• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advances in neuroimaging research of schizophrenia in China

    2014-12-08 06:44:39DengtangLIUYifengXUKaidaJIANG
    上海精神醫(yī)學(xué) 2014年4期
    關(guān)鍵詞:計算機斷層掃描腦萎縮磁共振

    Dengtang LIU*, Yifeng XU, Kaida JIANG

    ?Review?

    Advances in neuroimaging research of schizophrenia in China

    Dengtang LIU*, Yifeng XU, Kaida JIANG

    schizophrenia, magnetic resonance imaging, magnetic resonance spectroscopy, diffusion tensor imaging, China

    Neuroimaging studies of schizophrenia include both structural and functional techniques.[1-3]The former include X-ray computed tomography (CT) and magnetic resonance imaging (MRI); the latter include singlephoton emission computed tomography (SPECT), positron emission tomography (PET), functional MRI (fMRI),and magnetic resonance spectroscopy (MRS).[1-12]Diffusion tensor imaging (DTI) is another functional technique that measures the structure and integrity of the white matter.[13,14]This review describes the evolution of the use of these techniques in the study of schizophrenia(not including molecular neuroimaging) from the perspective of the results generated by researchers in mainland China.

    1. Structural neuroimaging studies of schizophrenia

    Since the end of the 19th century, researchers seeking the biological basis of schizophrenia have focused on the structure and function of the brain. The earliest study may be the 1879 report by Crichton-Browne that the brains of deceased individuals with schizophrenia were lighter than those of individuals with mood disorders but heavier than those of individuals with dementia. This was followed by a series of neurological autopsy studies and neuropathology studies.[1,2]Pneumoencephalography was the earliest form of in vivo neuroimaging. In 1927, Jacobi and colleagues used pneumoencephalography and found enlarged ventricles and hydrocephalus among individuals with schizophrenia, the first report of structural changes associated with schizophrenia.[1,2,15]

    The first contemporary brain structure study of schizophrenia was conducted in 1976 by Johnstone and colleagues[16]who assessed 17 individuals with schizophrenia using CT and found enlarged lateral ventricles and cortical encephalatrophy. Additionally,they found that the enlargement of the lateral ventricles was associated with cognitive impairment but unrelated to antipsychotic treatment.[16]The earliest CT study in China by Yu and colleagues in 1983[17]found that 30%of individuals with schizophrenia had encephalatrophy.A replication study by Wang and colleagues reported in 1986[18]also documented enlarged ventricles and widened sulus. The number of CT studies on schizophrenia in China grew significantly after 1987.[19-22]A 10-year follow-up study of their original sample by Wang and colleagues[23]found that the prevalence of encephalatrophy inthe patients had risen from 16 to 31% over the 10-year interval; they concluded that the structural abnormalities in schizophrenia were related to the duration of disease.

    Table 1 lists MRI studies on schizophrenia in China.Early studies engaged relatively simple imaging sequences and low-frequency magnetic fields. The analysis and presentation of the results were relatively basic.They reported that approximately 30% of individuals with schizophrenia had encephalatrophy, which was identified as reduced volume of the brain, widened sulus, and enlarged third and lateral ventricles.[24-30]The emergence of high fields MRI (e.g., 3T) and voxel-based morphometry (VBM) in 2006 equipped researchers with improved technology that could objectively quantify the volume and density of the local gray matter. Using VBM, a series of studies in China found reductions in the gray matter in the frontal lobe, temporal lobe and its interior structures, anterior cingulate, insula, parietal lobe, and cerebellum,[31-38]results that were consistent with findings from other countries. For example,Williams reviewed MRI-VBM studies and concluded that major structural brain changes in chronic schizophrenia included decreased gray matter in the superior temporal lobe (reported by 81% of studies) and in the inferior frontal lobe, inferior frontal lobe, inferior temporal lobe, and insula (reported by 50 to 70% of studies).[39]In first-episode schizophrenia reductions of the gray matter in the anterior cingulate gyrus and in the right parietal lobe were reported by 15 to 25% of studies and reductions of the gray matter in the inferior frontal lobe and the medial prefrontal lobe were also reported.[39]After two to three years of follow-up of first-episode schizophrenia, progressive reductions of the gray matter in the prefrontal-temporal lobe were found, changes that converge with those seen among individuals with chronic schizophrenia.[39]

    2. Functional neuroimaging studies of schizophrenia

    2.1 Functional magnetic resonance imaging (fMRI)studies

    Liu and colleagues discussed the use of MRI in psychiatric research in 2001[8]and conducted a series of studies on cognitive functioning among Chinese individuals without mental disorders.[40-42]In 2002, they reported results from a fMRI study on schizophrenia which found that treatment with antipsychotic medications(risperidone or chlorpromazine) can activate certain brain areas among patients with schizophrenia.[9]

    Table 2 lists task-based fMRI studies on schizophrenia from China. Tasks used in these studies included basic cognitive functioning (e.g., working memory,[10,43,45,47,48-52]verbal functioning,[9,44]and executive functioning[46]) and social cognitive functioning(e.g., face recognition[48]). These studies found that patients with schizophrenia had impairment in the memorization of active information as well as in the management and execution of active information.[10,43,45,47,48-52]The Sternberg item recognition task is one of the most widely used tests for short-term memory; studies that use this test in conjunction with fMRI report that during the maintenance stage of the task individuals with schizophrenia had increased activity levels in the left motor cortex, dorsolateral prefrontal cortex (DLPFC),ventral prefrontal cortex (VPFC), and the right precuneus– this suggests reduced efficiency of these brain regions.[10,43-45]The n-back task is a commonly used task to evaluate the ability to manage and execute working memory; based on the results of this task, individuals with schizophrenia were found to have impairment in the prefrontal cortex.[47]The Stroop task evaluates selective attention and impulse control; using this test, distracted individuals with schizophrenia were found to have deactivation in the left middle frontal gyrus and the right anterior cingulate and increased activity in the temporal lobe and right superior frontal lobe.[46]Using the facial recognition task, which evaluates social cognitive function, individuals with schizophrenia exhibited deactivation of the bilateral fusiform gyrus, occipital gyrus, cingulate gyrus, middle frontal gyrus, inferior frontal gyrus and cerebellum, left superior frontal gyrus, superior parietal lobe and the thalamus, and the right inferior parietal lobe.[48]Using the Burke dysphagia screening test, Jiang and his team found that after eight weeks of treatment with risperidone (3.8 mg/d), patients with schizophrenia showed improved brain activities in the left superior frontal gyrus and the left VPFC; this suggests that antipsychotics can ameliorate defective working memory in schizophrenia.[10]

    Resting-state fMRI (as opposed to task-based fMRI)refers to fMRI conducted under a completely relaxed state. Under the resting state, certain areas of the brain are actively performing important functions.[53]Liu and colleagues found decreased regional homogeneity in individuals with schizophrenia in the bilateral frontal lobes, temporal lobes, inferior cerebellum, right parietal lobe, and the left limbic lobe.[54]Jiang and colleagues studied a sample of individuals with early-onset schizophrenia (12-19 years of age) and found lower regional homogeneity in the bilateral medial prefrontal cortex (MPFC).[55]More recently, researchers used the amplitude of low frequency fluctuations (ALFF) to evaluate resting-state brain functions and found that among individuals with schizophrenia the ALFF was elevated in the right corpus callosum, occipital lobes, leftcerebellar lobe, superior frontal gyrus and precuneus,and the ALFF was decreased in the bilateral postcentral gyrus and left precuneus.[56]Huang and colleagues reported lower ALFF at the MPFC and higher ALFF at the bilateral putamina among those with drug-na?ve schizophrenia.[57]The above studies provide supportive evidence about the role of a dysfunctional MPFC in the pathogenesis of schizophrenia. Lui and colleagues investigated the influence of antipsychotics on restingstate brain functions among patients with schizophrenia and found that after six weeks of treatment with atypical antipsychotic medications, patients with firstepisode schizophrenia showed higher ALFF at the

    bilateral prefrontal cortex, parietal lobe, left superior temporal lobe, and the right caudate; moreover, this increase of ALFF was correlated with improvement of clinical symptoms.[58]

    Table 1. Magnetic resonance imaging(MRI) studies of schizophrenia in China

    Table 2. Task-based functional magnetic resonance imaging(fMRI) studies of schizophrenia in China

    2.2 . Magnetic resonance spectroscopy (MRS) studies

    Dopamine (DA) hyperfunction is an important hypothesis in the etiology of schizophrenia. It has been challenged in recent years due to the limited effectiveness of antipsychotic medications on negative symptoms and impaired cognition.[59]In its place the glutamate hypothesis has gained in popularity because it not only accounts for psychotic symptoms but it can provide a sensible explanation for the defective cognition in schizophrenia. This hypothesis postulates that individuals with schizophrenia have deactivated N-methyl-D-aspartic acid (NMDA) receptors, which results in a deficiency of gamma-aminobutyric acid(GABA) and disinhibition of glutamic acid. Some scholars consider the hyperfunction of DA a result of the deficiency of GABA.[59,60]Assessment of the glutamate hypothesis requires accurate measurement of GABA in the brains of individuals with schizophrenia.Magnetic resonance spectroscopy (1H-MRS) is the most common technique for measuring the level of GABA in combination with high-frequency (≥3T) MRI.[61,62]

    Table 3 lists MRS studies in China which have been used to assess levels of N-acetylaspartic acid(NAA), creatine (Cr), and choline (Cho) in individuals with schizophrenia.[63-68]They have found a decreased NAA/Cr ratio in the prefrontal cortex among patients with schizophrenia.[64-67]Most studies found no significant changes in the Cho/Cr ratio,[64-66]but Gao and colleagues reported a decreased Cho/Cr ratio in the bilateral frontal cortex.[67]These findings support hypotheses about the early damage of neurons in the frontal cortex of individuals with schizophrenia. There have been contradictory results from MRS studies of the hippocampus: Wang and colleagues[63]found an increased Cho/Cr ratio but no changes in the NAA/Cr ratio among male patients with schizophrenia while Peng and colleagues[65]found a decreased NAA/Cr ratio among patients with first-episode schizophrenia. Chen and colleagues[64]explored the effect of antipsychotics on brain metabolism but found no changes in the NAA/Cr or CHO/Cr ratios at the bilateral frontal cortex with treatment, suggesting that short-term treatment with atypical antipsychotic medications may not affect metabolism in the frontal cortex.

