鄧文卓,厲 英,丁玉石
(東北大學(xué) 材料與冶金學(xué)院,沈陽(yáng) 110819)
氧離子固體電解質(zhì)在熱力學(xué)研究中的應(yīng)用始于 1957 年,K.Kiukkola 和 C.Wagner[1,2]用ZrO2(CaO)等固體電解質(zhì)測(cè)定了一些氧化物的標(biāo)準(zhǔn)生成吉布斯自由能,以此為基礎(chǔ),固體電解質(zhì)在高溫冶金物理化學(xué)研究、氣相氧分壓和金屬液相氧活度的測(cè)定及控制等領(lǐng)域中得到廣泛應(yīng)用.半個(gè)多世紀(jì)以來(lái),氧傳感器已發(fā)展為在鋼鐵和有色金屬冶煉中獲得廣泛商業(yè)應(yīng)用的成分傳感器[3],由于缺乏以待測(cè)元素為導(dǎo)電離子的固體電解質(zhì),應(yīng)用傳感器對(duì)一些合金熔體中元素直接測(cè)量的方法受到了限制.通過(guò)在固體電解質(zhì)表面涂覆一層既包含待測(cè)元素又包含固體電解質(zhì)中導(dǎo)電離子的涂層[4],這種限制被打破,由此制成的輔助電極型傳感器也獲得廣泛研究.
氧活度的測(cè)量和監(jiān)控在整個(gè)煉鋼過(guò)程都是非常關(guān)鍵的,關(guān)系到生產(chǎn)過(guò)程控制和最終成材質(zhì)量.氧濃差電池可以快速準(zhǔn)確地測(cè)定鋼液、有色金屬熔體和熔渣中的氧活度,它是控制鋼和有色金屬冶煉、精煉和連鑄工藝的重要手段.早在1961年,J.Weissbart和 R.Ruka[1]就組裝了以 ZrO2- CaO為固體電解質(zhì)、以Pt-O2為電極的氧傳感器,可以測(cè)定真空系統(tǒng)和惰性氣體中氧分壓,有效工作溫度為600~700℃,測(cè)氧范圍為1~100 kPa.1965 年 ThomasC.Wilder[6]應(yīng) 用 Pt|Ni,NiO|ZrO2(CaO)|[O]Cu|Ta電池測(cè)定了1 100 ~1 200℃銅液中的氧活度.1968年 R.J.Fruehan和 L.J.Martonik[7]用 ZrO2(CaO)和 ThO2(Y2O3)為固體電解質(zhì),以Cr,Cr2O3為參比電極制作氧傳感 器,并 將 其 應(yīng) 用 于 Fe-O、Fe-Si-O、Fe-Cr-O、Fe-V-O和 Fe-A1-O體系中氧活度的測(cè)定,圖1為得到的氧含量與電動(dòng)勢(shì)之間的關(guān)系.Kazuhiro Goto[8]應(yīng)用 ZrO2(CaO)固體電解質(zhì)氧傳感器分別測(cè)定了銀液和PbO-SiO2體系的氧活度.
圖1 鋼液中氧含量與電動(dòng)勢(shì)關(guān)系曲線[19]Fig.1 Relationship between oxygen content and EMF in steel
進(jìn)入20世紀(jì)70年代,氧傳感器的理論和實(shí)踐已趨成熟,鋼鐵工業(yè)已經(jīng)開(kāi)始應(yīng)用氧傳感器[9],1979 年 M.Kawakami等[10]應(yīng)用氧傳感器對(duì)LD轉(zhuǎn)爐渣中的氧含量進(jìn)行了測(cè)定.1982年Kazuhiro Nagata 等[11,12]用 ZrO2(MgO)為固體電解質(zhì)、以Cr,Cr2O3為參比電極制成的氧傳感器分別測(cè)量了高爐和Q-BOP轉(zhuǎn)爐中鐵液、爐渣和氣相平衡的氧分壓.隨著連續(xù)鑄造技術(shù)的發(fā)展,對(duì)于鋁鎮(zhèn)靜鋼中氧含量的精確控制促使研究者對(duì)能測(cè)定氧質(zhì)量分?jǐn)?shù)小于5×10-5的管式氧探頭進(jìn)行了大 量 的 研 究 和 改 進(jìn)[13~18], M.Iwase 和A.McLean[19]對(duì)采用 ZrO2(CaO)為電解質(zhì)、以Mo,MoO2為參比電極的電化學(xué)氧傳感器在煉鋼中的應(yīng)用進(jìn)行評(píng)估,通過(guò)大量的實(shí)驗(yàn)得到圖2的實(shí)驗(yàn)結(jié)果,圖中曲線1為不考慮ZrO2(CaO)電子導(dǎo)電的理論值,在1 600℃鋼液中w[O]為0.02%~0.18%時(shí)測(cè)量值與理論值較吻合,w[O]小于0.02%時(shí)不宜使用Mo,MoO2為參比電極.黃克勤等[20]的研究表明在煉鋼環(huán)境下 Cr,Cr2O3參比電極平衡w[O]接近 0.01%,當(dāng)w[O]小于 0.01%時(shí),采用Cr,Cr2O3參比電極所得的電動(dòng)勢(shì)曲線穩(wěn)定且數(shù)據(jù)重現(xiàn)性好,為測(cè)定低氧分壓,還采用一種雙固體電解質(zhì)層傳感器,即在ZrO2(MgO)表面涂覆一層厚度為1 ~4 μm的 ZrO2(Y2O3)[21].
