• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural zeroes and zero-inflated models

    2014-12-08 06:44:43HuaHEWanTANGWenjuanWANGPaulCRITSCHRISTOPH
    上海精神醫(yī)學(xué) 2014年4期
    關(guān)鍵詞:潛在性泊松性行為

    Hua HE*, Wan TANG, Wenjuan WANG, Paul CRITS-CHRISTOPH

    ?Biostatistics in psychiatry (22)?

    Structural zeroes and zero-inflated models

    Hua HE1,2,3*, Wan TANG1, Wenjuan WANG1, Paul CRITS-CHRISTOPH4

    count response, structural zeroes, random zeroes, zero-inflated models

    1. Introduction

    Count (or frequency) responses such as number of heart attacks, number of days of alcohol drinking, number of suicide attempts, and number of unprotected sexual encounters during a period of time arise quite often in biomedical and psychosocial research. Poissondistribution based log-linear regression models are widely used when such count variables are treated as the dependent variable in an analysis. One major limitation of the Poisson model is that the mean is identical to the variance. In practice, heterogeneity in study populations due to data clustering or other factors often creates extra variability, resulting in variance that is larger than the mean. This renders the Poisson distribution inappropriate for modeling count data in such instances. Depending on the nature of the heterogeneity, there are different approaches to address this extra variability, oroverdispersion. For example, overdispersion may occur if the length of the observation period varies across the subjects. We can use an offset in the log-linear model to remove the overdispersion if the length of the observation period is available for each subject. Otherwise, we can treat the length as a latent variable, which is equivalent to treating the mean of the Poisson distribution for each subject as a random variable. If such a random effect is modeled using a gamma distribution, this approach yields a negative binomial (NB) distribution.Compared with the Poisson, the NB distribution has an extra parameter to account for the additional variation beyond the Poisson, and hence is able to address the limitations of the Poisson model for over-dispersed count responses. The Poisson and NB log-linear models are implemented in most major statistical software packages such as SAS, SPSS, and Stata.

    However, NB cannot address the overdispersion caused by an excessive number of zeroes in the count data, which is quite common in psychosocial and behavioral studies. Excessive zeroes are particularly evident in alcohol and substance abuse research. Forexample, in a substance abuse multicenter intervention study, 50% of patients (n=318) had zero days of drug use during the entire primary outcome phase (weeks 4 to 16).[1]In another multicenter trial involving over 1500 patients at 20 community sites, zero days of drug and alcohol use in the past 7 days was reported by over 80%of patients at each weekly assessment.[2]Moreover, a wide range of other types of alcohol research studies have reported zero-inflated data across various types of alcohol measures.[3-12]Like substance use outcomes,HIV risk behavior measures show excessive zeros. For example, in a HIV risk intervention study[13]with 102 subjects, nearly 50% had scores of zero on the HIV risk measure. Zero-inflated data were also evident in other HIV risk reduction studies.[14,15]Other common examples of zero-inflated data that could serve as outcome measures in intervention or prevention trials include counts of uncommon adverse events,[16]number of hospital stays,[17]number of arrests,[18]and number of traffic accidents.[19]

    Excessive zeros when assessing these types of outcome measures are often due to the existence of a subpopulation of subjects who are not at risk for such a behavior during the study period. For example, the number of unprotected sexual occasions over a period of time is an important measure in HIV prevention research. But a specific study population may contain a subgroup of individuals who are not at risk at all of sexual activity and, thus, will always produce a zero outcome in the count variable. Such zeros are calledstructural zeros. On the other hand, subjects who are at risk of the behavior may still produce a zero outcome due to sampling variability; such zeros are calledrandom(orsampling)zeros.

    The concept of structural zeros or non-risk groups is very important in psychosocial studies, because the non-risk and at-risk groups may have very different health and demographic characteristics. For example,in alcohol studies days of alcohol use over a week may contain both structural and random zeros: structural zeros that come from the non-risk group who are abstinent from drinking, while random zeros from the at-risk group of subjects who, due to sampling variation,did not drink in the prior week. The two groups of subjects may have different health outcomes such as different rates of depression and anxiety. So it is critical to distinguish the structural zeros from random zeros when modeling a count response with structural zeros.

    Neither the Poisson nor the NB has the capability to accommodate the difference between structural and random zeros. When structural zeros are present in a count response, the count response becomes a mixed distribution, a mixture of degenerate zeros from the non-risk group (structural zeros) and responses (positive or random zero outcomes) from the at-risk group. The inherent methodological problems with structural zeros have received a great deal of attention in the statistical literature.[19-25]One popular approach is to use the mixture distribution based on zero-inflated models such as the zero-inflated Poisson (ZIP) model, which has been applied to a diverse range of studies.[26-30]

    In this article, we first introduce some basic concepts about the mixture distribution and regression models for zero-inflated Poisson count responses and then use a real study example to illustrate the ZIP model. Sample codes in SAS and Stata and detailed explanations of the codes and output are provided.Finally, we discuss limitations of ZIP and related models and some newly developed methods that address such limitations.

    2. Zero-inflated Poisson models

    2.1 Zero-inflated Poisson distribution

    In biomedical and psychosocial research the distribution of zeros often exceeds the expected frequency of zeros predicted by the Poisson model. Examples from the 2009-2010 National Health and Nutrition Examination Survey (NHANES) study are shown in Figure 1: the distribution scores on the 9-item Patient Health Questionnaire (PHQ-9), a popular screening test for depression; the number of sexual partners in the past year (with 1 subtracted from the original outcome for the married and living-together couples); and the days of heavy drinking per month in the past year. In this example, the presence of excessive zeros reflects a proportion of subjects who were not at risk for the health condition or behavior of interest. For example,in the case of the number of sexual partners in the past year, the non-risk group are individuals who never had extra sexual partners beyond their spouse or significant other; these non-risk individuals substantially inflate the number of zero results beyond what is under the Poisson distribution. The distributions of the results shown in the figure provide support for a mixed population consisting of an at-risk subgroup and a non-risk subgroup for each of the respective outcomes of interest: depression, sexually transmitted diseases, and alcohol-related health problems.