    2.3 Diffusion tensor imaging (DTI) studies

    DTI, which produces images of brain white matter and fiber tracts, highlights structural and functional asymmetry in different parts of the brain. Normally both grey matter and white matter are asymmetric,[1,2]but several researchers have found that in schizophrenia the asymmetry is reduced or reversed. Wang and colleagues[70]found that the asymmetry of the anterior cingulate tract was reduced in patients with schizophrenia. Su and colleagues[80]found that the asymmetry of the bilateral frontal lobe disappeared inpatients with schizophrenia and that the laterality of the genu and the posterior limb of the internal capsule was reversed.

    Table 3. Magnetic resonance spectroscopy (MRS) studies on schizophrenia in China

    DTI research has found structural abnormalities in the corpus callosum of patients with both firstepisode and chronic schizophrenia. Most research on the corpus callosum of patients with schizophrenia reports decreased fractional anisotropy (FA) in the genu,[79,80,83,86]and some studies report abnormalities in the splenium[73,76,86]and the truncus[74,86]of the corpus callosum. Kong and colleagues[83]found a reduced FA value in the genu of chronic patients but not in firstepisode patients, suggesting that the abnormality in that area reflects progression of the disease. Li and colleagues[86]compared five areas of the corpus callosum (splenium, truncus, anterior genu, mid genu,and posterior genu) in patients with schizophrenia,patients with bipolar disorder, and healthy controls;they found that both patient groups had lower FA values in all areas than those of healthy controls but they did not differ significantly from each other—which suggests that abnormalities in the corpus callosum are a shared component in the pathogenesis of schizophrenia and bipolar disorder.

    The internal capsule has also been extensively studied. The first study in China by Zhao and colleagues[72]did not find any abnormalities in the internal capsule of patients with schizophrenia but subsequent studies reported reduced FA in the anterior limb of the bilateral internal capsule,[75,80]anterior limb of the left internal capsule,[77]genu of the left internal capsule,[80]and genu of the right internal capsule.[84]

    Other studies report changes in the white matter and fiber tracts in other brain regions including the cerebellar peduncle, cingulate tract, cerebral peduncle,corona radiate, frontal lobe, temporal lobe, parietal lobe, insula, hippocampus, frontotemporal junction,parieto-occipital fasciculus, longitudinal fasciculus,and external capsule.[69-73,76,78,80-82,84-85]The results of DTI studies about schizophrenia conducted in China are summarized in Table 4.

    2.4 Brain network

    Brain network is currently a popular field in brain imaging research of schizophrenia in China.[87,88]Structural brain network research employs MRI to assess complex structural human brain networks and DTI to assess the white matter fiber tracts that connect these networks.Functional brain network research employs resting-state fMRI, task-state fMRI, electroencephalography (EEG),and magnetoencephalography (MEG) to assess complex functional human brain networks.[87-91]

    2.4.1 Structural brain network

    In 2012, Zhang and colleagues[92]used structural MRI to collect morphological data of the brain, and used the Automated Anatomical Labeling atlas (ALL) template to divide the brain into 78 areas (nodes). They used the graph theory analytical method for complex networks to analyze the brain network based on the thickness of the cortices. They found that the ‘small world’ property of the brain network of patients with schizophrenia was abnormal: (a) compared to normal brains the characteristic path length and the clustering coefficient increased; (b) the nodes in some brain areas had decreased centrality and thinner cortices (especially the left parahippocampal gyrus, inferior temporal gyrus,angular gyrus, and right superior frontal gyrus, which are part of the default network); and (c) the nodes in other brain areas had increased centrality, including nodes in the primary cortex (bilateral precuneous, left precentral gyrus, postcentral gyrus, and right Heschl gyrus) and the paralymbic system (bilateral orbital frontal gyrus,temporal pole, right cingulate tract, and inferior parietal gyrus). These findings indicated that the characteristics of the topology of the brain network changed in patients with schizophrenia. In 2014, Zhang and colleagues[93]reported that patients with schizophrenia had decreased connectivity between the thalamus and the bilateral inferior frontal gyrus, left superior temporal gyrus, and right parieto-occipital regions. These findings indicated that schizophrenia is associated with the loss of brain connectivity.

    Wang and colleagues[94]used the ALL template along with white matter fiber tracts data collected using DTI to map the brain into 90 areas, and analyzed the white matter fiber tracts network using fiber tracking technology and graph-theory-based complex network analysis. They found that the normal characteristics of the topography of the brain network changed in patients with schizophrenia, resulting in a significant decrease in global efficiency that was correlated with scores on the Positive and Negative Syndrome Scale (PANSS). They also found decreased regional efficiency of some hubs,including the joint frontal cortex, paralimbic system,limbic system, and left lentiform nucleus.

    2.4.2 Functional brain network

    Functional brain networks are constructed using time series data of functional brain activities. Brain networks are differentiated into brain networks based on regions of interest, brain networks with specific functions, and whole brain networks. Examples of brain networks based on regions of interest are the dorsal lateral prefrontal lobe network and the medial prefrontal lobe network. Examples of specific brain networks are the default mode network (DMN) and the fronto-parietal network (FPN).[91]

    Zhou and colleagues[95]studied the functional connection of the bilateral dorsal lateral prefrontal cortex (DLPFC); they found that patients with schizophrenia had reduced functional connection between the DLPFC and the parietal lobe, post cingulate gyrus, thalamus and striatum, but increased functional connection between the left DLPFC and the left midanterior temporal lobe and paralimbic regions. Fan and colleagues[96]studied the functional connection of the vetromedial prefrontal cortex (vMPFC) in patients with schizophrenia; they found (a) decreased functional

    connection between the vMPFC and the medial frontal lobe, right middle temporal gyrus, right hippocampus,parahippocampal gyrus and amygdale, (b) decreased strength of the negative correlation between the vMPFC and the bilateral DLPFC and anterior supplementary motor area, and (c) a positive correlation between the reduction in the vMPFC-DLPFC connection and the positive symptoms of schizophrenia.

    Table 4. Diffusion tensor imaging (DTI)studies on schizophrenia in China

    Tang and colleagues[97]studied the default mode network (DMN) in patients with early-onset schizophrenia (12 to 19 years old); they found increased functional connection between the ventromedial prefrontal lobe and the right inferior temporal gyrus,left angular gyrus, and dorsomedial prefrontal lobe,but decreased functional connection between the right angular gyrus and the cerebellar tonsil, left superior frontal gyrus and right inferior semilunar lobule. Chang and colleagues[98]studied the anterior and posterior DMN as well as the left lateral and right lateral frontopariental networks (FPN); they found (a) abnormal intranetwork connections in the anterior DMN and bilateral FPN in both patients with schizophrenia and their healthy siblings, (b) normal intra-network connection of the posterior DMN, (c) a positive association between the two networks in patients with schizophrenia, their healthy siblings, and healthy controls, and (d) a stronger functional connection between the right FPN and the anterior DMN in patients with schizophrenia than in healthy controls.

    Other researchers studied schizophrenia from the perspective of inherent networks, and proposed that the inherent networks include a task-positive network(TPN) and a task-negative network (TNN). Kong and colleagues[99]found increased functional connection in the bilateral inferior temporal gyrus of the TNN among individuals with schizophrenia and their healthy siblings;they also found increased functional connection between the left DLPFC and the right inferior temporal gyrus of the TPN among individuals with schizophrenia.Zhou and colleagues[100]assessed the TNN and TPN in patients with paranoid schizophrenia and found abnormal TNN functional connections with the bilateral dorsomedial prefrontal cortex, lateral parietal lobe, and inferior temporal gyrus, and abnormal TPN functional connections with the DLPFC and the right dorsal premotor cortex.

    Liang and colleagues[101]used the ALL template to divide the brain into 116 areas, and analyzed the whole brain network using a complex network analysis method based on graph theory. They found that the functional brain connection of patients with schizophrenia during the resting state showed a wide-spread decline. Ke and colleagues[102]compared the properties of the brain network of patients with schizophrenia who primarily have positive symptoms with that of patients who primarily have negative symptoms; they found that the decline in the ‘small-world’ network was more pronounced in the patients with negative symptoms.

    Guo and colleagues[103]assessed first order symmetry(the strength of the functional connection between the same brain regions from opposite hemispheres) and second order symmetry (the functional connection between the same pairs of brain regions from opposite hemispheres). They found that patients with schizophrenia had significantly decreased first and second order symmetry: the decrease in the first order symmetry indicated a reduced synchronicity between the two hemispheres; the decrease in the second order symmetry indicated a pronounced difference between the functional networks in the two hemispheres. They then compared the brain areas that were connected by the corpus callosum (CC) and the anterior commissure(AC) in patients with schizophrenia, and found that first and second order symmetry decreased in brain areas connected by the CC, but only first order symmetry decreased in brain areas connected by AC.