圖2 M.Iwase和A.McLean的實(shí)驗(yàn)數(shù)據(jù)[19]Fig.2 M.Iwase and A.McLean’s experiment results
為了使氧探頭易于實(shí)現(xiàn)批量生產(chǎn),Dieter Janke[22]用熱噴涂技術(shù)制備了一種新型的針式氧探頭,該探頭采用鉬絲為電極引線,將Cr,Cr2O3參比電極噴涂在Mo絲表面,然后噴涂全穩(wěn)定的ZrO2-CaO或ThO2基固體電解質(zhì)粉末,將氧探頭浸入鋼液后較短時(shí)間內(nèi)即可獲得電動(dòng)勢(shì)信號(hào).為了延長(zhǎng)氧探頭的使用時(shí)間,Etsell T H等[23]采用Pt-空氣電極,以部分穩(wěn)定的ZrO2-CaO為固體電解質(zhì),制備了一種參比電極溫度比測(cè)量電極溫度低的非等溫傳感器,并應(yīng)用于鋼液定氧,電池可以持續(xù)工作50 min.C.B.Alcock等[24]改進(jìn)了這種非等溫傳感器設(shè)計(jì),但所用參比電極為Ni,NiO,固體電解質(zhì)為 ZrO2(Y2O3).Ramasesha S K 等[25]通過(guò)熱力學(xué)分析計(jì)算了這種非等溫傳感器的理論電動(dòng)勢(shì),并通過(guò)實(shí)驗(yàn)進(jìn)行驗(yàn)證.Wayne L.Worrell等[26]采用全穩(wěn)定的 Y2O3摩爾分?jǐn)?shù)為12%的ZrO2(Y2O3)為電解質(zhì),將Cr,Cr2O3參比電極連同Mo絲用等靜壓的方法壓成圓片,然后將圓片嵌入ZrO2(Y2O3)粉末再經(jīng)過(guò)等靜壓成型,通過(guò)高溫水泥與剛玉管連接制成氧探頭.將氧探頭浸入1 600℃的鋼液中,有效工作時(shí)間可達(dá)10 h,因此可以用于連鑄結(jié)晶器和鋼包精煉測(cè)氧.Fushen Li等[27,28]研究發(fā)現(xiàn),電解質(zhì)的電子導(dǎo)電性和電動(dòng)勢(shì)測(cè)量時(shí)的微弱電流可以導(dǎo)致氧從高氧勢(shì)的電極向低氧勢(shì)電極的擴(kuò)散,由此引發(fā)極化現(xiàn)象;對(duì)可逆的氧電池通入合適的電流,消除了參比電極的極化現(xiàn)象,同時(shí)使傳感器的壽命從10~30 min延長(zhǎng)至5 h.
氧傳感器探頭包含三部分,即電解質(zhì)、參比電極和電極引線,圖1為幾種常見(jiàn)的氧探頭[29].
圖3 鋼液中應(yīng)用的氧傳感器[29]Fig.3 Oxygen sensors used in molten steel
氧傳感器多采用ZrO2基氧離子導(dǎo)體為固體電解質(zhì),K.S.Goto等[30]發(fā)現(xiàn)即使測(cè)定同一熔池中的氧含量,不同商業(yè)氧傳感器所得到的活度值也不同,這是由于固體電解質(zhì)的制造工藝不同,具有的特征氧分壓pe也不同.在高溫和低氧分壓下,ZrO2基固體電解質(zhì)還有一定的電子導(dǎo)電,這些因素都會(huì)對(duì)電動(dòng)勢(shì)的測(cè)量產(chǎn)生影響.
參比電極是定氧探頭重要組成部分,它必須在煉鋼溫度下提供一個(gè)準(zhǔn)確而穩(wěn)定的平衡氧分壓,因而直接關(guān)系到測(cè)量結(jié)果的準(zhǔn)確與否.Van Wijngaarden M等[31]認(rèn)為參比電極平衡氧分壓與鋼中實(shí)際氧活度相差較大時(shí),由于 ZrO2(MgO)電解質(zhì)電子電導(dǎo)的存在,參比電極發(fā)生極化.M.Mochizuki等[32]改善了商用氧探頭的響應(yīng)特性.K.Yamada等[33]認(rèn)為電動(dòng)勢(shì)曲線中出現(xiàn)的峰值是由于參比電極反應(yīng)未達(dá)到平衡在固體電解質(zhì)管 殘 留 的氧 所 致;Lou Tian - jun[34]等 在Cr,Cr2O3參比電極中加入少量NiO以消除峰值.
氧濃差電池的一般形式為:
參比電極反應(yīng):
電池反應(yīng):
測(cè)得的電動(dòng)勢(shì)為:
式中,E為電池電勢(shì),R為摩爾氣體常數(shù),T為熱力學(xué)溫度,F(xiàn)為法拉第常數(shù),pe為固體電解質(zhì)的電子電導(dǎo)率與離子電導(dǎo)率相等時(shí)的氧分壓(特征氧分壓),pO2(ref)為參比電極處氧分壓,由反應(yīng)(1)決定,pO2(Fe)為固體電解質(zhì)和鐵液兩相界面處的氧分壓,由反應(yīng)(2)決定.
當(dāng)給定溫度時(shí),熔體中的氧分壓隨著溶解氧的化學(xué)活度 a[O](=fO× w[O])的平方而升高,對(duì)反應(yīng)1/2O2(g)=[O]相應(yīng)的平衡方程式為pO2=/K2,K 為反應(yīng) 1/2O2(g)=[O]的平衡常數(shù).
由于ZrO2基電解質(zhì)氧傳感器可以測(cè)定氣相、熔渣和熔融合金中的氧分壓,在鋼鐵冶煉過(guò)程、銅和鎳的精煉、燃燒過(guò)程和污染控制方面獲得廣泛應(yīng)用.基于氧化物固體電解質(zhì)在定氧方面取得的成功,一些新的固體電解質(zhì)和固體電解質(zhì)傳感器的開(kāi)發(fā)也取得了一定的進(jìn)展,其中包括一些陽(yáng)離子導(dǎo)電材料,例如鈉離子導(dǎo)體β-Al2O3,它們?cè)诟邷叵乱部梢宰鳛閭鞲衅鞯碾娊赓|(zhì)材料,但是這些材料的應(yīng)用受到它們固有特性的限制.ZrO2基固體電解質(zhì)不僅具有較好的強(qiáng)度、韌性和抗熱震性等機(jī)械性能,在化學(xué)和熱力學(xué)穩(wěn)定性方面也表現(xiàn)出色,而且作為氧離子導(dǎo)電占優(yōu)的導(dǎo)體,相比于其他混合離子導(dǎo)體在測(cè)量準(zhǔn)確性方面也有較大優(yōu)勢(shì),因此在ZrO2基固體電解質(zhì)表面涂覆不同的輔助電極來(lái)測(cè)定不同元素含量的傳感器也大量涌現(xiàn)[4],圖4 為普遍采用的結(jié)構(gòu)示意圖[29].