    Figure 1. Frequencies of scores on the 9-item Patient Health Questionnaire (PHQ-9), sexual partners in past year, and heavy drinking days per month

    We use mixture distributions to model count responses with structural zeros. Within the current context, the mixture distribution is a mixture of two distributions, with one for the at-risk subgroup and other for the non-risk subgroup.

    LetfR(y) be the distribution of the at-risk subpopulation, andf0(y) be a degenerate di≠stribution at 0, [i.e.,f0(y)=1 if y=0 andf0(y)=0 ify 0] for the non-risk subpopulation. Suppose the mixture probabilities for the structural zeros(non-risk subgroup) and the at-risk subgroup areρa(bǔ)nd 1-ρ. Then the mixture distribution can be expressed as

    When a Poisson distribution with meanμ,fP(y|μ),is applied to the at-risk subpopulation, we obtain the following zero-inflated Poisson (ZIP)distribution

    More precisely, the distribution can be also expressed as

    So, the probability of being zero, Pr(y=0),is inflated fromfP(0|μ) under the Poisson distribution byρto account for structural zeros.The mean and variance offZIP(y|ρ,μ) are (1-ρ)μand (1-ρ)μ+(1-ρ)ρμ2, respectively.

    Thus, the variance is larger than the mean, confirming that overdispersion may occur if a Poisson distribution is applied in place of ZIP.

    Depending on the nature of the data, other distributions may be more appropriate for the at-risk subpopulation. For example, if there is still overdispersion in the at-risk subgroup due to data clustering, we may use NB instead of Poisson for this group, and obtain a zero-inflated NB (ZINB) distribution.[20]For variables where the outcome is the sum of a very limited number of repeated trials, such as the number of days of any drinking over the last week, a binomial-like distribution may be a natural choice for the at-risk subgroup, which results in a zero-inflated binomial distribution.[22,23]In this paper, we restrict our considerations to ZIP and ZINB as these distributions are available in SAS and Stata.

    2.2 Zero-inflated Poisson regression models

    It is both conceptually and theoretically reasonable to model the outcomes from the two groups of subjects separately due to the heterogeneity of the study sample.The ZIP model has two components, one component is to model the probability of being the structural zerosρusing the logistic regression and the other component is to model the Poisson meanμ. Specifically we have the ZIP model:

    where the subscript i indicates the ithsubject, U and V (which may overlap) represent two sets of explanatory variables that will be linked to ρ and μ, respectively, in the ZIP model, andβUandβVare the vectors of parameters for the logistic and Poisson components.

    In (4), the logit link function is used to model the likelihood of structural zeros; we can also use other link functions such as probit and complementary loglog. Thus, the presence of structural zeros gives rise not only to a more complex distribution, but also creates an additional link function for modeling the effect of explanatory variables for the occurrence of such zeros.In other words, the ZIP model enables us to better understand the effect of covariates by distinguishing the effects of each specific covariate on structural zeros (likelihood for being non-risk) and on the count response (mean of Poisson for the at-risk subgroup).While the fact that the presence of excessive zeros itself is sufficient to justify the use of zero-inflated models,Vuong has developed a test to formally test whether a ZIP is superior to a Poisson regression.[31]

    When there is still dispersion in the at-risk subgroup,we may use the ZINB model, which is identical to ZIP,except that the NB replaces the Poisson to account for overdispersion for modeling the count response from the at-risk subpopulation. Thus a ZINB regression model has one logistic regression for structural zeros and one NB log-linear for the count response for the at-risk subgroup, with the additional dispersion parameter α from the NB to account for overdispersion.

    3. Example

    We use a study of sexual behavior among adolescent girls to illustrate the application of zero-inflated models.In this controlled randomized study, 640 girls were randomized into either the intervention or a control condition (containing only nutritional materials) to evaluate the short and longer-term efficacy of a Human Immunodeficiency Virus (HIV) -prevention intervention for adolescent girls residing in a high-risk urban environment.[32]A primary outcome is the number of vaginal sex encounters using condoms (VCD) reported over the past 3-month period, which was assessed at 3, 6 and 12 months following the intervention in this longitudinal study. Since we restrict ourselves to crosssectional analysis in the paper, we illustrate the models using this outcome from the 3-month assessment.The data can be downloaded from http://www.urmc.rochester.edu/biostat/people/faculty/Tang-He-Tu-Categorical-Book/sas5.html

    Figure 2 presents the distribution of the frequency of VCD at the 3-month assessment. It is clear that there are excessive zeros in the distribution. The structural zeros represent those who were sexually abstinent.Since the status of structural zeros is not available, we apply zero-inflated models to analyze the data. For illustration purposes, we only present a simple model to examine the relationship between this outcome at 3 months and three potential covariates: score on the HIV Knowledge Questionnaire (HIVKQ, higher score means more informed about HIV knowledge), score on the Center for Epidemiological Depression scale (CESD,higher score means more depressed), and baseline number of vaginal sex encounters using condoms in the 3 months prior to intervention (VAGWCT1).

    Figure 2. Frequency of protected vaginal sex (VCD)

    The ZIP model consisted of two components; the logistic model for the inflated zero component for VCD:

    and the component of Poisson loglinear model for the at-risk subgroup:

    The Vuong test statistic was 4.858 (p-value <0.00001),which indicates that the ZIP model is better than the Poisson regression model.

    Based on the estimates of the parameters in the count component (Table 1), both the baseline sexual behavior and HIV knowledge are highly associated with VCD. Subjects with higher baseline sexual behavior and higher HIV knowledge tend to have high VCD in the 3-month follow-up. Depression (CESD) is not significantly associated with VCD. Based on the estimates of the parameters in the zero inflation component (Table 2),only the baseline sexual behavior is associated with being a structural zero in VCD. That is, subjects with higher baseline sexual behavior tend to be less likely to be a structural zero in VCD in the 3-month follow-up.

    Table 1. Analysis of maximum likelihood parameter estimates for count component of VCD

    Table 2. Analysis of maximum likelihood zero inflation parameter estimates for inflated zero component of VCD

    In this example, application of zero-inflated models enables us to ascertain the exact effect of the educational intervention. HIV knowledge is associated with VCD, but mainly through its effect on the count for the at-risk subgroup.