    Liu and colleagues[104]assessed the diagnostic distinctiveness of the resting-state whole brain network.They found an 80.4% accuracy in distinguishing patients with schizophrenia from healthy controls, a 77.6%accuracy in distinguishing patients with schizophrenia from their healthy siblings, and a 78.7% accuracy in distinguishing schizophrenia patients’ healthy siblings and healthy controls without relatives with schizophrenia. These results suggest that the restingstate brain network of the patients’ siblings without schizophrenia is also changed in ways that distinguish it both from the brain network of their ill siblings and from that of healthy controls without a family history of mental illness.

    3. Conclusions and future directions

    In the past 30 years, advances in imaging technology and data analysis techniques have transformed neuroimaging into an exciting field that is rapidly advancing our understanding of the normal and abnormal functioning of the brain. These methods have identified structural and functional abnormalities in the brains of individuals with schizophrenia that confirm the biological basis of the disorder. However, much more multi-disciplinary work will be needed to integrate these findings into a comprehensive model of the etiology of this complex disorder. Chinese investigators have been and will continue to be enthusiastic participants in this global effort to understand, treat, and, hopefully,prevent this devastating condition.

    Future neuroimaging research needs to overcome several central problems.

    (a) Schizophrenia is highly heterogeneous, so dividing individuals with the clinical diagnosis into relatively homogeneous subgroups is essential to identifying distinct biological markers using neuroimaging techniques. The traditional methods of categorizing subtypes (paranoid,adolescent-onset, catatonic, simple, etc.) are obviously insufficient for research purposes. The dimensional approach based on rating the severity of 8 core symptoms of psychosis suggested in DSM-5[105]may be an improvement, but the utility of this method has not yet been assessed.

    (b) There are some basic limitations to neuro-imaging that need to be overcome. Re-construction of images of white matter fiber tracts using DTI still has many methodological problems, including the false connections that can appear when reconstructing crossing fibers or longer fibers.[88]At present neuroimaging can only use MRI morphological data based on the population to construct a collective brain structural network; it cannot use data from a single participant to build an individualized brain structural network.

    (c) Current brain network research is focused on the macro-level (whole brain or brain region)and relies on brain atlases (e.g., dividing the brain into 90 regions/nodes). Micro-level brain network research (neuron-level or voxellevel) may be more helpful for revealing the pathological mechanisms of a disorder, but such voxel-level studies will require much longer image processing time and more complex image analysis techniques.[87,88]Moreover, present brain network research describes associationsnotcause and effect relationships, so we do not know how the related brain areas work together to function effectively. Future research must construct directional networks that specify the directionality of the fiber connection between different brain regions and the causal relationship between neural activities.[87,88]

    (d) More research in multi-modal imaging is needed to explore the potential benefits of combining methods. Many possible combinations are possible: structural MRI and resting-state fMRI;[106]resting-state fMRI and DTI;[107]neural imaging techniques based on MRI and EEG or MEG;[88]task-state fMRI and event-related potentials (ERP) or resting-state fMRI; and so forth. These multi-modal imaging methods can attain better results than single-mode methods by combining the complementary strengths of the different methods. For example, MRI has higher spatial resolution and EEG has better time resolution so combining the two methods provides a more multi-dimensional assessment.

    (e) A parallel effort needs to be made in combining neuroimaging with genetics research[108,109]and with cognitive-behavioral research. Such a multi-disciplinary approach could reduce the necessary sample size of genetics research, help identify the genetic basis of the abnormal structure and function of the brain in schizophrenia, and clarify the link between altered genes, dysfunctional brains, and abnormal behavior.

    Conflict of interest

    The authors declare no conflict of interest related to this manuscript.

    Funding

    This review was funded by the National Science Foundation of China (81371479).

    1. Xu YF, Liu DT. [Schizophrenia]. Beijing: People’s medical publishing house. 2012. Chinese

    2. Liu TB, Zang DX. [Research progress of biological psychiatry in schizophrenia]. Wuhan: Hubei science and technology publishing house. 1994. Chinese

    3. Malhi GS, Lagopoulos J. Making sense of neuroimaging in psychiatry.Acta Psychiatr Scand. 2008; 117: 100-117. doi:http://dx.doi.org/10.1111/j.1600-0447.2007.01111.x

    4. Zhang WH, Zhou DF. [Advances of neuroimaging and neuropathology studies in schizophrenia].Zhonghua Jing Shen Ke Za Zhi. 2003; 36: 249-251. Chinese. doi: http://dx.doi.org/10.3760/j:issn:1006-7884.2003.04.025

    5. Hao GF, Zhang ZJ, Hou G. [Progress of structural MRI in firstepisode schizophrenic patients].Guo Wai Yi Xue Jing Shen Bing Xue Fen Ce. 2005; 32: 125-128. Chinese

    6. Zipursky RB, Meyer JH, Verhoeff NP. PET and SPECT imaging in psychiatric disorders.Can J Psychiatry. 2007; 52(3): 146-157

    7. Pan J, Ouyang AM, Wang FS. [Research progress of positron emission tomography in schizophrenia].Jing Shen Yi Xue Za Zhi. 2008; 21: 311-313. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1009-7201.2008.04.033

    8. Liu DT, Jiang KD, Xu YF. [Functional magnetic resonance imaging in psychiatry].Zhong Hua Jing Shen Ke Za Zhi.2001; 34: 49-51. Chinese. doi: http://dx.doi.org/ 10.3760/j:issn:1006-7884.2001.01.031

    9. Liu DT, Jiang KD, Xu YF, Zhuo S, Shi S, Wang L, et al. [A preliminary study of functional magnetic resonance imaging in first-episode schizophrenia].Shanghai Arch Psychiatry.2002; 14(4): 193-197. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1002-0829.2002.04.001

    10. Liu DT, Jiang KD, Xu YF, Zhu S, Shi S, Liu H, et al. [Functional magnetic resonance imaging of backward digit span task in first-episode schizophreniac patients before and after treatment].Zhong Hua Jing Shen Ke Za Zhi. 2004;37(2): 81-84. Chinese. doi: http://dx.doi.org/10.3760/j:issn:1006-7884.2004.02.006

    11. Chen LJ, Xie SP. [Advances of magnetic resonance spectroscopy in schizophrenia].Guo Wai Yi Xue Jing Shen Bing Xue Fen Ce. 2005; 32: 28-32. Chinese

    12. Zhang GF, Zhang YT. [MRS in Brain Research of Schizophrenia].Guo Wai Yi Xue Lin Chuang Fang She Xue Fen Ce. 2006; 29: 14-19. Chinese

    13. Yang H, Zhou XP, Deng KH. [MR diffusion tensor imaging and its applications in schizophrenia].Lin Chuang Fang She Xue Za Zhi. 2006; 25: 785-787. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1001-9324.2006.08.023

    14. Xu YK, Yu CX, Wang CY. [Progress of tensor diffusion imaging in schizophrenia].Lin Chuang Fang She Xue Za Zhi. 2007;26: 194-196. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1001-9324.2007.02.023

    15. Gu NF, Xia ZY. [CT and schizophrenia].Zi Ran Za Zhi. 1984;7(8): 610-612. Chinese

    16. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia.Lancet. 1976; 2(7992): 924-926. doi: http://dx.doi.org/10.1016/S0140-6736(76)90890-4

    17. Yu QH, Chen PZ, Liu TS, Yin ZJ. [Preliminary report Schizophrenia decline brain CT and cognitive function test].Zhong Hua Shen Jing Jing Shen Ke Za Zhi.1983; 1: 42-45.Chinese

    18. Wang XY, Li WT, Hu JR, Zhang XF, Liang EW, Quan CG, et al.[The relationship of CT and clinical characteristics: evidences from 73 patients with schizophrenia].Zhongguo Shen jing Jing Shen Ji Bing Za Zhi. 1986; 12(6): 345-347. Chinese

    19. Yang ZJ, Hou Y. [Preliminary study of brain CT in 9 patients with schizophrenia].Beijing Yi Ke Da Xue Xue Bao. 1987;19(1): 53. Chinese

    20. Gu NF, Yan HQ, Cai GJ, Lin ZG, Zhang MD, Xia ZY, et al. [The third ventriculars dilatation and schizophrenia].Zi Ran Za Zhi.1987; 1: 78-9. Chinese

    21. Zhang LD, Zhang MY, Gu NF, Zhang YL, Yan HQ, Xia ZY, et al.[Brain CT study in first- episode schizophrenia].Shanghai Arch Psychiatry.1987; 01: 23-26. Chinese

    22. Gu NF, Yan HJ, Cai GJ, Lin ZG, Zhang MD, Xia ZY, et al. [Brain CT study in schizophrenic patients and relatives].Shanghai Arch Psychiatry. 1987; 13(3): 93-99. Chinese

    23. Wang XY, Wang SY, Li WT, Jiang T, Ma WY, Sun HX, et al. [10-year follow-up study of cerebral CT and clinical features of schizophrenia].Zhong Hua Jing Shen Ke Za Zhi. 1998;31(2): 111-113. Chinese. doi: http://dx.doi.org/10.3760/j:issn:1006-7884.1998.02.015

    24. Shi XX, Jin WD, Sun GH, Yang JM. [The relationships of MRI and clinical characteristics in patients with schizophrenia].Zhong Yuan Jing Shen Yi Xue Za Zhi. 1996; 2(4): 208-209.Chinese

    25. Chen Z, Chen H, Wu H, Hong QS, Wang HQ, Yu XY. [The corpus callosum study with MRI in 23 male patients with schizophrenia].Zhongguo Shen Jing Jing Shen Ji Bing Za Zhi.1997; 23(3): 29. Chinese