高爐鐵水的Si含量是重要的冶金參數(shù).煉鐵過(guò)程中,鐵水中的硅含量增加,反映了爐缸溫度的增加,有利于鐵水脫硫.從轉(zhuǎn)爐煉鋼過(guò)程中,入爐鐵水中的硅含量過(guò)高會(huì)使渣量和造渣料消耗增加,易引起噴濺,金屬收得率降低,同時(shí)渣中過(guò)量的SiO2,也會(huì)導(dǎo)致對(duì)爐襯的侵蝕,影響石灰的造渣速度,延長(zhǎng)冶煉時(shí)間.實(shí)現(xiàn)快速在線測(cè)定鐵水Si含量,取代傳統(tǒng)的化學(xué)分析方法,對(duì)控制冶煉條件、保證產(chǎn)品質(zhì)量、縮短冶煉時(shí)間起著重要作用.目前快速測(cè)定鐵水中Si含量的方法有熱電動(dòng)勢(shì)(TEMF)法和固體電解質(zhì)電化學(xué)傳感(EMF)法.采用熱電勢(shì)法定硅相對(duì)而言比較成熟,需要取樣,耗時(shí)較長(zhǎng)[35].由于沒(méi)有合適的Si4+離子導(dǎo)體,李光強(qiáng)[36]和盧文躍等[37]用莫來(lái)石(3Al2O3·2SiO2)作固體電解質(zhì)組成電化學(xué)傳感器,借助于莫來(lái)石與鐵液中Si的平衡,對(duì)鐵液及碳飽和鐵液中的Si進(jìn)行了測(cè)量.
圖4 兩種輔助電極型傳感器Fig 4 Design of solid state ionic sensors with auxiliary electrode
由于莫來(lái)石在高溫時(shí)顯著的電子導(dǎo)電性,人們開(kāi)發(fā)出了以氧電池為基礎(chǔ)的輔助電極型硅傳感器.巖崎克博等[38]成功地開(kāi)發(fā)出鋼液定硅探頭,并獲得了實(shí)際應(yīng)用.制備的硅探頭的結(jié)構(gòu)與氧探頭相似,在氧化鋯固體電解質(zhì)的表面涂覆SiO2,其涂覆工藝是先將SiO2粉末與有機(jī)黏結(jié)劑和水混合成漿狀,然后浸涂在ZrO2(MgO)固體電解質(zhì)表面,室溫干燥.為提高響應(yīng)特性,在涂覆劑中混合一定量的CaF2,使輔助電極在測(cè)定溫度(1 400~1 520℃)下變成SiO2(s)+CaF2(l),借助液相提高氧離子的遷移率的同時(shí)保證SiO2(s)活度為1.硅探頭的電池形式為:
參比電極反應(yīng):
電池反應(yīng):
測(cè)得的電動(dòng)勢(shì)為:
式中,E為電池電勢(shì),R為摩爾氣體常數(shù),T為熱力學(xué)溫度,F(xiàn)為法拉第常數(shù),pe為固體電解質(zhì)的電子電導(dǎo)率與離子電導(dǎo)率相等時(shí)的氧分壓,pO2(ref)為參比電極處氧分壓,pO2(Fe)為固體電解質(zhì)、輔助電極和鐵液三相界面處的氧分壓.pO2(ref)由反應(yīng)(5)決定,pO2(ref)=K1,K1為反應(yīng)(5)的平衡常數(shù),pO2(Fe)由反應(yīng)(6)決定,pO2(Fe)=(K2·a[Si])-1,K2為反應(yīng)(6)的平衡常數(shù),經(jīng)過(guò)迭代計(jì)算可由電動(dòng)勢(shì)E得到硅的活度a[Si].
Chikayoshi Furuta等[39]采用ZrO2-MgO 作為固體電解質(zhì),以不同比例的SiO2+CaF2混合物為輔助電極測(cè)定了1 653~1 793 K高爐鐵水中Si含量,裝置如圖5所示,發(fā)現(xiàn)w(CaF2)含量越高傳感器響應(yīng)時(shí)間越短,當(dāng)w(CaF2)占比為15%時(shí)測(cè)量數(shù)據(jù)最準(zhǔn)確.圖6為電池測(cè)定的硅含量值與取樣分析值之間的關(guān)系曲線.
圖5 硅探頭的機(jī)構(gòu)示意圖[39]Fig.5 Constitution of the silicon sensor
K.Gomyo 和 I.Sakaguchi等[40,41]以 Mo|Mo,MoO2|ZrO2(MgO)|ZrO2+ZrSiO4|[Si]Fe|Mo -ZrO2陶瓷為測(cè)量電池在1 500~1 550℃測(cè)量了鐵液中的硅含量,電池電勢(shì)在5~10 s內(nèi)達(dá)到穩(wěn)定并維持20 s以上,探頭可以重復(fù)使用,數(shù)據(jù)重現(xiàn)性好.采用的電解質(zhì)管內(nèi)徑為3.5 mm,外徑5.5 mm,長(zhǎng)35 mm,在管外噴涂ZrO2+ZrSiO4混合漿料,漿料并非完全覆蓋而是以直徑為2~3 mm厚0.5~1.0 mm的斑點(diǎn)形式分散在電解質(zhì)管上,并在1 450 ℃燒結(jié)24 h.Toshiaki Okimura等[42]的研究表明輔助電極涂覆方法對(duì)傳感器的響應(yīng)時(shí)間和測(cè)量精度影響較大.
Gomyo K 等[43]應(yīng)用 ZrO2+ZrSiO4+Na2Si2ZrO7為輔助電極,以ZrO2-MgO作為固體電解質(zhì)對(duì)高爐鐵水中的Si進(jìn)行了實(shí)時(shí)測(cè)量.國(guó)內(nèi)的研究者也對(duì)輔助電極型硅傳感器進(jìn)行了試驗(yàn)研究[44~47].