    4. Statistical Software

    The ZIP and ZINB regression models have been implemented in some popular statistical software packages, including SAS and Stata. However, they are not yet available in SPSS. In SAS, one may use either PROC GENMOD or PROC COUNTREG for ZIP and ZINB models. Here are the sample codes for the example described above using PROC GENMOD:

    In this sample code, text in italic can be modified to specify the data source and models, while the text not in italics are SAS key words and must be entered exactly as they appear. The Poisson component for the count response is specified in the statement ‘MODEL’,following the common format for generalized linear models (‘response = <effects>’). The option ‘d=zip’is used to indicate a ZIP model as desired. One may replace this with ‘d=zinb’ to fit a ZINB model.

    The structural zero component is specified by the‘ZEROMODEL’ statement. In the sample codes above,the logit link is used, yielding the logistic regression.However, as in modeling binary outcomes, other commonly used link functions such as probit and complementary log-log may also be used, which are both available in SAS.

    In SAS, one may also use the COUNTREG procedure to fit a ZIP or ZINB model. Below is the sample codes for using this procedure. Although the statements are quite similar to PROC GENMOD, it is important to note the difference in specifying the “ZEROMODEL” statement.In particular, the extra ‘VCD~’ statement is required to indicate the count variable whose structural zeros are modeled by the logistic regression.

    Like PROC GENMOD, one may also use the COUNTREG procedure to fit the ZINB as well as use different link functions.

    Vuong’s test is not available from PROC GENMOD,but a SAS macro program is available and can be downloaded from http://support.sas.com/kb/42/514.html. In addition to testing whether the ZIP is a better fit to the data at hand than the Poisson, the test may also be used to compare the ZIP and ZINB to see which one fits the data better.

    In Stata, one may use the ‘zip’ or ‘zinb’ commands to fit ZIP or ZINB models. For example, we may apply the following Command for the ZIP analysis for the example in the previous section:

    The first variable after the command ‘zip’ is the count response, followed by all the predictors for the count component in italics until the comma. The predictors for the zero component are specified in the parenthesis after the ‘inflate’ statement. The optional‘vuong’ statement is specified to use the Vuong test to compare the ZIP and Poisson models. One may change the Command from zip to zinb to fit the ZINB regression model.

    5. Discussion

    This article discusses structural zeros in count outcomes and how to use zero-inflated models to address this issue. Zero-inflated models are the natural approach when the status of structural zeros are unknown, that is, when structural zeros cannot be distinguished from random zeros. In cases where this distinction is known,we may take advantage of the additional information and apply hurdle models.[20]Like the ZIP, hurdle models have two components, one for the count response and the other for the structural zeros. Again, the Poisson and NB may be used for modeling the count response,and logistic regression may be applied for the structural zeros. However, since the status of structural zero is known, no mixture distribution is needed and the Poisson (or NB) and logistic regression of the hurdle model are essentially two separate models. Thus, no new software is needed for fitting the hurdle model.

    As illustrated by the real data example presented,zero-inflated models have both conceptual and analytics advantages when there are excessive zeros. The zeroinflated models not only correct the overdispersion arising from the existence of structural zeros, but also allow for the distinction of different risk groups,providing better understanding of the data.

    We limited ourselves to parametric models and cross-sectional data analysis because of the availability in common software packages. However, parametric approaches are prone to distribution misspecification,potentially yielding bias in estimates. For example, if the count response for the at-risk subgroup in a study data does not follow the NB distribution, assuming and fitting a ZINB model may yield biased estimates.Another problem is that cross-sectional models cannot be applied to investigate temporal changes from repeated assessments in longitudinal studies. Some new methods have been developed to address both of these limitations,[22,23]but they have not yet been included in popular statistical software packages such as SAS and Stata.

    We have only discussed the structural zero issue when zero-inflated count variables are used as the response. The issue is also present when such variables serve as predictors in regression analyses. Indeed, using such variables as predictors and failing to distinguish structural and random zeros results in biased inference and makes it quite difficult to interpret estimates.[25]However, these issues have not yet been addressed in popular statistical software packages.

    Conflict of interest

    The authors decalre no conflict of interest.

    Funding

    This research was supported in part by NIH grant R33 DA027521 and a Novel Biostatistical and Epidemiologic Methods grants from the University of Rochester Medical Center Clinical and Translational Science Institute Pilot Awards Program.

    1. Ball SA, Martino S, Nich C, Frankforter TL, van Horn D, Crits-Christoph P, et al. Site matters: multisite randomized trial of motivational enhancement therapy in community drug abuse clinics.J Consult Clin Psychol.2007; 75(4): 556-567.doi: http://dx.doi.org/10.1037/0022-006X.75.4.556

    2. Crits-Christoph P, Ring-Kurtz S, McClure B, Temes C, Kulaga A, Gallop R, et al. A randomized controlled study of a webbased performance improvement system for substance abuse treatment providers.J Subst Abuse Treat. 2010; 38(3):251-262. doi: http://dx.doi.org/10.1016/j.jsat.2010.01.001

    3. Neal DJ, Sugarman DE, Hustad JT, Caska CM, Carey KB. It’s all fun and games... or is it? Collegiate sporting events and celebratory drinking.J Stud Alcohol Drugs. 2005; 66(2): 291-294

    4. Pardini D, White HR, Stouthamer-Loeber M. Early adolescent psychopathology as a predictor of alcohol use disorders by young adulthood.Drug Alcohol Depend. 2007; 88: S38-S49.doi: http://dx.doi.org/10.1016/j.drugalcdep.2006.12.014

    5. Hagger-Johnson G, Bewick BM, Conner M, O’Connor DB,Shickle D. Alcohol, conscientiousness and event-level condom use.Br J Health Psychol. 2011; 16(4): 828-845. doi:http://dx.doi.org/10.1111/j.2044-8287.2011.02019.x

    6. Connor JL, Kypri K, Bell ML, Cousins K. Alcohol outlet density, levels of drinking and alcohol-related harm in New Zealand: a national study.J Epidemiol Community Health.2011; 65(10): 841-846. doi: http://dx.doi.org/10.1136/jech.2009.104935