    26. Wang KW, Xie SP, Kang B, Zhang XB, Yu XH, Liu H. [MRI abnormalities and psychiatric symptoms in schizophrenia].Lin Chuang Jing Shen Yi Xue Za Zhi. 1998; 8(1): 5-7. Chinese

    27. Gan JL, Yang JM, Zhang WH, Sun GH, Lv CS, Wang JM, et al. [A study of global atrophy and its relative factors in schizophrenia].Sichuan Jing Shen Wei Sheng. Chinese. 2000;13(1): 6-8

    28. Sui YX, Liu W, Li YP, Zhuo ST. [A study of brain structure in schizophrenia by magnetic resonance imaging].Lin Chuang Jing Shen Yi Xue Za Zhi. 2001; 11(3): 134-136. Chinese. doi:http://dx.doi.org/10.3969/j.issn.1005-3220.2001.03.003

    29. Kang WH, Yu BL, Wang W, Chen C, Li Q, Ma XC, et al.[Correlation between MRI of temporal lobe morphology in patients with first-episode schizophrenia and pathopsychological factors].Xian Jiao Tong Da Xue Xue Bao(Yi Xue Ban). 2004; 25(1): 8-10. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1671-8259.2004.01.003

    30. Sui YX, Liu W, Fan JX, Zhuo ST. [Corpus callosum in schizophrenia: a magnetic resonance imaging study].Zhong Hua Jing Shen Ke Za Zhi. 2005; 2: 79-81. Chinese.

    31. Wu DX, Yan LY, Tan CL, Hu DW, Yao SQ. [A voxel-based morphometric analysis of structural gray matter abnormality in schizophrenia].Zhongguo Yi Xue Ying Xiang Ji Shu.2007; 22(11): 1652-1655.1. Chinese. doi: http://dx.doi.org/10.3321/j.issn:1003-3289.2006.11.013

    32. Lv S, Ouyang L, Huang XQ, Deng W, Tang HH, Jang LJ, et al.[An optimized voxel-based morphometry MRI study of the brain in patients with first episode schizophrenia].Zhong Hua Fang She Xue Za Zhi. 2007; 41(5): 495-498. Chinese. doi:http://dx.doi.org/10.3760/j.issn:1005-1201.2007.05.013

    33. Zhou L, Den W, Ouyang L, Lv S, Huang XQ, Jiang LJ, et al. [A VBM study of the brain asymmetric changes in first-episode,antipsychotic-naive schizophrenia patients].Hua Xi Yi Xue.2008; 23(3): 442-444. Chinese

    34. Lui S, Deng W, Huang XQ, Jiang LJ, Ouyang L, Stefan J, et al.Neuroanatomical differences between familial and sporadic schizophrenia and their parents: an optimized voxel-based morphometry study.Psychiatry Res. 2009; 171(2): 71-81.doi: http://dx.doi.org/10.1016/j.pscychresns.2008.02.004

    35. Cui LQ, Li ML, Deng W, Guo WJ, Ma XH, Huang CH, et al.Overlapping clusters of gray matter deficits in paranoid schizophrenia and psychotic bipolar mania with family history.Neurosci Lett. 2011; 489(2): 94-98. doi: http://dx.doi.org/10.1016/j.neulet.2010.11.073

    36. Lai YY, Yang L, Zhang XP, Chen L, Yu X, Hong N. [First-episode schizophrenia foot dome MRI findings].Zhongguo Yi Xue Ying Xiang Xue Za Zhi. 2012; 20(4): 263-267. doi: http://dx.doi.org/10.3969/j.issn.1005-5185.2012.04.007

    37. Sheng JH, Zhu YK, Lu Z, Liu N, Huang N, Zhang ZW, et al.Altered volume and lateralization of language-related regions in first-episode schizophrenia.Schizophr Res.2013; 148(1): 168-174. doi: http://dx.doi.org/10.1016/j.schres.2013.05.021

    38. Hu MR, Li J, Eyler L, Guo XF, Wei QL, Tang JS, et al. Decreased left middle temporal gyrus volume in antipsychotic drugnaive, first-episode schizophrenia patients and their healthy unaffected siblings.Schizophr Res. 2013; 144(1): 37-42. doi:http://dx.doi.org/10.1016/10.1016/j.schres.2012.12.018

    39. Williams LM. Voxel-based morphometry in schizophrenia:implications for neurodevelopmental connectivity models,cognition and affect.Expert Rev Neurother. 2008; 8(7): 1049-1065. doi: http://dx.doi.org/10.1586/14737175.8.7.1049

    40. Jiang KD, Liu DT, Wang ZY, Ling Z, Wu Y, Liu HQ, et al. [Brain activity during verbal fluency task in healthy volunteers: a functional magnetic resonance imaging study].Zhong Hua Jing Shen Ke Za Zhi. 2004; 37(3): 164-167. Chinese. doi:http://dx.doi.org/10.3760/j:issn:1006-7884.2004.03.010

    41. Xu YF, Liu DT, Jang KD, Liu HQ, Yao ZY. [Functional magnetic resonance imaging studies of backward digit span task].Zhongguo Shen Jing Jing Shen Ji Bing Za Zhi. 2005;31(2): 133-135. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1002-0152.2005.02.016

    42. Zhu DM, Tang WJ, Yang ZL, Xu YF, Liu DT. [Functional magnetic resonance imaging studies of event-based prospective memory].Zhong Hua Xing Wei Yi Xue Yu Nao Ke Xue Za Zhi. 2012; 21(10): 924-926. Chinese. doi: http://dx.doi.org/10.3760/cma.j.issn.1674-6554.2012.10.019

    43. Liu DT, Xu YF, Ling Z, Liu HQ, Yao ZY, Jiang KD. [FMRI of backward digit span task in first-episode schizophrenic patients].Shanghai Arch Psychiatry.2004; 5: 258-262.Chinese

    44. Liu DT, Jiang KD, Wu Y, Liu HQ, Yao ZY, Xu YF, et al. [Functional magnetic resonance imaging of verbal fluency task in firstepisode schizophrenic patients].Zhong Hua Jing Shen Ke Za Zhi. 2005; 38(3): 138-141. Chinese. doi: http://dx.doi.org/10.3760/j:issn:1006-7884.2005.03.004

    45. Wu DX, Tan CL, Yan LR, Hu DW, Wang X, Yao SQ. [The role of the prefrontal cortex in schizophrenia accompanied by dysexecutive syndromes during the double working memory tasks: an fMRI study].Zhongguo Yi Ke Da Xue Xue Bao. 2008;36(6): 737-740. Chinese. doi: http://dx.doi.org/10.3969/j.issn.0258-4646.2007.06.045

    46. Liu J, Zhou SK, Mou YF, Xue ZM, Xiao EH, He Z. [Stroop test in patients with paranoid schizophrenia: an fMRI study].Zhongguo Yi Xue Ying Xiang Ji Shu. 2007; 23(3):349-352. Chinese. doi: http://dx.doi.org/10.3321/j.issn:1003-3289.2007.03.009

    47. Wang X, Yan LR, Tan CL, Li YJ, Xia WW, Situ WJ. [Evidence for abnormal executive function in deficit and nondeficit schizophrenia: a preliminary fMRI study].Zhongguo Yi Xue Ying Xiang Ji Shu. 2007; 23(8): 1130-1133. Chinese. doi:http://dx.doi.org/10.3321/j.issn:1003-3289.2007.08.008

    48. Zou LQ, Yuan HS, Dong WT, Pei XL, Xing W, Liu PC, et al. [An fMRI study of facial work memory in drug-naive schizophrenic patients].Zhongguo Yi Xue Ying Xiang Ji Shu. 2007; 23(8): 1134-1138. Chinese. doi: http://dx.doi.org/10.3321/j.issn:1003-3289.2007.08.009

    49. Yang GF, Zhang Q, Zhang YT, Shen JH, Zhang XJ, Chen QG, et al. [An fMRI study of aberrant brain network in schizophrenia patients].Zhongguo Lin Chuang Xin Li Xue Za Zhi. 2009; 5:581-583. Chinese

    50. Yang GF, Zhang Q, Zhang YT, Shen JH, Zhang XJ, Chen QG,et al. [An fMRI study for different cognition components of working memory in schizophrenia patients].Zhongguo Lin Chuang Yi Xue Ying Xiang Za Zhi. 2009; 20(10):758-761. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1008-1062.2009.10.008

    51. Gu Q, Sun XJ, Tian W, Mo Y, Liu W. [Functional MR study of task-induced deactivations in schizophrenic patients].Zhongguo Lin Chuang Yi Xue Ying Xiang Za Zhi. 2009;20(1): 13-16. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1008-1062.2009.01.004

    52. Zhang HR, Wei XM, Tao HJ, Mwansisya TE, Pu WD, et al.Opposite effective connectivity in the posterior cingulate and medial prefrontal cortex between first-episode schizophrenic patients with suicide risk and healthy controls.PloS One.2013; 8(5): e63477

    53. Wang YC, Liu DT. [Research progress of the default mode of brain network in mental disorders].Jing Shen Yi Xue Za Zhi. 2012; 25(4): 314-317. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1009-7201.2012.04.025

    54. Liu H, Liu Z, Liang M, Hao Y, Tan L, Kuang F, et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study.Neuroreport.2006; 17(1): 19-22

    55. Jiang SY, Zhou B, Liao YH, Liu WQ, Tang CL, Chen XG, et al. [Primary study of resting state functional magnetic resonance imaging in early onset schizophrenia using ReHo].Zhong Nan Da Xue Xue Bao (Yi Xue Ban). 2010;35(9): 947-951. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1672-7347.2010.09.008