圖6 生鐵中硅含量化學(xué)分析值與測(cè)量值的關(guān)系[39]Fig.6 Relationship between measured Si content and analyzed Si content in molten pig iron
不銹鋼中的主要合金元素是Cr,只有當(dāng)Cr含量達(dá)到一定值時(shí),鋼才有耐蝕性,因此不銹鋼中一般Cr的質(zhì)量分?jǐn)?shù)均在13%以上.對(duì)于不銹鋼冶煉,當(dāng)精煉至w[C]<0.1% ~0.2%的低碳區(qū),需迅速測(cè)定Cr含量;另外,也需知道還原期渣中(Cr2O3)和鋼中[Cr]的分配比.在 1968年R.J.Fruehan[48]用 ZrO2(CaO)固體電解質(zhì)以 Cr,Cr2O3為參比電極測(cè)定了1 600℃Ni-Cr合金中鉻的活度.T.K.Inouye等[49]用 MgO摩爾分?jǐn)?shù)為9%的ZrO2(MgO)固體電解質(zhì),以Mo,MoO2為參比電極,在1 423~1 573℃溫度范圍內(nèi)測(cè)量了銅液中鉻的活度.關(guān)于鉻傳感器在鐵液中的應(yīng)用,R.J.Fruehan[50]用 Pt|Cr,Cr2O3|ZrO2(CaO)|[Cr]Fe|Pt電池測(cè)定了1 600℃氧飽和的Fe-Cr-O體系的鉻活度.
K.S.Goto等[51]以 ZrO2(MgO)作為固體電解質(zhì),以摩爾分?jǐn)?shù)均為33%的SiO2+Cr2O3+CaO混合物為輔助電極,由SiO2-Cr2O3-CaO三元體系相圖[52]可知,該混合物在1 873 K時(shí)以固態(tài)Cr2O3和液態(tài)的SiO2+Cr2O3+CaO形式存在.測(cè)量原理與硅傳感器類似,由三相界面處的平衡反應(yīng):
可知,- log K=log a[Cr]+3/4log pO2,K 為反應(yīng)平衡常數(shù),測(cè)得電動(dòng)勢(shì)值E即可計(jì)算得到Cr的活度a[Cr].圖7為鉻傳感器電動(dòng)勢(shì)值與鉻含量的關(guān)系圖.
圖7 1 873 K鉻含量與電動(dòng)勢(shì)值的關(guān)系[51]Fig.7 Relationship between chromium content and EMF at 1 873 K
徐秀光等[53]用 ZrO2(MgO)作為固體電解質(zhì),CaSiO3+Cr2O3(摩爾分?jǐn)?shù)為33%)作為輔助電極,組成鉻傳感器探頭,其電池形式為:
輔助電極的制備過(guò)程為先合成CaSiO3,再將CaSiO3與Cr2O3混合,用有機(jī)黏結(jié)劑調(diào)成糊狀均勻涂覆在電解質(zhì)表面,在鐵液溫度范圍內(nèi),固體的Cr2O3與CaSiO3熔體相平衡.在1 753 K測(cè)定了碳飽和鐵液中Cr的活度,探頭在2~3 s即可得到穩(wěn)定的電動(dòng)勢(shì)值,電動(dòng)勢(shì)信號(hào)能持續(xù)穩(wěn)定2 min以上,測(cè)得Cr的活度與Cr的濃度較吻合.
D.Janke[29]等對(duì) Cr傳感器采用塞式結(jié)構(gòu),將輔助電極Cr2O3加黏結(jié)劑涂敷于剛玉管底部的內(nèi)表面制成,分別研究了1 550~1 650℃的Fe-Cr-O體系和1 550℃的Fe-Cr-Ni-O體系Cr與O的關(guān)系,響應(yīng)時(shí)間可達(dá)30 min,但Cr傳感探頭制備工藝復(fù)雜且易損壞.
Katayama I、Matsushima S 和 Kozuka Z 等[54]以 Re|Mn,MnF2|CaF2(單晶)|MnF2,[Mn]In|Re為電池測(cè)定了800~1 100℃Mn-In體系中錳的活度.Teng L 等[55,56]以 Pt|Mn,CaF2,MnF2|CaF2|CaF2,MnF2,[Mn]|Pt為電池分別研究了 940 ~1 127℃Mn-Ni-C-N體系和940~1 240℃Mn-Ni-C合金中的錳活度.錳能略微提高鋼的強(qiáng)度和硬度,并能提高鋼的淬透性、韌性和耐磨性;錳在鋼的凝固溫度范圍內(nèi)生成熔點(diǎn)為1 610℃的MnS,消除鋼中硫的熱脆傾向,改變硫化物的形態(tài)和分布,改善鋼的熱加工性能.在轉(zhuǎn)爐吹煉初期,錳氧化生成MnO可幫助化渣,并減輕初渣中SiO2對(duì)爐襯材料的侵蝕.在煉鋼過(guò)程中,應(yīng)盡量控制錳的氧化,以提高鋼水殘余錳量,發(fā)揮殘錳的作用.段宏偉等[57]以 Mo|Mn(l)|Mn-β-Al2O3|[Mn]Fe|Mo為測(cè)量電池測(cè)定體系溫度更高的碳飽和鐵液(1 643~1 723℃)中的錳活度.K.Schwerdtfeger[58]在 1967 年應(yīng)用電池 Pt|CO,CO2|ThO2(Y2O3)|[Mn]Fe|Pt測(cè)定了1 550 ℃Fe-Mn-O體系的氧活度,并根據(jù)Mn-O平衡計(jì)算得到錳活度.鑒于輔助電極型Si、Cr傳感器的發(fā)展,姜周華[59]等對(duì)以MnO為輔助電極的Mn傳感器在鋼液中的應(yīng)用進(jìn)行了可行性分析,認(rèn)為這種傳感器只適用Fe-Mn-O體系,或硅、鋁、鈦等活潑元素含量極低的鋼液.日本的學(xué)術(shù)振興會(huì)制鋼委員會(huì)[60]采用燒結(jié)和熔射等方法將MnO涂覆在ZrO2(MgO)固體電解質(zhì)管上,傳感器電池形式為:
Mn傳感器探頭響應(yīng)時(shí)間在1 650℃為8 s,探頭插入鋼液的時(shí)間較長(zhǎng)時(shí),輔助電極涂層發(fā)生溶解或脫落.