    7. Buu A, Johnson NJ, Li R, Tan X. New variable selection methods for zero-inflated count data with applications to the substance abuse field.Stat Med. 2011; 30(18): 2326-2340

    8. Fernandez AC, Wood MD, Laforge R, Black JT. Randomized trials of alcohol-use interventions with college students and their parents: lessons from the Transitions Project.Clin Trials. 2011; 8(2): 205-213. doi: http://dx.doi.org/10.1177/1740774510396387

    9. Cranford JA, Zucker RA, Jester JM, Puttler LI, Fitzgerald HE. Parental alcohol involvement and adolescent alcohol expectancies predict alcohol involvement in male adolescents.Psychol Addict Behav. 2010; 24(3): 386-396.doi: http://dx.doi.org/10.1037/a0019801

    10. Hildebrandt T, McCrady B, Epstein E, Cook S, Jensen N. When should clinicians switch treatments? An application of signal detection theory to two treatments for women with alcohol use disorders.Behav Res Ther. 2010; 48(6): 524-530. doi:http://dx.doi.org/10.1016/j.brat.2010.03.001

    11. Hernandez-Avila CA, Song C, Kuo L, Tennen H, Armeli S,Kranzler HR. Targeted versus daily naltrexone: secondary analysis of effects on average daily drinking.Alcohol Clin Exp Res. 2006; 30(5): 860-865. doi: http://dx.doi.org/10.1111/j.1530-0277.2006.00101.x

    12. Witkiewitz K, van der Maas HL, Hufford MR, Marlatt GA.Nonnormality and divergence in posttreatment alcohol use: reexamining the Project MATCH data “another way”.J Abnorm Psychol. 2007; 116(2): 378-394. doi: http://dx.doi.org/10.1037/0021-843X.116.2.378

    13. Carey MP, Braaten LS, Maisto SA, Gleason JR, Forsyth AD, Durant LE, et al. Using information, motivational enhancement, and skills training to reduce the risk of HIV infection for low-income urban women: a second randomized clinical trial.Health Psychol. 2000; 19(1): 3-11.doi: http://dx.doi.org/10.1037/0278-6133.19.1.3

    14. Garfein RS, Golub ET, Greenberg AE, Hagan H, Hanson DL,Hudson SM, et al. A peer-education intervention to reduce injection risk behaviors for HIV and hepatitis C virus infection in young injection drug users.AIDS.2007; 21(14): 1923-1932.doi: http://dx.doi.org/10.1097/QAD.0b013e32823f9066

    15. Xia Y, Morrison-Beedy D, Ma J, Feng C, Cross W, Tu X.Modeling count outcomes from HIV risk reduction interventions: a comparison of competing statistical models for count responses.AIDS Res Treat. 2012; 2012: 593569.doi: http://dx.doi.org/10.1155/2012/593569

    16. Rose CE, Martin SW, Wannemuehler KA, Plikaytis BD. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data.J Biopharm Stat. 2006; 16(4): 463-481. doi: http://dx.doi.org/10.1080/10543400600719384

    17. Yau KK, Wang K, Lee AH. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros.Biom J. 2003; 45(4): 437-452. doi: http://dx.doi.org/10.1002/bimj.200390024

    18. Johnso JE, O’Leary CC, Striley CW, Abdallah AB, Bradford S, Cottler LB. Effects of major depression on crack use and arrests among women in drug court.Addiction. 2011;106(7): 1279-1286. doi: http://dx.doi.org/10.1111/j.1360-0443.2011.03389.x

    19. Chin HC, Quddu, MA. Modeling count data with excess zeroes: an empirical application to traffic accidents.Sociol Methods Res. 2003; 32(1): 90-116. doi: http://dx.doi.org/10.1177/0049124103253459

    20. Tang W, He H, Tu XM.Applied Categorical and Count Data Analysis. FL: Chapman & Hall/CRC; 2012.

    21. Welsh A, Cunningham RB, Donnelly CF, Lindenmayer DB.Modeling the abundance of rare species: statistical-models for counts with extra zeros.Ecol Modell. 1996; 88: 297-308.doi: http://dx.doi.org/10.1016/0304-3800(95)00113-1

    22. Hall DB. Zero-Inflated Poisson and binomial regression with random effects: a case study.Biometrics. 2000;56: 1030-1039. doi: http://dx.doi.org/10.1111/j.0006-341X.2000.01030.x

    23. Yau KW, Lee AH. Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention programme.Stat Med. 2001; 20: 2907-2920. doi: http://dx.doi.org/10.1002/sim.860

    24. Yu Q, Chen R, Tang W, He H, Gallop R, Crits-Christoph P, et al. Distribution-free models for longitudinal count responses with overdispersion and structural zeros.Stat Med. 2012;32(14): 2390-2405. doi: http://dx.doi.org/10.1002/sim.5691

    25. He H, Wang W, Crits-Christoph P, Gallo, R, Tang W, Chen D,et al. On the implication of structural zeros as independent variables in regression analysis: applications to alcohol research.J Data Sci. 2013; in press

    26. Crepon B, Duguet E. Research and development, competition and innovation pseudo-maximum likelihood and simulated maximum likelihood methods applied to count data models with heterogeneity.J Econom.1997; 79: 355-378

    27. Miaou SP. The relationship between truck accidents and geometric design of road sections Poisson versus negative binomial regressions.Accid Anal Prev. 1994; 26: 471-482

    28. Gurmu S, Trivedi P. Excess zeros in count models for recreational trips.J Bus Econ Stat. 1996; 14: 469-477. doi:http://dx.doi.org/10.1080/07350015.1996.10524676

    29. Shonkwiler J, Shaw W. Hurdle count-data models in recreation demand analysis.Aust J Agric Resour Econ. 1996;21: 210-219

    30. Cheung YB. Zero-infated models for regression analysis of count study of growth and development.Stat Med. 2002;21: 1461-1469. doi: http://dx.doi.org/10.1002/sim.1088

    31. Vuong Q. Likelihood ratio tests for model selection and nonnested hypotheses.Econometrica. 1989; 57(2): 307-333

    32. Morrison-Beedy D, Carey M, Crean H, Jones S. Risk behaviors among adolescent girls in an hiv prevention trial.West J Nurs Res. 2011; 33(5): 690-711. doi: http://dx.doi.org/10.1177/0193945910379220

    Dr. He is an Assistant Professor of Biostatistics in the Department of Biostatistics and Department of Psychiatry at the University of Rochester, as well as a researcher at the Center of Excellence for Suicide Prevention in Canandaigua, New York. Her research interests are in ROC analysis, semi-parametric and non-parametric inference, missing data modeling, causal inference, social network analysis,count data analysis and applications of statistical methods to psychosocial research. Dr. He received her PhD in Statistics from the Department of Biostatistics and Computational Biology at University of Rochester in 2007.