    56. Liu H, Fan GG, Xu K, Li HH, Shao J. [Amplitude of lowfrequency fluctuation study of resting-state function MRI in schizophrenia].Zhongguo Yi Xue Ying Xiang Ji Shu. 2010;26(9): 1659-1662. Chinese

    57. Huang X, Lui S, Deng W, Chan RCK, Wu Q, Jiang L, et al.Localization of cerebral functional deficits in treatmentnaive, first-episode schizophrenia using resting-state fMRI.Neuroimage. 2010; 49: 2901-2906. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.11.072

    58. Lui S, Li T, Deng W, Jiang J, Wu Q, Tang H, et al. Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging.Arch Gen Psychiatry. 2010; 67(8): 783-792. doi: http://dx.doi.org/10.1001/archgenpsychiatry.2010.84

    59. Poels EMP, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC,Lieberman JA, et al. Imaging glutamate in schizophrenia:review of findings and implications for drug discovery.Mol Psychiatry. 2014; 19: 20–29

    60. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G.Glutamatergic synaptic dysregulation in schizophrenia:therapeutic implications. In:M.A. Geyer and G. Gross(eds.), Novel Antischizophrenia Treatments, Handbook of Experimental Pharmacology 213. Berlin Heidelberg :Springer-Verlag. 2012

    61. Bustillo JR. Use of proton magnetic resonance spectroscopy in the treatment of psychiatric disorders: a critical update.Pharmacology. 2013; 15(3): 329-337

    62. Maddock RJ, Buonocore MH. MR spectroscopic studies of the brain in psychiatric disorders.Curr Topics Behav Neurosci. 2012; 11: 199–251. doi: http://dx.doi.org/10.1007/7854_2011_197

    63. Wang F, Sun ZG, Ruan Y, Wang XL, Zhang HY, Cong Z, et al.[A H1magnetic resonance spectroscopy imaging study on hippocampus in male patients with schizophrenia].Zhong Hua Jing Shen Ke Za Zhi. 2004; 37(2): 78-80. Chinese. doi:http://dx.doi.org/10.3760/j:issn:1006-7884.2004.02.005

    64. Chen LJ, Xie SP, Chen N. [Proton magnetic resonance spectroscopy study on frontal lobe in the first-episode male schizophrenic patients before and after two month antipsychotic treatment].Zhong Hua Jing Shen Ke Za Zhi. 2006; 39(3): 157-160. Chinese. doi: http://dx.doi.org/10.3760/j:issn:1006-7884.2006.03.008

    65. Peng M, Guo QY, Han JY, Fan GG, Jin KH. [Proton magnetic resonance spectroscopy of brains in first-episode schizophrenic patients].Zhongguo Xin Li Wei Sheng Za Zhi. 2006; 20(6): 400-403. Chinese. doi: http://dx.doi.org/10.3321/j.issn:1000-6729.2006.06.018

    66. Ma XC, Gao CG, Ding H, Yu BL. [Proton magnetic resonance spectroscopy imaging study on prefrontal cortex in first fit schizophrenia].Xi’an Jiao Tong Da Xue Xue Bao: Yi Xue Ban. 2006; 27(4): 394-396. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1671-8259.2006.04.022

    67. Gao JY, Sun XH, Su ZH, Chen YR, Hu XB, Wang GS, et al.[The fractional anisotropy of metabolites of the brain in first-episode patients with paranoid schizophrenia: a study of MRS].Shen Jing Ji Bing Yu Jing Shen Wei Sheng.2010; 2: 149-152. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1009-6574.2010.02.011

    68. Li XW, Du XJ, Zhang X. [MRS study in the first-degree relatives of schizophrenic patients with normal personality traits].Neimenggu Yi Xue Za Zhi. 2011; 43(3): 301-304. Chinese. doi:http://dx.doi.org/10.3969/j.issn.1004-0951.2011.03.015

    69. Wang F, Sun ZG, Du XK, Wang XL, Cong Z, Zhang HY, et al.A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia.Neurosci Lett. 2003; 348(3): 135-138. doi: http://dx.doi.org/10.1016/S0304-3940(03)00589-5

    70. Wang F, Sun ZG, Cui LW, Du XK, Wang XL, Zhang HY, et al.Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging.Am J Psychiatry. 2004; 161(3): 573-5

    71. Hao Y, Liu Z, Jiang T, Gong G, Liu H, Tan L, et al. White matter integrity of the whole brain is disrupted in first-episode schizophrenia.Neuroreport. 2006; 17(1): 23-26. doi: http://dx.doi.org/10.1097/01.wnr.0000195664.15090.46

    72. Zhao RY, Xu XF, Yang JZ, Tian W, Bao YM. [The white matter and grey matter in the first episodic schizophrenia: a diffusion tensor imaging study].Zhong Hua Jing Shen Ke Za Zhi. 2006; 39(2): 69-72. Chinese. doi: http://dx.doi.org/10.3760/j:issn:1006-7884.2006.02.002

    73. Wu T, Liu W, Cai ZY. [Study of white matter microstructure in schizophrenia by MR diffusion tensor imaging].Zhongguo Yi Xue Ying Xiang Ji Shu. 2006; 22(7): 978-980. Chinese. doi:http://dx.doi.org/10.3321/j.issn:1003-3289.2006.07.004

    74. Li Y, Liu W, Sui MX, Wu T. [Corpus callosum in first-episode patients with schizophrenia: a magnetic resonance diffusion tensor imaging study].Sichuan Jing Shen Wei Sheng. 2006;22(7): 978-980. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1007-3256.2008.02.002

    75. Zou LQ, Yuan HS, Pei XL, Dong WT, Liu PC, Xie JX. [Diffusion tensor imaging study of the anterior limb of internal capsules in neuroleptic-naive schizophrenia].Zhongguo Yi Xue Ying Xiang Ji Shu. 2008; 24(1): 27-29. Chinese. doi: http://dx.doi.org/10.3321/j.issn:1003-3289.2008.01.008

    76. Li XL, Huang XQ, Jun QY, Lv S, Deng W, Zhang TJ, et al. [Neural substrate of schizophrenia revealed by combining voxelbased morphometry and diffusion tensor imaging].Hua Xi Yi Xue. 2008; 23(3): 435-437. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1002-0179.2008.03.004

    77. Zou LQ, Pei XL, Yuan HS, Dong WT, Liu PC, Xie JX. [Diffusion tensor imaging of the anterior limb of internal capsule in male schizophrenic patients before neuroleptic therapy].Radiologic Practice. 2009; 24(7): 704-707. Chinese. doi:http://dx.doi.org/10.3969/j.issn.1000-0313.2009.07.003

    78. Hao YH, Yan Q, Liu HH, Lin X, Xue ZM, Song XQ, et al.Schizophrenia patients and their healthy siblings share disruption of white matter integrity in the left prefrontal cortex and the hippocampus but not the anterior cingulate cortex.Schizophr Res. 2009; 114(1): 128-135. doi: http://dx.doi.org/10.1016/j.schres.2009.07.001

    79. Su ZH, Chen YR, Wang GS, Sun XH, Hu XB, Gao JY, et al.[The abnormalities of microstructure in corpus callosum in the first -episode patients with paranoid schizophrenia:a study of DTI and MRS].Jing Shen Yi Xue Za Zhi.2009;5: 325-327. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1009-7201.2009.05.002

    80. Su ZH, Chen YR, Wang GS, Sun XH, Hu XB, Gao JY, et al.[The DTI study of white matter fractional anisotropy in the first-episode patients with paranoid schizophrenia].Zhongguo Shen Jing Jing Shen Ji Bing Za Zhi. 2010;4: 233-236. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1002-0152.2010.04.011

    81. Li HH, Liu H, Sun WG, Fan GG, Xu K, Tang YQ, et al. [A stuty of cereballar structure in schizophrenia patients by combining voxel-based morphometry and diffusiong tensor imaging].Jie Pou Ke Xue Jin Zhan. 2011; 17(6): 541-544. Chinese

    82. Cui L, Chen ZF, Deng W, Huang, XQ, Li ML, Ma XH, et al.Assessment of white matter abnormalities in paranoid schizophrenia and bipolar mania patients.Psychiatry Res.2011; 194(3): 347-353. doi: http://dx.doi.org/10.1016/j.pscychresns.2011.03.010

    83. Kong XQ, Ouyang X, Tao HJ, Liu HH, Li L, Zhao JP, et al.Complementary diffusion tensor imaging study of the corpus callosum in patients with first-episode and chronic schizophrenia.J Psychiatry Neurosci. 2011; 36(2): 120-125.doi: http://dx.doi.org/10.1503/jpn.100041

    84. Guo WB, Liu F, Liu ZN, Gao KM, Xiao CQ, Chen HF, et al. Right lateralized white matter abnormalities in firstepisode, drug-naive paranoid schizophrenia.Neurosci Lett. 2012; 531(1): 5-9. doi: http://dx.doi.org/10.1016/j.neulet.2012.09.033

    85. Chen LP, Chen XG, Liu WQ, Wang QF, Jiang TZ, Wang XY, et al.White matter microstructural abnormalities in patients with late-onset schizophrenia identified by a voxel-based diffusion tensor imaging.Psychiatry Res. 2013; 212(3): 201-207. doi:http://dx.doi.org/10.1016/j.pscychresns.2012.05.009