硫?qū)︿摰男阅軙?huì)造成不良影響,鋼種硫含量高,會(huì)使鋼的熱加工性能變壞,為避免造成鋼的“熱脆”,鋼中硫含量需要嚴(yán)格控制.傳統(tǒng)的測(cè)硫方法有化學(xué)分析法和紅外線定硫法,兩種方法都需要經(jīng)過(guò)取樣、制樣和分析這一繁瑣過(guò)程;應(yīng)用定硫傳感器可以實(shí)時(shí)檢測(cè)硫的變化動(dòng)態(tài),提高操作的科學(xué)性和自動(dòng)化水平.但在鋼鐵冶煉高溫下硫化物固體電解質(zhì)不穩(wěn)定,硫化物復(fù)雜的制備工藝,使定硫探頭的開(kāi)發(fā)研究進(jìn)展遲緩.王舒黎和毛杰[61]應(yīng)用 Mo|Mo,MoS2|ZrS2+MgS|[S]Fe|Mo 硫濃差電池在空氣氣氛下測(cè)定了1 638 K鐵液中的硫含量.劉濤等[62]以TiS2+MgS為固體電解質(zhì),以Mo,MoS2為參比電極,對(duì)1 623 K碳飽和鐵液中的硫含量進(jìn)行測(cè)量.除MgS(ZrS2)和MgS(TiS2)被用作硫傳感器電解質(zhì)外[61~64],CaS(TiS2)[65~67]和 CaS(Y2S3)[68]也被廣泛采用.姜周華[69]以Na-β-Al2O3為固體電解質(zhì),以Na2S為輔助電極測(cè)定了1 500℃鋼液中硫含量.Gozzi D和Granati P[70]應(yīng)用 Ca- β -Al2O3為電解質(zhì)以 CaS為輔助電極測(cè)定了碳飽和鐵液中硫含量.Y.R.Hong等[71]以 La-β-Al2O3為固體電解質(zhì),以La2O2S+La2O3為輔助電極制作硫傳感器,可以測(cè)定w[O]為(2.1~51.5)×10-6范圍內(nèi)鋼液中的硫含量,得出鋼液中硫活度、氧活度和溫度之間的關(guān)系.MgS和CaS在硫分壓較低時(shí)具有離子導(dǎo)電性,在高硫分壓時(shí)具有電子導(dǎo)電,在高溫和高氧分壓下硫化物易氧化,而Na2S輔助電極在高溫下具有較高的蒸氣壓,且易于分解[72].
Tao Liu等[73]用 MgO質(zhì)量分?jǐn)?shù)為2.3%的ZrO2(MgO)為固體電解質(zhì),在1 573 K通入H2S氣體在ZrO2(MgO)的表面合成一層致密的化學(xué)性質(zhì)穩(wěn)定的ZrS2+MgS,反應(yīng)如下:
其電池形式為:
將探頭裝入石英管組裝成硫傳感器,分別測(cè)量了 1 550 K、a[O]< 1.25 × 10-7和 1 600 K、a[O]<2.10 ×10-7不同條件下的碳飽和鐵液中硫的質(zhì)量分?jǐn)?shù).圖8為不同條件下硫含量與電動(dòng)勢(shì)的關(guān)系曲線.
張宗旺等[74]以部分穩(wěn)定的ZrO2(MgO)為固體電解質(zhì),以CaO-CaS為輔助電極制備了硫傳感器,輔助電極以斑點(diǎn)狀燒結(jié)在固體電解質(zhì)管外表面.電池形式為:
參比電極氧分壓反應(yīng):
測(cè)量電極氧分壓反應(yīng):
將硫探頭應(yīng)用于1 300~1 460℃的鐵液中,響應(yīng)時(shí)間為5~7 s,電動(dòng)勢(shì)持續(xù)時(shí)間為30 s左右,數(shù)據(jù)重現(xiàn)性好,測(cè)量精度較高.由于輔助電極中有CaS,該傳感器只適用于氧含量很低的條件,如高爐鐵水和脫氧后的鋼液.
周云等[75,76]用電池:
Mo|Cr,Cr2O3|ZrO2(Y2O3)|Y2O3- Y2O2S|[S]Fe|Mo和電池:
Mo|Cr,Cr2O3|ZrO2(Y2O3)+Y2O2S|[S]Fe|Mo
測(cè)定碳飽和鐵液中的硫含量.ZrO2(Y2O3)固體電解質(zhì)和Y2O2S輔助電極也被楊紅萍等[77]用于鐵液測(cè)硫.
圖8 硫含量與電動(dòng)勢(shì)值的關(guān)系[73]Fig.8 Relationship between EMF and sulfur content
鋼中的磷由高爐煉鐵的原料鐵礦石引入,磷除了在炮彈鋼、耐腐蝕鋼中得到了較好的應(yīng)用外,對(duì)絕大多數(shù)鋼種都是有害元素.磷含量高會(huì)引起鋼的“冷脆”,降低鋼的塑性和沖擊韌性,并使鋼的焊接性能與冷彎性能變差;磷對(duì)鋼的這種影響常隨著氧、氮含量的增高而加劇.磷在連鑄坯或鋼錠中的偏析度僅次于硫,同時(shí)它在鐵固溶體中擴(kuò)散速度又很小,不容易均勻化,因而磷的偏析很難消除,所以脫磷是煉鋼過(guò)程中的重要任務(wù)之一[78].煉鋼過(guò)程中的脫磷反應(yīng)是在金屬液與熔渣界面進(jìn)行,[P]被氧化成(P2O5),并與渣中(CaO)結(jié)合成穩(wěn)定的磷酸鈣(4CaO·P2O5).