    結(jié)構(gòu)性零和零膨脹模型

    賀華, Wan TANG, Wenjuan WANG, Paul CRITS-CHRISTOPH

    計(jì)數(shù)反應(yīng),結(jié)構(gòu)性零,隨機(jī)零,零膨脹模型

    Summary:In psychosocial and behavioral studies count outcomes recording the frequencies of the occurrence of some health or behavior outcomes (such as the number of unprotected sexual behaviors during a period of time) often contain a preponderance of zeroes because of the presence of ‘structural zeroes’ that occur when some subjects are not at risk for the behavior of interest. Unlike random zeroes(responses that can be greater than zero, but are zero due to sampling variability), structural zeroes are usually very different, both statistically and clinically. False interpretations of results and study findings may result if differences in the two types of zeroes are ignored. However, in practice, the status of the structural zeroes is often not observed and this latent nature complicates the data analysis. In this article, we focus on one model, the zero-inflated Poisson (ZIP) regression model that is commonly used to address zero-inflated data. We first give a brief overview of the issues of structural zeroes and the ZIP model. We then given an illustration of ZIP with data from a study on HIV-risk sexual behaviors among adolescent girls. Sample codes in SAS and Stata are also included to help perform and explain ZIP analyses.

    [Shanghai Arch Psychiatry. 2014; 26(4): 236-242.

    http://dx.doi.org/10.3969/j.issn.1002-0829.2014.04.008]

    1Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA

    2Veterans Integrated Service Network, Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA3Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA

    4Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA

    * correspondence: hua_he@urmc.rochester.edu

    A full-text Chinese translation will be available at www.saponline.org on September 25, 2014.

    概述:在社會(huì)心理學(xué)和行為學(xué)的研究中,記錄某些健康或行為結(jié)果發(fā)生頻率的計(jì)數(shù)中(如在一段時(shí)間內(nèi)無防護(hù)措施的性行為的次數(shù))往往含有大量的零,這是因?yàn)楫?dāng)某些對(duì)象對(duì)于某種研究行為沒有危險(xiǎn)時(shí)就會(huì)產(chǎn)生“結(jié)構(gòu)性零”。不像隨機(jī)零(結(jié)果可以是大于零,但是也可能由于樣本變異性而成為零),結(jié)構(gòu)性零在統(tǒng)計(jì)和臨床上通常是非常不同的。如果兩種類型零的差異被忽略,就可能會(huì)導(dǎo)致對(duì)結(jié)果和研究發(fā)現(xiàn)的錯(cuò)誤解釋。然而在實(shí)踐中,結(jié)構(gòu)性零經(jīng)常會(huì)沒有被觀察到而這種潛在性使數(shù)據(jù)分析復(fù)雜化了。在這篇文章中,我們專注于一種模式,即通常用于解決零膨脹數(shù)據(jù)的零膨脹泊松(Zero-inflated Poisson,ZIP)回歸模型。首先,我們對(duì)結(jié)構(gòu)性零和ZIP模型做一個(gè)簡(jiǎn)要概述。然后我們以一項(xiàng)青春期少女艾滋病高危性行為的研究數(shù)據(jù)來闡述ZIP模型。文中還附有SAS和Stata的示例代碼,以幫助運(yùn)行和解釋ZIP分析。