    86. Li J, Elliot K, Chen KY, Tang YQ, Ouyang X, Jiang YF, et al.A comparative diffusion tensor imaging study of corpus callosum subregion integrity in bipolar disorder and schizophrenia.Psychiatry Res. 2014; 221(1): p. 58-62. doi:http://dx.doi.org/10.1016/j.pscychresns.2013.10.007

    87. Jiang T, Zhou Y. Brainnetome of schizophrenia: focus on impaired cognitive function.Shanghai Arch Psychiatry.2012; 24(1): 3-10. doi: http://dx.doi.org/10.3969/j.issn.1002-08329.2012.01.001

    88. Jiang T, Zhou Y, Liu B, Liu Y, Song M. Brainnetome-wide association studies in schizophrenia: the advances and future.Neurosci Biobehav Rev. 2013; 37(10): 2818-2835.doi: http://dx.doi.org/10.1016/j.neubiorev.2013.10.004

    89. Jiang TZ, Liu Y, Li YH. [Brain networks: from anatomy to dynamics].Sheng Ming Ke Xue. 2009; 2: 181-188. Chinese

    90. Liang X, Wang JH, He Y. [Human connectome: Structural and functional brain networks].Ke Xue Tong Bao. 2010; 16:1565-1583. Chinese

    91. Jiang T. Brainnetome: A new -ome to understand the brain and its disorders.Neuroimage. 2013; 80: 263-272. doi:http://dx.doi.org/10.1016/j.neuroimage.2013.04.002

    92. Zhang Y, Lin L, Lin C, Zhou Y, Chou K, Lo C, et al. Abnormal topological organization of structural brain networks in schizophrenia.Schizophr Res. 2012; 141(2-3): 109-118. doi:http://dx.doi.org/10.1016/j.schres.2012.08.021

    93. Zhang Y, Su T, Liu B, Zhou Y, Chou K, Lo C, et al. Disrupted thalamo-cortical connectivity in schizophrenia: A morphometric correlation analysis.Schizophr Res. 2014;153(1-3): 129-135. doi: http://dx.doi.org/10.1016/j.schres.2014.01.023

    94. Wang Q, Su T, Zhou Y, Chou K, Chen I, Jiang T, et al.Anatomical insights into disrupted small-world networks in schizophrenia.Neuroimage. 2012; 59(2): 1085-1093. doi:http://dx.doi.org/10.1016/j.neuroimage.2011.09.035

    95. Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, et al. Functional dysconnectivity of the dorsolateral prefrontal cortex in firstepisode schizophrenia using resting-state fMRI.Neurosci Lett. 2007; 417(3): 297-302. doi: http://dx.doi.org/10.1016/j.neulet.2007.02.081

    96. Fan F, Tan S, Yang F, Tan Y, Zhao Y, Chen N, et al. Ventral medial prefrontal functional connectivity and emotion regulation in chronic schizophrenia: a pilot study.Neurosci Bull. 2013; 29(1): 59-74. doi: http://dx.doi.org/10.1007/s12264-013-1300-8

    97. Tang JS, Chen XG, Zhou B, Liao YH, Liu WQ, Tang CL, et al.[Default mode network analysis in early onset schizophrenia using functional magnetic resonance imaging].Lin Chuang Jing Shen Yi Xue Za Zhi. 2010; 20(5): 289-292. Chinese

    98. Chang X, Shen H, Wang L, Liu l, Xin W, Hu D, et al. Altered default model and fronto-parietal network subsystems in patients with schizophrenia and their unaffected siblings.Brain Res. 2014; 1562: 87-99. doi: http://dx.doi.org/10.1016/j.brainres.2014.03.024

    99. Kong XJ, Li S, Liu HH, Liu ZN. [A magnetic resonance imaging study on the gray matter, white matter and intrinsic networks in schizophrenic patients]. ZhongguoLin Chuang Xin Li Xue Za Zhi. 2010; 4: 415-417. Chinese

    100. Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, et al.Functional disintegration in paranoid schizophrenia using resting-state fMRI.Schizophr Res. 2007; 97(1-3): 194-205.doi: http://dx.doi.org/10.1016/j.schres.2007.05.029

    101. Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging.Neuroreport. 2006;17(2): 209-213

    102. Ke M, Zou R, Shen H, Liu ZN, Xue ZM, Hu DW. [A functional network analysis in schizophrenics with negative and positive symptoms].Zhongguo Lin Chuang Xin Li Xue Za Zhi.2009; 17(5): 575-578. Chinese

    103. Guo S, Kendrick KM, Zhang J, Broome M, Yu R, Liu Z, et al.Brain-wide functional inter-hemispheric disconnection is a potential biomarker for schizophrenia and distinguishes it from depression.NeuroImage: Clinical. 2013; 2: 818-826

    104. Liu M, Zeng L, Shen H, Liu Z, Hu D. Potential risk for healthy siblings to develop schizophrenia: evidence from pattern classification with whole-brain connectivity.Neuroreport.2012; 23(5): 265-269. doi: http://dx.doi.org/10.1097/WNR.0b013e32834f60a5

    105. American Psychiatric Association.Diagnostic and Statistical Manual of Mental Health, Fifth Edition. Arlington, VA:American Psychiatric Association; 2013

    106. Lui S, Deng W, Huang X, Jiang L, Ma X, Chen H, et al.Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study.Am J Psychiatry.2009; 166: 196–205. doi:http://dx.doi.org/10.1176/appi.ajp.2008.08020183

    107. Yan H, Tian l, Yan J, Sun W, Liu Q, Zhang Y, et al. Functional and anatomical connectivity abnormalities in cognitive division of anterior cingulate cortex in schizophrenia.PLoS One. 7(9): e45659. doi: http://dx.doi.org/10.1371/journal.pone.0045659

    108. Liu B, Fan L, Cui Y, Zhang X, Hou B, Li Y, et al. DISC1 Ser704Cys impacts thalamic- prefrontal connectivity.Brain Struct Funct.2013. Epub 22 Oct 2013. doi: http://dx.doi.org/10.1007/s00429-013-0640-5

    109. Wang F, Jiang T, Sun Z, Teng S, Luo X, Zhu Z, et al. Neuregulin 1 genetic variation and anterior cingulum integrity in patients with schizophrenia and healthy controls.J Psychiatry Neurosci. 2009; 34(3): 181-186

    2014-08-07; accepted: 2014-08-20)

    Dr. Dengtang Liu graduated from Wuhan University School of Medicine in 1996 with a bachelor’s degree and obtained a doctoral degree in medicine from Fudan University School of Medicine in 2003. He has been working at the Shanghai Mental Health Center affiliated with Shanghai Jiao Tong University School of Medicine since 2003 and is a chief psychiatrist. He conducts both basic science and clinic research on mental illnesses with a primary focus on cognitive functioning, neuroimaging and clinical intervention studies of schizophrenia.

    中國精神分裂癥的神經(jīng)影像學(xué)研究進(jìn)展

    劉登堂, 徐一峰, 江開達(dá)

    精神分裂癥,磁共振成像,磁共振波譜,彌散張量成像,中國

    Summary:Since Hounsfield’s first report about X-ray computed tomography (CT) in 1972, there has been substantial progress in the application of neuroimaging techniques to study the structure, function, and biochemistry of the brain. This review provides a summary of recent research in structural and functional neuroimaging of schizophrenia in China and four tables describing all of the relevant studies from mainland China. The first research report using neuroimaging techniques in China dates back to 1983, a study that reported encephalatrophy in 30% of individuals with schizophrenia. Functional neuroimaging research in China emerged in the 1990s and has undergone rapid development since. Recently, structural and functional brain networks has become a hot topic among China’s neuroimaging researchers.

    [Shanghai Arch Psychiatry. 2014; 26(4): 181-193.

    http://dx.doi.org/10.3969/j.issn.1002-0829.2014.04.002]

    Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China*correspondence: erliu110@126.com

    A full-text Chinese translation of this article will be available at www.saponline.org on September 25, 2014.

    概述:自Hounsfield于1972年首次報道X線計算機斷層掃描(CT)后,神經(jīng)影像學(xué)技術(shù)應(yīng)用持續(xù)發(fā)展,用于研究大腦結(jié)構(gòu)、功能和生物化學(xué)等方面。本文就中國近年來對精神分裂癥結(jié)構(gòu)性和功能性神經(jīng)影像學(xué)的研究做了一個概述并且用4個表格來描述中國大陸所有相關(guān)研究。國內(nèi)在精神科領(lǐng)域使用神經(jīng)影像學(xué)技術(shù)的首個研究報告可追溯至1983年,研究發(fā)現(xiàn)30%精神分裂癥患者存在腦萎縮。上世紀(jì)90年代國內(nèi)逐漸出現(xiàn)功能神經(jīng)影像學(xué)研究,并且快速發(fā)展。近年來,腦結(jié)構(gòu)網(wǎng)絡(luò)和腦功能網(wǎng)絡(luò)研究已成為中國神經(jīng)影像學(xué)研究的一個熱門話題。