在 19 世紀(jì) 60 年代,W.A.Fischer[79]等采用Pt|Pt-P|CaO+4CaO·P2O5|[P]Fe|Pt形式的磷濃差電池測(cè)定了1 650℃鐵熔體中磷的活度.康雪等[80]以4CaO·P2O5為電解質(zhì),以 YP 和 Sn-P合金作為參比電極在氫氣氣氛下對(duì)碳飽和鐵液中的磷活度進(jìn)行了測(cè)定.Iwase M等[81]則采用ZrO2(MgO)為固體電解質(zhì),以Mo,MoO2為參比電極,以Al2O3+AlPO4為輔助電極型制成磷傳感器(如圖9所示),測(cè)定了1 400℃熔融的Fe-C-P合金體系中的磷含量,獲得了磷含量與電池電動(dòng)勢(shì)的關(guān)系如圖10所示.
圖9 輔助電極型磷傳感器[81]Fig.9 Phosphorus sensor with an auxiliary electrode
圖10 磷含量與磷傳感器電動(dòng)勢(shì)值之間的關(guān)系[81]Fig.10 Relationship between phosphorus content and EMF
化學(xué)傳感器是合金生產(chǎn)過(guò)程中提高生產(chǎn)效率和改善產(chǎn)品質(zhì)量的有效工具,氧傳感器的發(fā)展已相當(dāng)成熟,隨著氧傳感器在冶金工業(yè)中的大量應(yīng)用,以氧傳感器為基的輔助電極法測(cè)定熔體中元素活度的化學(xué)傳感器取得了較快發(fā)展.由于金屬熔體、氣相和熔渣相內(nèi)部和相界面化學(xué)反應(yīng)非常復(fù)雜,加之高溫等惡劣的冶金環(huán)境,輔助電極型傳感器的實(shí)際應(yīng)用面臨一定的挑戰(zhàn),錳、鉻和磷傳感器等仍需進(jìn)行大量的實(shí)驗(yàn)研究,而硅和硫傳感器則需要進(jìn)行大量的工業(yè)測(cè)試才能獲得廣泛的商業(yè)應(yīng)用,目前仍有大量工作要做.隨著冶金工業(yè)自動(dòng)化水平的提高和動(dòng)態(tài)控制、人工智能和專家系統(tǒng)的發(fā)展,對(duì)測(cè)量準(zhǔn)確、易于制造和工作時(shí)間長(zhǎng)的成分傳感器的需求,仍然是未來(lái)輔助電極型成分傳感器的發(fā)展方向.
[1] Kiukkola K,Wagner C.Measurements on galvanic cells involving solid electrolytes[J].Journal of the Electrochemical Society,1957,104(6):379-387.
[2] Kiukkola K,Wagner C.Galvanic cells for the determination of the standard molar free energy of formation of metal halides,oxides,and sulfides at elevated temperatures[J].Journal of the Electrochemical Society,1957,104(5):308 -316.
[3] Fray D J.The use of solid electrolytes as sensors for applications in molten metals[J].Solid State Ionics,1996,86-88:1045-1054.
[4]Liu Q.The development of high temperature electrochemical sensors for metallurgical processes[J].Solid State Ionics,1996,86-88:1037-1043.
[5] Weissbart J,Ruka R.Oxygen gauge[J].Review of Scientific Instruments,1961,32(5):593 -595.
[6]Wilder T C.Direct measurement of oxygen content in liquid copper- activity of oxygen in dilute liquid Cu - O alloys[J].Transactions of the Metallurgical Society of AIME,1966,236(7):1035-1040.
[7] Fruehan R J,Martonik L J,Turkdogan E T.Development of a galvanic cell for the determination of oxygen in liquid steel[J].Transactions of the Metallurgical Society of AIME,1969,245(7):1501-1509.
[8] Goto K,Sasabe M,Someno M.Change of chemical potential of oxygen in liquid metalsand liquid oxide phases[J].Transactions of the Metallurgical Society of AIME,1968,245:1757-1959.
[9]Nagata K,Goto K S.New applications of oxygen sensors to ironmaking and steelmaking in Japan[J].Solid State Ionics,1983,9:1249-1256.
[10] Kawakami M,Goto K S,Matsuoka M.A solid electrolyte oxygen sensor for steelmaking slags of the basic oxygen converter[J].Metallurgical Transactions B,1980,11(3):463-469.
[11] Nagata K,Nakanishi K,Sudo F,et al.Measurement of oxygen potential and temperature in liquid slag,metal and gas phase of Q - BOP converter by oxygen concentration cell[J].Tetsu - to-Hagane(J Iron Steel Inst Jpn),1982,68(2):277-283.
[12] Nagata K,Tsuchiya N,Sumito M,et al.Oxygen potentials in liquid pig iron and slag and analysis of reactions in a blast furnace by means of affinities in the reactions[J].Tetsu - to -Hagane(J Iron Steel Inst Jpn),1982,68(15):2271-2278.
[13] Mugita M,Miyashita Y,Kuriyama S,et al.Development of probes for electrochemical measurement of free oxygen content in liquid steel and its application[J].Solid State Ionics,1981,3:589-593.
[14] Okamoto H,Obayashi H,Kudo T.Non-ideal EMF behavior of zirconia oxygen sensors[J].Solid State Ionics,1981,3:453-456.
[15] Nakamura H,Nakajima Y,Moriya T.Indirect estimation of acid-soluble aluminium content in low carbon al-killed steel[J].Solid State Ionics,1981,3:609 -612.
[16] Nagata K,Susa M,Goto K S.Determination of permeability of oxygen through molten sodium sulfate using an oxygen concentration cell with solid electrolyte[J].Solid State Ionics,1981,3:627-630.
[17] Oguchi Y,Suzuki T,Yano S,et al.Controlling deoxidation of ferritic stainless steel melt with aluminum by use of solid electrolyte oxygen concentration cells[J].Solid State Ionics,1981,3:641-644.
[18] Naito K, TsujiT, Watanabe S, etal. Controland measurement of very low oxygen partial pressure with stabilized zirconia cells[J].Solid State Ionics,1981,3:635 -639.
[19] Iwase M,McLean A.Evaluation of electrochemical oxygen probes for use in steelmaking[J].Solid State Ionics,1981,5:571-574.
[20]黃克勤,吳衛(wèi)江,劉慶國(guó).鋼液定氧測(cè)頭參比電極的研究[J].鋼鐵研究,1992,1:18-22.
