区三区| 大香蕉久久网| 久久久久久久久大av| av不卡在线播放| 男女无遮挡免费网站观看| 亚洲精品视频女| 日韩成人av中文字幕在线观看| 少妇精品久久久久久久| 男女免费视频国产| 免费av中文字幕在线| 久久99热6这里只有精品| 国产探花极品一区二区| 99久久精品热视频| 麻豆成人午夜福利视频| 18+在线观看网站| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 久久精品熟女亚洲av麻豆精品| 汤姆久久久久久久影院中文字幕| 日日爽夜夜爽网站| 在线观看人妻少妇| 91午夜精品亚洲一区二区三区| 国产综合精华液| 久久精品国产a三级三级三级| a级毛片在线看网站| 精品少妇久久久久久888优播| 亚洲av在线观看美女高潮| 国产成人精品久久久久久| av一本久久久久| 成年av动漫网址| 久久99一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产精品伦人一区二区| 纵有疾风起免费观看全集完整版| 国产高清国产精品国产三级| 久久久久久人妻| 日韩欧美 国产精品| 国产综合精华液| 国产乱人偷精品视频| 国内少妇人妻偷人精品xxx网站| 国产精品女同一区二区软件| 亚洲精品一区蜜桃| 久久国产乱子免费精品| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 欧美日韩精品成人综合77777| av不卡在线播放| 国产成人一区二区在线| 亚洲国产精品专区欧美| 久久久久精品性色| 亚洲在久久综合| 欧美少妇被猛烈插入视频| 香蕉精品网在线| 国产精品一区二区性色av| 午夜免费鲁丝| 丝袜喷水一区| 只有这里有精品99| videossex国产| 少妇被粗大的猛进出69影院 | 91精品国产国语对白视频| 日本欧美视频一区| 少妇人妻一区二区三区视频| 高清欧美精品videossex| 在线播放无遮挡| av免费在线看不卡| 久久精品国产亚洲网站| 大话2 男鬼变身卡| 99九九线精品视频在线观看视频| 精品亚洲乱码少妇综合久久| 日韩一本色道免费dvd| 国产免费一区二区三区四区乱码| 久久这里有精品视频免费| 国产欧美日韩综合在线一区二区 | 中文在线观看免费www的网站| 久久亚洲国产成人精品v| 男人舔奶头视频| av国产久精品久网站免费入址| 尾随美女入室| 亚洲精品色激情综合| 嘟嘟电影网在线观看| 日韩欧美 国产精品| 日日摸夜夜添夜夜爱| 两个人免费观看高清视频 | 国产69精品久久久久777片| 欧美三级亚洲精品| 国产av国产精品国产| 欧美日韩av久久| 看免费成人av毛片| 高清av免费在线| av线在线观看网站| 国产极品天堂在线| 夜夜骑夜夜射夜夜干| 十八禁网站网址无遮挡 | 97在线人人人人妻| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 久久久精品94久久精品| 又爽又黄a免费视频| 2022亚洲国产成人精品| 我要看黄色一级片免费的| 亚洲国产日韩一区二区| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 乱系列少妇在线播放| 在线天堂最新版资源| 日本av手机在线免费观看| 精品一品国产午夜福利视频| 一区二区av电影网| 妹子高潮喷水视频| 久久热精品热| 2021少妇久久久久久久久久久| 国产精品.久久久| 国产精品女同一区二区软件| 亚洲三级黄色毛片| 亚洲怡红院男人天堂| 天堂俺去俺来也www色官网| 永久网站在线| 久久韩国三级中文字幕| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 男人狂女人下面高潮的视频| 久久久久久久久久久久大奶| 最后的刺客免费高清国语| 国产精品.久久久| 成人漫画全彩无遮挡| 日韩精品免费视频一区二区三区 | 一级二级三级毛片免费看| 黄色欧美视频在线观看| 亚洲怡红院男人天堂| 美女视频免费永久观看网站| 日韩一本色道免费dvd| 大香蕉97超碰在线| 欧美最新免费一区二区三区| 人人妻人人添人人爽欧美一区卜| 午夜免费观看性视频| 日韩三级伦理在线观看| 亚洲不卡免费看| 美女主播在线视频| 色视频www国产| 久久久久久久久久久久大奶| 男人和女人高潮做爰伦理| 国产有黄有色有爽视频| 亚洲高清免费不卡视频| 色网站视频免费| 国产在视频线精品| 在线看a的网站| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| av国产久精品久网站免费入址| .国产精品久久| 18禁在线无遮挡免费观看视频| 免费看光身美女| 一级二级三级毛片免费看| 18+在线观看网站| 一级毛片电影观看| 秋霞伦理黄片| 国产国拍精品亚洲av在线观看| 久久久久久久亚洲中文字幕| 日日撸夜夜添| av黄色大香蕉| 女人精品久久久久毛片| 美女中出高潮动态图| 激情五月婷婷亚洲| 国产成人一区二区在线| 久久青草综合色| 成年人免费黄色播放视频 | 啦啦啦啦在线视频资源| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 少妇人妻久久综合中文| 日本91视频免费播放| 黑人高潮一二区| 免费人成在线观看视频色| 国产男女内射视频| 两个人免费观看高清视频 | 91精品一卡2卡3卡4卡| 亚洲精品久久午夜乱码| 欧美人与善性xxx| 国产黄片视频在线免费观看| 国产一区二区三区综合在线观看 | 日本-黄色视频高清免费观看| 成年人午夜在线观看视频| 亚洲精品亚洲一区二区| 国产精品一二三区在线看| 久久国产乱子免费精品| 久久精品国产亚洲av天美| 99久久中文字幕三级久久日本| 日本欧美视频一区| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 91久久精品国产一区二区成人| 人体艺术视频欧美日本| 99久国产av精品国产电影| 亚洲av欧美aⅴ国产| 久久99热6这里只有精品| 精华霜和精华液先用哪个| 亚洲精品乱码久久久v下载方式| 成人国产av品久久久| 成年美女黄网站色视频大全免费 | 亚洲精品成人av观看孕妇| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| av福利片在线| 黑人巨大精品欧美一区二区蜜桃 | 成年女人在线观看亚洲视频| 激情五月婷婷亚洲| 欧美+日韩+精品| 久久国产亚洲av麻豆专区| 99视频精品全部免费 在线| 五月天丁香电影| 自拍偷自拍亚洲精品老妇| 熟妇人妻不卡中文字幕| 桃花免费在线播放| 午夜视频国产福利| 91在线精品国自产拍蜜月| 99精国产麻豆久久婷婷|