    本文全文中文版從2014年9月25日起在www.saponline.org可供免費閱覽下載

    猜你喜歡
    計算機斷層掃描腦萎縮磁共振
    如何預(yù)防腦萎縮
    保健與生活(2022年9期)2022-05-06 22:50:00
    超聲及磁共振診斷骶尾部藏毛竇1例
    磁共振有核輻射嗎
    IQ-單光子發(fā)射計算機斷層掃描門控靜息心肌灌注圖像不同重建參數(shù)對測定左心室功能的影響
    低劑量多層計算機斷層掃描在耳鼻喉科患者鼻咽部檢查中應(yīng)用效果分析
    磁共振有核輻射嗎
    本刊可以直接使用的英文縮略語(三)
    本刊可以直接使用的英文縮略語(二)
    腦萎縮會發(fā)展成癡呆嗎
    頸動脈狹窄伴局限性皮質(zhì)腦萎縮22例臨床觀察
    国内精品一区二区在线观看| 丝袜美腿在线中文| 国产女主播在线喷水免费视频网站 | 亚洲四区av| 成人国产麻豆网| 日韩,欧美,国产一区二区三区| 日本黄色片子视频| av在线播放精品| 欧美日韩精品成人综合77777| av福利片在线观看| 26uuu在线亚洲综合色| 免费观看在线日韩| 欧美激情在线99| 亚洲综合色惰| 日韩精品青青久久久久久| 特级一级黄色大片| 精品久久久久久久久久久久久| 韩国高清视频一区二区三区| 91精品伊人久久大香线蕉| 亚洲欧洲日产国产| 纵有疾风起免费观看全集完整版 | 久久久a久久爽久久v久久| 男人和女人高潮做爰伦理| 一边亲一边摸免费视频| 婷婷色综合大香蕉| 夫妻性生交免费视频一级片| 18+在线观看网站| 老师上课跳d突然被开到最大视频| 三级毛片av免费| 丝袜美腿在线中文| 九九久久精品国产亚洲av麻豆| 亚洲成色77777| 亚洲精品乱码久久久v下载方式| 最新中文字幕久久久久| 午夜视频国产福利| 色尼玛亚洲综合影院| 亚洲欧美中文字幕日韩二区| 国产精品日韩av在线免费观看| 亚洲精品日韩在线中文字幕| 一个人看的www免费观看视频| 日韩欧美一区视频在线观看 | 69av精品久久久久久| 色吧在线观看| 亚洲精品久久久久久婷婷小说| av福利片在线观看| 久久鲁丝午夜福利片| 国产一区有黄有色的免费视频 | 国产人妻一区二区三区在| 丰满乱子伦码专区| 婷婷色麻豆天堂久久| 国产午夜精品论理片| a级毛色黄片| 少妇被粗大猛烈的视频| 国产爱豆传媒在线观看| 亚洲精品亚洲一区二区| 亚洲经典国产精华液单| 国产伦在线观看视频一区| 久久久精品免费免费高清| 天堂av国产一区二区熟女人妻| 99久国产av精品| 欧美性猛交╳xxx乱大交人| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久午夜电影| 国产色婷婷99| 女的被弄到高潮叫床怎么办| 精品一区二区三区视频在线| 卡戴珊不雅视频在线播放| 久久精品夜夜夜夜夜久久蜜豆| 久久精品人妻少妇| 大陆偷拍与自拍| 国产伦在线观看视频一区| 午夜精品一区二区三区免费看| 极品教师在线视频| 久久久久精品性色| 欧美xxxx黑人xx丫x性爽| 超碰av人人做人人爽久久| 夫妻午夜视频| 久久精品夜夜夜夜夜久久蜜豆| ponron亚洲| kizo精华| 亚洲久久久久久中文字幕| 婷婷色综合www| 两个人视频免费观看高清| 别揉我奶头 嗯啊视频| 成人午夜高清在线视频| 床上黄色一级片| 最新中文字幕久久久久| 欧美三级亚洲精品| 大话2 男鬼变身卡| 我的老师免费观看完整版| 国产男女超爽视频在线观看| 高清毛片免费看| 三级毛片av免费| 丰满少妇做爰视频| 亚洲av电影在线观看一区二区三区 | 亚洲久久久久久中文字幕| 别揉我奶头 嗯啊视频| av在线老鸭窝| 亚洲成人久久爱视频| 欧美成人一区二区免费高清观看| 中文精品一卡2卡3卡4更新| 高清av免费在线| 国产亚洲91精品色在线| 22中文网久久字幕| 久久久久久久久久人人人人人人| 啦啦啦韩国在线观看视频| 国产69精品久久久久777片| 欧美xxxx性猛交bbbb| 成人av在线播放网站| 好男人在线观看高清免费视频| 亚洲av成人av| 亚洲av.av天堂| 久久精品久久久久久噜噜老黄| eeuss影院久久| 亚洲成人av在线免费| 天堂网av新在线| 一级av片app| 国产老妇伦熟女老妇高清| 日韩亚洲欧美综合| 简卡轻食公司| 国产亚洲av嫩草精品影院| 午夜免费激情av| 嫩草影院入口| 视频中文字幕在线观看| 婷婷六月久久综合丁香| 男女啪啪激烈高潮av片| 国产成人freesex在线| 精品一区二区三卡| 欧美日韩亚洲高清精品| 中文字幕亚洲精品专区| 三级国产精品片| 美女cb高潮喷水在线观看| 日本爱情动作片www.在线观看| 26uuu在线亚洲综合色| 日本免费在线观看一区| 亚洲国产高清在线一区二区三| 一个人看的www免费观看视频| 搞女人的毛片| 国产在线男女| 特级一级黄色大片| av专区在线播放| 国产免费又黄又爽又色| 蜜桃亚洲精品一区二区三区| 国产在视频线在精品| 天堂影院成人在线观看| 久久久久久久亚洲中文字幕| 真实男女啪啪啪动态图| 久久精品国产鲁丝片午夜精品| 尤物成人国产欧美一区二区三区| 国产午夜精品一二区理论片| 成年女人在线观看亚洲视频 | 亚洲最大成人中文| 免费av观看视频| 嘟嘟电影网在线观看| 久久精品国产亚洲网站| 免费看av在线观看网站| 99热这里只有是精品在线观看| 欧美激情在线99| 在线观看美女被高潮喷水网站| 在线观看美女被高潮喷水网站| 久久久久久国产a免费观看| 国产成年人精品一区二区| 久久这里只有精品中国| 亚洲精品成人久久久久久| 亚洲真实伦在线观看| 97人妻精品一区二区三区麻豆| 黄片无遮挡物在线观看| 亚洲熟女精品中文字幕| 99热网站在线观看| 又大又黄又爽视频免费| 成人毛片60女人毛片免费| 99热这里只有是精品50| 久久久久性生活片| 国产精品久久视频播放| 亚洲国产精品成人综合色| 最后的刺客免费高清国语| 成人午夜高清在线视频| 国产高清有码在线观看视频| 九色成人免费人妻av| 一级二级三级毛片免费看| 2018国产大陆天天弄谢| 国产国拍精品亚洲av在线观看| 亚洲18禁久久av| 国产成人精品婷婷| 久久久久久国产a免费观看| 2018国产大陆天天弄谢| 七月丁香在线播放| 国产 亚洲一区二区三区 | 大香蕉久久网| 日韩国内少妇激情av| 欧美不卡视频在线免费观看| 免费大片黄手机在线观看| 国产成人freesex在线| 联通29元200g的流量卡| 国产精品国产三级国产专区5o| 一区二区三区乱码不卡18| 国产黄色视频一区二区在线观看| 最近最新中文字幕大全电影3| 久久久久九九精品影院| 水蜜桃什么品种好| 久久99热这里只频精品6学生| 欧美成人a在线观看| 精品国产一区二区三区久久久樱花 | 亚洲aⅴ乱码一区二区在线播放| 国产 亚洲一区二区三区 | 亚洲经典国产精华液单| 成年女人看的毛片在线观看| av在线蜜桃| .国产精品久久| 午夜精品在线福利| 亚洲精品一二三| 国产 一区精品| 少妇人妻精品综合一区二区| 国产在线男女| 黄色欧美视频在线观看| 国产免费又黄又爽又色| 久久久久久久大尺度免费视频| 中文字幕亚洲精品专区| 一级av片app| 久久久久久久大尺度免费视频| 熟妇人妻不卡中文字幕| 日韩 亚洲 欧美在线| 在线观看免费高清a一片| 国产av不卡久久| 91久久精品电影网| 国产精品1区2区在线观看.| 亚洲在久久综合| a级一级毛片免费在线观看| 午夜久久久久精精品| 大话2 男鬼变身卡| 国产免费视频播放在线视频 | 欧美日韩在线观看h| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| av在线观看视频网站免费| 久久午夜福利片| 天堂网av新在线| 汤姆久久久久久久影院中文字幕 | 久久久久免费精品人妻一区二区| 国产一区亚洲一区在线观看| 欧美极品一区二区三区四区| 国产亚洲5aaaaa淫片| 天美传媒精品一区二区| 日韩电影二区| 亚洲综合色惰| 久热久热在线精品观看| 91午夜精品亚洲一区二区三区| 91久久精品国产一区二区成人| 成人综合一区亚洲| 3wmmmm亚洲av在线观看| 国产精品一二三区在线看| 在线播放无遮挡| 精华霜和精华液先用哪个| 亚洲国产色片| 精品不卡国产一区二区三区| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看 | 精品久久久噜噜| 91av网一区二区| 亚洲四区av| 一个人看视频在线观看www免费| 亚洲av免费在线观看| 国产v大片淫在线免费观看| 亚洲av日韩在线播放| 成人漫画全彩无遮挡| 尤物成人国产欧美一区二区三区| 美女主播在线视频| 国产精品国产三级国产专区5o| 人体艺术视频欧美日本| 国精品久久久久久国模美| 日韩电影二区| 日韩伦理黄色片| 最近2019中文字幕mv第一页| 高清视频免费观看一区二区 | 国产午夜精品论理片| 亚洲一级一片aⅴ在线观看| 干丝袜人妻中文字幕| 寂寞人妻少妇视频99o| 综合色丁香网| 免费看不卡的av| 国产成人免费观看mmmm| 亚洲av电影不卡..