(Huang Keqin,Wu Weijang,Liu Qingguo.Investigation of reference electrode used in oxygen probe[J].Research on Iron&Steel,1992,1:18 -22.)
[21]黃克勤,夏玉華.用于測(cè)定鋼液低氧含量的雙層固體電解質(zhì)研究[J].硅酸鹽學(xué)報(bào),1994,22(2):195-201.
(Huang Keqin,Xia Yuhua.Investigation on zirconia-based electrolytes with ZrO2(10%Y2O3)coating for low oxygen determination in liquid steel[J].Journal of the Chinese Ceramic Society,1994,22(2):195 -201.)
[22] Janke D.A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts[J].Solid State Ionics,1981,3:599 -604.
[23] Etsell T H,Alcock C B.Non-isothermal probe for continuous measurement of oxygen in steel[J].Solid State Ionics,1981,3:621-626.
[24] Alcock C B,Li B,F(xiàn)ergus J W,et al.New electrochemical sensors for oxygen determination[J].Solid State Ionics,1992,53:39-43.
[25] Ramasesha S K,Jacob K T.Studies on nonisothermal solid state galvanic cells- effect of gradients on EMF[J].Journal of Applied Electrochemistry,1989,19(3):394-400.
[26] Worrell W L,Liu Q.Development of an extended-life oxygen sensor for iron and steel melts[J].Solid State Ionics,1990,40:761-763.
[27] Li F,Zhu Z,Li L.A new way extending working- life of oxygen sensors in melt[J].Solid State Ionics,1994,70:555-558.
[28] Li F,Tang Y,Li L.Distribution of oxygen potential in ZrO2-based solid electrolyte and selection of reference electrode of oxygen sensor[J].Solid State Ionics,1996,86:1027-1031.
[29] Janke D.Recent development of solid ionic sensors to control iron and steel bath composition[J].Solid State Ionics,1990,40:764-769.
[30] Goto K S,Sasabe M,Iguchi Y,et al.Collaborate research activities of sensor sub - committee at JSPS[J].Solid State Ionics,1990,40:758 -760.
[31] Van Wijngaarden M,Dippenaar R J,van den Heever P M.An evaluation ofthe electrochemicaloxygen probesused in steelmaking[J].Journal of the South African Institute of Mining and Metallurgy,1987,87(9):269-278.
[32] Mochizuki M,Matsuoka M,F(xiàn)ujiwara R.Improvement in response of commercialized oxygen sensor[J].Solid State Ionics,1990,40:746-749.
[33] Yamada K,Shinya Y,Tanaka K.Properties of oxygen sensors for steelmaking[J].Solid State Ionics,1981,3:595 - 598.
[34] Lou T J,Kong X H,Huang K Q,et al.Solid reference electrode of metallurgical oxygen sensor[J].Journal of Iron and Steel Research,International,2006,13(5):18 -46.
[35] Ogura T,Matsuoka M,F(xiàn)ujiwara R.Development of silicon sensor for hot metal using thermal electromotive force method[J].Solid State Ionics,1990,40:779 -781.
[36]李光強(qiáng),劉穎.鐵液中Si及Al含量的快速測(cè)定[J].金屬學(xué)報(bào),1999,35(2):203-206.(Li Guangqiang,Liu Ying.Rapid determination of silicon or aluminium contents in liquid iron[J].Acta Metallurgical Sinica,1999,35(2):203 -206.)
[37]盧文躍,田彥文,王常珍,等.硅傳感器測(cè)定碳飽和鐵液中硅活度的研究[J].中國(guó)稀土學(xué)報(bào),2006,24:5-8.
(Lu Wenyue,Tian Yanwen,Wang Changzhen,et al.Study on measurement of silicon activity using silicon sensor in carbon saturated melt[J].Journal of the Chinese Rare Earth Society,2006,24:5-8.)
[38]巖崎克博,妹尾弘已,雀部実.溶融金屬用Siセンサーの開(kāi)発[J],日本金屬學(xué)會(huì)會(huì)報(bào),1988,27(6):474-476.
(Iwasaki K,Saito N,Senoo H.Development of electrochemical sensor for determination of Si content in Molten Metal[J].Bulletin of the Japan Institute of Metals,1988,27(6):474 -476.)
[39] Furuka C,Nagatsuka T,Iwasaki K,et al.Development of an electrochemical sensor for determination of Si contents in molten metal[J].Solid State Ionics,1990,40:776 -778.
[40] Gomyo K,Sakaguchi I,Shin - Ya Y,et al.Electrochemical silicon sensor equipped with auxiliary electrode,ZrO2+ZrSiO4[J].Solid State Ionics,1990,40:773 -775.
[41] Gomyo K,Sakaguchi I,Sin-ya Y,et al.Solid state sensor for silicon in molten metals by zirconia - based electrolyte[J].Solid State Ionics,1994,70:551-554.
[42] Okimura T,F(xiàn)ukui K,Maruhashi S.Development of zirconia electrolyte sensor with auxiliary electrode for the in situ measurement of dissolved silicon in molten iron[J].Sensors and Actuators B:Chemical,1990,1(1):203 -209.
[43] Gomyo K,Sakaguchi I,Shin-ya Y,et al.Laboratory and in-plant tests of a solid-state silicon sensor incorporating a mixture of ZrO2+ZrSiO4+Na2Si2ZrO7as an auxiliary electrode for rapid determination of silicon levels in blast furnace hot metal[J].Iron & steelmaker,1991,18(7):71 -78.
[44]Huang K,Wu W,Liu Q.A new electrochemical sensor for rapid determination of silicon content in carbon saturated iron[J].Solid State Ionics,1992,53:24 -29.
[45]黃艷玲,張千象.鐵水快速定硅測(cè)頭的研制和應(yīng)用[J].北京礦冶研究總院學(xué)報(bào),1994,3(1):67-72.
(HuangYanling, ZhangQianxiang. Developmentand application of a silicon sensor for rapid determination of silicon content in hot metal[J].Journal of BGRIMM,1994,3(1):67 -72.)