    本文全文中文版從2014年9月25日起在www.saponline.org可供免費(fèi)閱覽下載

    猜你喜歡
    潛在性泊松性行為
    基于泊松對(duì)相關(guān)的偽隨機(jī)數(shù)發(fā)生器的統(tǒng)計(jì)測(cè)試方法
    昆明市不同性角色MSM的性行為特征分析
    帶有雙臨界項(xiàng)的薛定諤-泊松系統(tǒng)非平凡解的存在性
    權(quán)益審視:電信服務(wù)合同糾紛的“潛在性”問題
    法制博覽(2017年11期)2018-03-02 11:11:08
    兒科療區(qū)潛在的感染因素分析
    權(quán)益審視:電信服務(wù)合同糾紛的“潛在性”問題
    ——以手機(jī)用戶被不明扣費(fèi)現(xiàn)象為契入
    法制博覽(2017年32期)2017-01-29 15:28:17
    泊松著色代數(shù)
    梁方程解的爆破及漸近性行為
    1<γ<6/5時(shí)歐拉-泊松方程組平衡解的存在性
    MOS器件靜電放電潛在性失效概述
    日韩欧美国产在线观看| 久久精品国产亚洲网站| 亚洲av美国av| 色在线成人网| 搞女人的毛片| 成人一区二区视频在线观看| 亚洲在线自拍视频| 久久天躁狠狠躁夜夜2o2o| 国产黄a三级三级三级人| 国产成人一区二区在线| 如何舔出高潮| 免费观看人在逋| 国产精品无大码| 日本-黄色视频高清免费观看| 联通29元200g的流量卡| 人妻久久中文字幕网| 国内精品宾馆在线| 丝袜美腿在线中文| 少妇裸体淫交视频免费看高清| 国产男人的电影天堂91| 国产精品一区二区性色av| 看片在线看免费视频| 干丝袜人妻中文字幕| 一区二区三区四区激情视频 | 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品乱码久久久v下载方式| 国产精品一区二区三区四区久久| 国产精品1区2区在线观看.| 亚洲,欧美,日韩| 中文字幕久久专区| 在线观看午夜福利视频| 久久中文看片网| 成人毛片a级毛片在线播放| 黄色欧美视频在线观看| 亚洲国产色片| 99久久无色码亚洲精品果冻| 精品久久久久久久久av| 美女黄网站色视频| 国产不卡一卡二| 免费看a级黄色片| 大型黄色视频在线免费观看| 一级黄色大片毛片| 在线国产一区二区在线| 久久久久久久久久久丰满 | 午夜精品在线福利| 男插女下体视频免费在线播放| 最近视频中文字幕2019在线8| 亚洲熟妇熟女久久| 久久这里只有精品中国| 精品久久久久久,| 国产精品亚洲一级av第二区| 日日摸夜夜添夜夜添小说| 欧美xxxx黑人xx丫x性爽| 日韩av在线大香蕉| 中文字幕熟女人妻在线| 黄片wwwwww| 欧美三级亚洲精品| 欧美人与善性xxx| 欧美日韩亚洲国产一区二区在线观看| 最近在线观看免费完整版| 91久久精品国产一区二区成人| 少妇的逼好多水| 国产男人的电影天堂91| 国产精品国产三级国产av玫瑰| 国产主播在线观看一区二区| 国产私拍福利视频在线观看| 欧美日韩精品成人综合77777| 91久久精品电影网| 日韩精品中文字幕看吧| 精品久久久噜噜| 欧美成人免费av一区二区三区| 无人区码免费观看不卡| 亚洲av免费高清在线观看| av视频在线观看入口| 狂野欧美激情性xxxx在线观看| 久久久久久国产a免费观看| 3wmmmm亚洲av在线观看| 日韩精品青青久久久久久| 伦理电影大哥的女人| 美女被艹到高潮喷水动态| 婷婷丁香在线五月| 午夜老司机福利剧场| 99在线人妻在线中文字幕| 午夜影院日韩av| 悠悠久久av| 色综合婷婷激情| 亚洲中文日韩欧美视频| 中文字幕久久专区| 国内精品久久久久精免费| 联通29元200g的流量卡| 亚洲在线自拍视频| 直男gayav资源| 亚洲欧美精品综合久久99| 成年免费大片在线观看| 狂野欧美白嫩少妇大欣赏| 嫁个100分男人电影在线观看| 午夜亚洲福利在线播放| 亚洲最大成人av| 长腿黑丝高跟| 日日撸夜夜添| 亚洲精品日韩av片在线观看| 一进一出好大好爽视频| 久久婷婷人人爽人人干人人爱| 亚洲精品在线观看二区| 91久久精品电影网| 日韩中文字幕欧美一区二区| 国产精品98久久久久久宅男小说| 波野结衣二区三区在线| 久久精品91蜜桃| 国产视频一区二区在线看| 久久精品国产亚洲av涩爱 | 在线国产一区二区在线| 国产高清三级在线| 亚洲人与动物交配视频| 最后的刺客免费高清国语| 亚洲欧美日韩卡通动漫| 午夜免费激情av| 国产日本99.免费观看| 男女那种视频在线观看| 特级一级黄色大片| 国产高清不卡午夜福利| 97人妻精品一区二区三区麻豆| 少妇的逼好多水| 狠狠狠狠99中文字幕| 亚洲成人久久爱视频| 中文在线观看免费www的网站| 国产探花在线观看一区二区| 精品久久久久久久人妻蜜臀av| 久久久久免费精品人妻一区二区| 小蜜桃在线观看免费完整版高清| 欧美另类亚洲清纯唯美| xxxwww97欧美| 国产淫片久久久久久久久| 免费观看人在逋| 听说在线观看完整版免费高清| 黄色视频,在线免费观看| 成人午夜高清在线视频| 欧美成人性av电影在线观看| 国产亚洲av嫩草精品影院| 国产真实乱freesex| 欧美xxxx性猛交bbbb| 国产久久久一区二区三区| 十八禁国产超污无遮挡网站| 国产在视频线在精品| 日韩欧美国产在线观看| 日韩欧美国产在线观看| 淫妇啪啪啪对白视频| 内射极品少妇av片p| 不卡视频在线观看欧美| 亚洲av中文字字幕乱码综合| 免费观看精品视频网站| 国产亚洲精品综合一区在线观看| av天堂中文字幕网| 久久精品久久久久久噜噜老黄 | 欧美一区二区亚洲| bbb黄色大片| 观看免费一级毛片| av福利片在线观看| 国产免费av片在线观看野外av| 中亚洲国语对白在线视频| 亚洲国产精品久久男人天堂| 欧美激情久久久久久爽电影| 久久欧美精品欧美久久欧美| 日本黄色视频三级网站网址| 国产视频一区二区在线看| 亚洲av中文av极速乱 | 最新在线观看一区二区三区| 男人狂女人下面高潮的视频| 尤物成人国产欧美一区二区三区| 窝窝影院91人妻| 国产精品一区二区三区四区免费观看 | 国产精品嫩草影院av在线观看 | 99热精品在线国产| 久久国产精品人妻蜜桃| 搡老熟女国产l中国老女人| 久久久久免费精品人妻一区二区| 91狼人影院| 欧美+日韩+精品| 看片在线看免费视频| 免费一级毛片在线播放高清视频| 欧美最黄视频在线播放免费| 国产大屁股一区二区在线视频| 在线播放国产精品三级| 日日摸夜夜添夜夜添小说| 成人国产综合亚洲| 白带黄色成豆腐渣| 免费观看在线日韩| 