在线观看| 国产亚洲5aaaaa淫片| 日韩亚洲欧美综合| 最近中文字幕2019免费版| 亚洲精品久久午夜乱码| 国产成人一区二区在线| 一级毛片电影观看| 精品一区二区三卡| 亚洲自偷自拍三级| 亚洲美女搞黄在线观看| 亚洲熟女精品中文字幕| 久久精品国产亚洲网站| av网站免费在线观看视频 | 久久久久免费精品人妻一区二区| 欧美另类一区| 大又大粗又爽又黄少妇毛片口| 男女啪啪激烈高潮av片| 久久久久网色| 最近中文字幕2019免费版| 青青草视频在线视频观看| 丝袜喷水一区| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| freevideosex欧美| 能在线免费观看的黄片| 国产一级毛片七仙女欲春2| 天天躁日日操中文字幕| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 青春草视频在线免费观看| 欧美+日韩+精品| 欧美日本视频| 国产精品久久久久久精品电影小说 | 美女主播在线视频| 亚洲18禁久久av| 色播亚洲综合网| 非洲黑人性xxxx精品又粗又长| 精品亚洲乱码少妇综合久久| 亚洲丝袜综合中文字幕| 国产精品蜜桃在线观看| 激情 狠狠 欧美| 激情五月婷婷亚洲| 国产综合精华液| 国产精品久久久久久精品电影小说 | 91精品国产九色| 一区二区三区高清视频在线| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 青春草亚洲视频在线观看| 成人综合一区亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕人妻熟人妻熟丝袜美| 国产 一区精品| 在线免费观看不下载黄p国产| 亚洲第一区二区三区不卡| 欧美zozozo另类| 国产精品三级大全| av在线老鸭窝| 日日撸夜夜添| 视频中文字幕在线观看| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 91午夜精品亚洲一区二区三区| 舔av片在线| 如何舔出高潮| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 久久久精品欧美日韩精品| 青春草国产在线视频| 免费观看在线日韩| 日本免费a在线| 国产高清三级在线| av播播在线观看一区| 插阴视频在线观看视频| 亚洲国产日韩欧美精品在线观看| 97超视频在线观看视频| 麻豆av噜噜一区二区三区| 欧美xxⅹ黑人| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 少妇人妻一区二区三区视频| 午夜精品在线福利| 国产白丝娇喘喷水9色精品| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 人妻夜夜爽99麻豆av| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| 免费观看a级毛片全部| 亚洲精品国产av成人精品| 久久久欧美国产精品| 亚洲国产av新网站| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 欧美xxxx黑人xx丫x性爽| 亚洲经典国产精华液单| 男插女下体视频免费在线播放| 大陆偷拍与自拍| 亚洲高清免费不卡视频| 老司机影院毛片| 最后的刺客免费高清国语| 国产高清不卡午夜福利| 毛片女人毛片| 精品人妻偷拍中文字幕| 久久99热6这里只有精品| 午夜福利在线在线| 亚洲一区高清亚洲精品| av免费观看日本| 成人亚洲精品av一区二区| av免费观看日本| 亚洲国产成人一精品久久久| 亚洲国产精品专区欧美| 日本一本二区三区精品| 亚洲熟妇中文字幕五十中出| 日韩一区二区视频免费看| 国产精品三级大全| av在线亚洲专区| 一级毛片久久久久久久久女| 免费看光身美女| 卡戴珊不雅视频在线播放| 国产精品.久久久| 少妇猛男粗大的猛烈进出视频 | 男人舔女人下体高潮全视频| 又爽又黄a免费视频| 亚洲av.av天堂| 观看免费一级毛片| 亚洲国产欧美人成| 久久亚洲国产成人精品v| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 国产av码专区亚洲av| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av| 最近2019中文字幕mv第一页| 国产一区二区三区av在线| 成人亚洲精品av一区二区| 99久久精品热视频| 国产大屁股一区二区在线视频| 丰满人妻一区二区三区视频av| 观看免费一级毛片| 国国产精品蜜臀av免费| 亚洲无线观看免费| 69av精品久久久久久| 亚洲经典国产精华液单| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 久久精品国产亚洲网站| 久久精品国产自在天天线| 伊人久久国产一区二区| 亚洲内射少妇av| 少妇的逼水好多| 欧美性猛交╳xxx乱大交人| 特级一级黄色大片| 国模一区二区三区四区视频| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 中文在线观看免费www的网站| 欧美精品国产亚洲| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 三级经典国产精品| 99久久精品国产国产毛片| 午夜福利高清视频| 成人鲁丝片一二三区免费| 国内揄拍国产精品人妻在线| av在线老鸭窝| 国产高清国产精品国产三级 | 免费av观看视频| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 男人爽女人下面视频在线观看| 日韩一本色道免费dvd| 成人二区视频| 菩萨蛮人人尽说江南好唐韦庄| 又黄又爽又刺激的免费视频.| 日韩av免费高清视频| 国产精品人妻久久久久久| 日本免费a在线| 国产探花极品一区二区| 亚洲国产最新在线播放| av网站免费在线观看视频 | 久久久久久九九精品二区国产| 国产精品av视频在线免费观看| 国产黄色小视频在线观看| 久久亚洲国产成人精品v| av一本久久久久| a级一级毛片免费在线观看| 国产精品一区二区三区四区久久| 久久久久久久久久久丰满| 精品久久久久久久久亚洲| 国产69精品久久久久777片| 亚洲精品视频女| 国产精品久久久久久精品电影小说 | 国产乱来视频区| 欧美日韩精品成人综合77777| 少妇熟女欧美另类| 精华霜和精华液先用哪个| 午夜久久久久精精品| 夫妻午夜视频| 国产一区二区三区综合在线观看 | 日韩av在线大香蕉| 麻豆久久精品国产亚洲av| 成年免费大片在线观看| 久久这里只有精品中国| 国产成人精品一,二区| 亚洲精品国产成人久久av| 岛国毛片在线播放| 精品一区二区三区视频在线| 国产三级在线视频| 老师上课跳d突然被开到最大视频| 国产一区二区亚洲精品在线观看| 国产毛片a区久久久久| 男插女下体视频免费在线播放| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 亚洲国产欧美在线一区| 91狼人影院| 日韩欧美精品免费久久| 婷婷色麻豆天堂久久| 国产美女午夜福利| 男女啪啪激烈高潮av片| 2018国产大陆天天弄谢| 一本久久精品| 成人亚洲精品一区在线观看 | a级毛色黄片| 国产高潮美女av| 久久久久精品性色| 两个人的视频大全免费| 亚洲精品日本国产第一区| 亚洲欧美精品自产自拍| 国产亚洲av嫩草精品影院| 免费观看av网站的网址| 春色校园在线视频观看| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 精品不卡国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 丰满少妇做爰视频| 精品不卡国产一区二区三区| 国产在视频线精品| 欧美区成人在线视频| 一区二区三区免费毛片| av福利片在线观看| 欧美成人一区二区免费高清观看| 免费av不卡在线播放| 国产精品久久视频播放| 国产av码专区亚洲av| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 国产亚洲av嫩草精品影院| 午夜福利网站1000一区二区三区| 成人二区视频| 又粗又硬又长又爽又黄的视频| 亚洲最大成人中文| 免费观看的影片在线观看| 只有这里有精品99| 日韩欧美国产在线观看| 18禁在线播放成人免费| 天堂中文最新版在线下载 | 亚洲av成人精品一区久久| 99九九线精品视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 一区二区三区免费毛片| 亚洲精品久久久久久婷婷小说| 国产在线一区二区三区精| or卡值多少钱| 全区人妻精品视频| 日本黄色片子视频| 97超视频在线观看视频| 国产成人一区二区在线| 精品欧美国产一区二区三| 日韩中字成人| 成年女人在线观看亚洲视频 | 极品少妇高潮喷水抽搐| 欧美一区二区亚洲| 三级国产精品欧美在线观看| 午夜福利成人在线免费观看| 久久久久久久午夜电影| 九九在线视频观看精品| 美女高潮的动态| 国产男人的电影天堂91| 国产精品.久久久| 99热6这里只有精品| 精品一区二区免费观看| 国产伦一二天堂av在线观看| 老司机影院成人| 日韩中字成人| 久久久久久久久中文| 97热精品久久久久久| 国产午夜精品久久久久久一区二区三区| 老女人水多毛片| 国产综合精华液| 亚洲精品aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 国产亚洲午夜精品一区二区久久 | 国产成人免费观看mmmm| 国产成人一区二区在线| 麻豆成人午夜福利视频| 99久久精品热视频| 亚洲性久久影院| 男人爽女人下面视频在线观看| 日韩不卡一区二区三区视频在线| 少妇的逼水好多| 美女cb高潮喷水在线观看| 久久国产乱子免费精品| 免费人成在线观看视频色| 午夜福利在线观看吧| 日韩欧美精品v在线| 欧美97在线视频| 国产免费视频播放在线视频 | av黄色大香蕉| 嫩草影院新地址| 国产爱豆传媒在线观看| 中文在线观看免费www的网站| 日本爱情动作片www.在线观看| 一区二区三区高清视频在线| 精品人妻一区二区三区麻豆| 青青草视频在线视频观看| 91久久精品电影网| 极品少妇高潮喷水抽搐| 久久精品久久精品一区二区三区| 亚洲激情五月婷婷啪啪| 国产综合懂色| 91在线精品国自产拍蜜月| 亚洲精品日韩在线中文字幕| 国产日韩欧美在线精品| 日韩av在线大香蕉| 国产精品福利在线免费观看| 可以在线观看毛片的网站| 一本久久精品| 最新中文字幕久久久久|