日韩精品青青久久久久久| 日本色播在线视频| 欧美精品国产亚洲| 超碰av人人做人人爽久久| 日韩欧美免费精品| 91久久精品国产一区二区成人| 色精品久久人妻99蜜桃| 男插女下体视频免费在线播放| 色视频www国产| 十八禁国产超污无遮挡网站| 中文资源天堂在线| 亚洲第一区二区三区不卡| 成人av一区二区三区在线看| 91午夜精品亚洲一区二区三区 | 国产一区二区三区在线臀色熟女| 欧美一区二区国产精品久久精品| 精品久久国产蜜桃| 变态另类丝袜制服| 一个人免费在线观看电影| 岛国在线免费视频观看| 欧美成人性av电影在线观看| 少妇裸体淫交视频免费看高清| 校园人妻丝袜中文字幕| 免费大片18禁| 日本免费a在线| 性色avwww在线观看| 51国产日韩欧美| 日韩欧美免费精品| 舔av片在线| 欧美xxxx黑人xx丫x性爽| 国产成人av教育| 如何舔出高潮| 尾随美女入室| 国产精品乱码一区二三区的特点| 看免费成人av毛片| 夜夜看夜夜爽夜夜摸| 国产爱豆传媒在线观看| 久久精品国产亚洲av香蕉五月| 国产高清视频在线观看网站| 成人午夜高清在线视频| 精品人妻熟女av久视频| 人妻少妇偷人精品九色| 很黄的视频免费| 麻豆av噜噜一区二区三区| 亚洲成a人片在线一区二区| 91精品国产九色| 色尼玛亚洲综合影院| 亚洲天堂国产精品一区在线| 淫妇啪啪啪对白视频| 亚洲精华国产精华液的使用体验 | 日本五十路高清| 亚洲成人中文字幕在线播放| 精品久久久久久久久亚洲 | 人妻久久中文字幕网| 免费在线观看日本一区| 国产一区二区三区视频了| 88av欧美| 简卡轻食公司| 精品国内亚洲2022精品成人| 亚洲经典国产精华液单| 久久这里只有精品中国| 久久久精品欧美日韩精品| 99在线视频只有这里精品首页| xxxwww97欧美| 联通29元200g的流量卡| 在线a可以看的网站| 色噜噜av男人的天堂激情| 久久精品综合一区二区三区| 免费看美女性在线毛片视频| 亚洲欧美清纯卡通| 欧美色欧美亚洲另类二区| 久久精品国产鲁丝片午夜精品 | 婷婷精品国产亚洲av在线| 日韩精品有码人妻一区| 亚洲熟妇熟女久久| 国内毛片毛片毛片毛片毛片| 毛片女人毛片| 国内久久婷婷六月综合欲色啪| 内射极品少妇av片p| 国产伦精品一区二区三区视频9| 女生性感内裤真人,穿戴方法视频| 在线观看午夜福利视频| 男人狂女人下面高潮的视频| 精品久久久久久久人妻蜜臀av| 日本黄色视频三级网站网址| 九九久久精品国产亚洲av麻豆| 免费观看人在逋| 精品无人区乱码1区二区| 日本一本二区三区精品| 国产乱人伦免费视频| 国内少妇人妻偷人精品xxx网站| 国产成人福利小说| 午夜精品久久久久久毛片777| 亚洲欧美精品综合久久99| 日日摸夜夜添夜夜添av毛片 | 久久人人爽人人爽人人片va| 免费看美女性在线毛片视频| 一区二区三区免费毛片| 国产成人aa在线观看| 日本一本二区三区精品| 小说图片视频综合网站| 亚洲av美国av| 亚洲最大成人手机在线| 亚洲在线自拍视频| 久久精品人妻少妇| 久久久成人免费电影| 亚洲av第一区精品v没综合| 九九爱精品视频在线观看| 看十八女毛片水多多多| 国产精品无大码| 男女边吃奶边做爰视频| 丝袜美腿在线中文| 久久久国产成人免费| 女人被狂操c到高潮| 人人妻人人看人人澡| 国产乱人视频| АⅤ资源中文在线天堂| 97超级碰碰碰精品色视频在线观看| 日韩一区二区视频免费看| 亚洲自拍偷在线| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦啦在线视频资源| 又黄又爽又免费观看的视频| 精品久久久久久久久亚洲 | 窝窝影院91人妻| 97碰自拍视频| or卡值多少钱| 成熟少妇高潮喷水视频| 欧美日韩综合久久久久久 | 国产精品国产三级国产av玫瑰| 免费大片18禁| 1024手机看黄色片| 欧美日韩亚洲国产一区二区在线观看| 国产精品电影一区二区三区| 伦理电影大哥的女人| 男人舔奶头视频| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 乱码一卡2卡4卡精品| 波野结衣二区三区在线| 午夜a级毛片| 桃红色精品国产亚洲av| 能在线免费观看的黄片| 黄色欧美视频在线观看| 男人舔奶头视频| 久久精品影院6| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播| 日韩欧美在线乱码| 波多野结衣高清无吗| 变态另类丝袜制服| 亚洲最大成人手机在线| 老师上课跳d突然被开到最大视频| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| or卡值多少钱| 午夜爱爱视频在线播放| 日韩大尺度精品在线看网址| 国产午夜福利久久久久久| 88av欧美| 在现免费观看毛片| 免费在线观看日本一区| 麻豆久久精品国产亚洲av| 天堂动漫精品| a在线观看视频网站| 欧美最黄视频在线播放免费| 日日啪夜夜撸| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久久久| 国产精品久久久久久亚洲av鲁大| 成人午夜高清在线视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲经典国产精华液单| 99久久精品热视频| 午夜福利视频1000在线观看| 淫妇啪啪啪对白视频| 亚洲中文字幕一区二区三区有码在线看| 天堂动漫精品| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 精品人妻1区二区| 欧美一区二区亚洲| 久久久久精品国产欧美久久久| 不卡一级毛片| av在线天堂中文字幕| 又爽又黄a免费视频| 男女啪啪激烈高潮av片| 亚洲自偷自拍三级| 亚洲欧美清纯卡通| 最近最新中文字幕大全电影3| 国产熟女欧美一区二区| 精品乱码久久久久久99久播| 精品人妻熟女av久视频| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 久久天躁狠狠躁夜夜2o2o| 老女人水多毛片| 97碰自拍视频| 亚洲精品国产成人久久av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人免费电影在线观看| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 国产极品精品免费视频能看的| 舔av片在线| 老司机午夜福利在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 成人毛片a级毛片在线播放| 露出奶头的视频| 韩国av在线不卡| 国产探花极品一区二区| 婷婷六月久久综合丁香| 欧美激情在线99| 国产精品久久电影中文字幕| 国产黄片美女视频| 久久婷婷人人爽人人干人人爱| 亚洲最大成人av| 91精品国产九色| 欧美日韩瑟瑟在线播放| 日韩欧美精品v在线| 免费大片18禁| 国产v大片淫在线免费观看| 内射极品少妇av片p| 少妇人妻一区二区三区视频| 一个人免费在线观看电影| 免费看日本二区| 国内精品一区二区在线观看| 3wmmmm亚洲av在线观看| 久久6这里有精品| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品中文字幕看吧| 国产精品人妻久久久影院| 午夜激情欧美在线| 黄色配什么色好看| 免费电影在线观看免费观看| 在线免费观看不下载黄p国产 | 欧美+亚洲+日韩+国产| 最近中文字幕高清免费大全6 | 女同久久另类99精品国产91| 国产高清视频在线观看网站| 久久精品国产亚洲网站| 国产毛片a区久久久久| 他把我摸到了高潮在线观看| 嫁个100分男人电影在线观看| 真实男女啪啪啪动态图| 成人av一区二区三区在线看| bbb黄色大片| 欧美极品一区二区三区四区| 国产乱人伦免费视频| 丰满乱子伦码专区| 婷婷丁香在线五月| 身体一侧抽搐| 校园人妻丝袜中文字幕| 免费黄网站久久成人精品| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 中文字幕熟女人妻在线| 特大巨黑吊av在线直播| 1000部很黄的大片| 国产伦人伦偷精品视频| 亚洲三级黄色毛片| 99热只有精品国产| 亚洲不卡免费看| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| 国产探花在线观看一区二区| 日韩人妻高清精品专区| 超碰av人人做人人爽久久| 亚洲人成网站在线播| 成人特级黄色片久久久久久久| 少妇的逼好多水| 国产v大片淫在线免费观看| 在线天堂最新版资源| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 久久久久国产精品人妻aⅴ院| 他把我摸到了高潮在线观看| 国内精品宾馆在线| 免费av观看视频| www日本黄色视频网| 亚洲欧美清纯卡通| 真人做人爱边吃奶动态| 久久久久久久久大av| 成年免费大片在线观看| 亚洲中文字幕日韩| 亚洲av熟女| 看黄色毛片网站| 99久久中文字幕三级久久日本| 免费看av在线观看网站| 国产极品精品免费视频能看的| 国产精品爽爽va在线观看网站| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 成人无遮挡网站| 中文资源天堂在线| 国产av不卡久久| 老司机福利观看| 99久久久亚洲精品蜜臀av| 国产高清有码在线观看视频| 精品一区二区三区av网在线观看| 黄片wwwwww| 很黄的视频免费| 黄色日韩在线| 色哟哟·www| 日本三级黄在线观看| 日本免费一区二区三区高清不卡| 最近中文字幕高清免费大全6 | 亚洲美女搞黄在线观看 | 在线a可以看的网站| 亚洲精品粉嫩美女一区| 免费看日本二区| 色5月婷婷丁香| 一a级毛片在线观看| 久9热在线精品视频| 亚洲最大成人中文| 99热网站在线观看| 欧美成人a在线观看| 大又大粗又爽又黄少妇毛片口| 国产一区二区三区视频了| 色综合站精品国产| 老女人水多毛片| 高清日韩中文字幕在线| 内地一区二区视频在线| 国产不卡一卡二| 久久久久性生活片| 在线天堂最新版资源| 男人的好看免费观看在线视频| 中文资源天堂在线| 99热只有精品国产| 国产在视频线在精品| 久久婷婷人人爽人人干人人爱| 国产69精品久久久久777片| 精品人妻偷拍中文字幕| 亚洲五月天丁香| 一个人看视频在线观看www免费| 国产精品三级大全| 九九爱精品视频在线观看| 亚洲精品成人久久久久久| 韩国av在线不卡| 国产精品一区二区性色av| 天天躁日日操中文字幕| 免费无遮挡裸体视频| 日本a在线网址| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 久久精品国产亚洲av天美| 国内揄拍国产精品人妻在线| 精品日产1卡2卡| 亚洲精品在线观看二区| 性插视频无遮挡在线免费观看| 色5月婷婷丁香| 九九热线精品视视频播放| 国产大屁股一区二区在线视频| 国产免费av片在线观看野外av| 一本精品99久久精品77| 国产精品av视频在线免费观看| 亚洲avbb在线观看| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 欧美色视频一区免费| 亚洲第一区二区三区不卡| 欧美成人一区二区免费高清观看| 在线a可以看的网站| 桃红色精品国产亚洲av| 熟女电影av网| 国产成人福利小说| 大又大粗又爽又黄少妇毛片口| 亚洲熟妇中文字幕五十中出| 十八禁国产超污无遮挡网站| 亚洲av.av天堂| 久久久久久久久久久丰满 | 亚洲自拍偷在线| bbb黄色大片| 国内精品美女久久久久久| 成人无遮挡网站| 欧美日韩瑟瑟在线播放| 中文字幕熟女人妻在线| 国产探花在线观看一区二区| 亚洲综合色惰| 精品久久久久久成人av| 一a级毛片在线观看| 99久国产av精品| 国产一区二区在线观看日韩| 日本三级黄在线观看| 色噜噜av男人的天堂激情| 特大巨黑吊av在线直播| 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 自拍偷自拍亚洲精品老妇| 两人在一起打扑克的视频| 此物有八面人人有两片| 久99久视频精品免费| 日韩一本色道免费dvd| 很黄的视频免费| 91av网一区二区| xxxwww97欧美| 日本与韩国留学比较| 乱系列少妇在线播放| 成人av一区二区三区在线看| 在现免费观看毛片| 在线天堂最新版资源| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 久久亚洲真实| 国语自产精品视频在线第100页| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 国产伦人伦偷精品视频| 欧美+日韩+精品| 我要搜黄色片| 成人永久免费在线观看视频| 成人特级av手机在线观看| 国产亚洲精品综合一区在线观看| 国产精品女同一区二区软件 | 久久人人爽人人爽人人片va| 欧美3d第一页| 亚洲自拍偷在线| 欧美成人免费av一区二区三区| 国产一区二区在线观看日韩| 内地一区二区视频在线| 国产精品久久久久久精品电影| 久久久久久久久久久丰满 |