[46]黃克勤,吳衛(wèi)江,劉慶國(guó).電化學(xué)法快速測(cè)定鐵水中的硅量[J].北京科技大學(xué)學(xué)報(bào),1993,15(6):643-647.
(HuangKeqin, WuWeijiang, LiuQingguo. A new electrochemical sensor for rapid determination of silicon content in carbon saturated iron[J].Journal of University of Science and Technology Beijing,1993,15(6):643 -647.)
[47]賈成科.用固體電解質(zhì)硅測(cè)頭測(cè)量碳飽和鐵液中的硅含量[J].鋼鐵,1996,31(12):67-71.
(Jia Chengke.Determination of silicon content in carbon saturated iron melt by solid state electrochemical sensor[J].Iron and Steel,1996,31(12):67 -71.)
[48] Fruehan R J.The activity of Cr in liquid Ni- Cr alloys[J].Transactions of the Metallurgical Society of AIME,1968,242(9):2007-2008.
[49] Inouye T K,F(xiàn)ujiwara H,Iwase M.Activities of chromium in molten copperatdiluteconcentrationsbysolid-state electrochemical cell[J].Metallurgical Transactions B,1991,22(4):475-480.
[50] Fruehan R J.Activities in the liquid Fe-Cr-O system[J].Transactions of the metallurgical society of AIME,1969,245(6):1215-1218.
[51] Goto K S,Sasabe M,Iguchi Y,et al.Solid state sensors incorporating auxiliary electrode for rapid determinations of chromium in molten iron[J].Solid State Ionics,1990,40:770-772.
[52] Glasser F P,Osborn E F.Phase equilibrium studies in the system CaO -Cr2O3-SiO2[J].Journal of the American Ceramic Society,1958,41(9):358-367.
[53]徐秀光,王常珍.用鉻傳感器測(cè)定碳飽和鐵液中Cr的活度[J].金屬學(xué)報(bào),1997,33(9):960-963.
(Xu Xiuguang,Wang Changzhen.Application of chromium sensor to measurement of chromium activity in carbon saturated melt[J].Acta Metallurgica Sinica,1997,33(9):960-963.)
[54] Katayama I,Matsushima S,Kozuka Z.Activity measurements of Mn-In alloys by the EMF method with CaF2solid electrolyte[J].Materials Transactions,1991,32(10):943 -946.
[55] Teng L,Aune R,Seetharaman S.Study of Mn activities in Mn- Ni- C alloys by EMF measurements[J].Intermetallics,2003,11(11):1229-1235.
[56] Teng L, Aune R, Seetharaman S. Thermodynamic investigations of the Mn-Ni-C-N quarternary alloys by solid- state galvanic cell technique[J].Journal of Alloys and Compounds,2005,388(2):250 -257.
[57]段宏偉,田彥文,王常珍,等.碳飽和鐵液中錳活度測(cè)定的傳感法研究[J].中國(guó)稀土學(xué)報(bào),2008,26:386-391.
(Duan Hongwei,Tian Yanwen,Wang Changzhen,et al.Study on manganese activity in carbon saturated iron melt by solid electrolyte sensor[J].Journal of the Chinese Rare Earth Society,2008,26:386 -391.)
[58] Schwerdtfeger K.Measurement of oxygen activity in iron,iron-silicon,manganese,and iron-manganese melts using solid electrolyte galvanic cells[J].Transactions of the Metallurgical Society of AIME,1967,239:1276-1281.
[59]姜周華.輔助電極型成分傳感器工作原理及適用條件[J].鋼鐵研究學(xué)報(bào),1995,7(6):61-68.
(Jiang Zhouhua.Principle and working conditionsof electrochemical sensors with auxiliary electrode[J].Journal of Iron and Steel Research,1995,7(6):61 -68.)
[60]製鋼センサ小委員會(huì)報(bào)告,製鋼用センサの新しぃ展開(kāi)—固體電解質(zhì)センサを中心として,日本學(xué)術(shù)振興會(huì)第19委員會(huì)製鋼センサ小委員會(huì),平成元年5月4.149-153.
[61]王舒黎,毛杰.MgS+ZrS2固體電解質(zhì)定硫探頭的開(kāi)發(fā)[J].東北工學(xué)院學(xué)報(bào),1991,12(3):221-225.
(Wang Shuli,Mao Jie.A sulphur sensor newly developed using MgS+ZrS2solid electrolyte[J].Journal of Northeast University of Technology,1991,12(3):221-225.)
[62]劉濤,于景坤,陳敏.MgS+TiS2固體電解質(zhì)定硫探頭的研制[J].東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,26(4):268-270.
(Liu Tao,Yu Jingkun,Chen Min.Development of sulphur sensor using MgS+TiS2solid electrolyte[J].Journal of Northeastern University(Natural Science),2005,26(4):268-270.)
[63]于景坤,劉濤,陳敏.MgS+1.5%ZrS2固體電解質(zhì)硫濃差電池的實(shí)驗(yàn)研究[J].金屬學(xué)報(bào),2005,41(12):1285-1288.
(Yu Jingkun,Liu Tao,Chen Min.Experimental research on sulphur concentration cell with MgS+1.5%ZrS2solid electrolyte.Acta Metallurgica Sinica,2005,41(12):1285-1288.)
[64] Haiou H,Shuli W.An investigation of sulfur determination in liquid iron using sulfur sensors with MgS-based solid electrolytes[J].Solid State Ionics,1992,51(3):157 -160.
[65]古隆建,唐仲和.用CaS(TiS2)固體電解質(zhì)硫濃差電池測(cè)定鐵液中硫活度的實(shí)驗(yàn)研究[J].鋼鐵,1984,19(5):13-19.
(Gu Longjian,Tang Zhonghe.Study on determination of sulphuractivities in liquid iron by means ofsulphur concentration cell with solid electrolyte CaS(TiS2)[J].Iron and Steel,1984,19(5):13 -19.)
[66] Egami A,Onoye T,Narita K.Solid electrolyte for the determination of sulfur in liquid iron[J].Solid State Ionics,1981,3:617-620.
[67] Egami A,Narita K,Onoye T.Method and probe for the rapid determination of sulfur level[P].US Patent 4406754.1983 -9-27.
[68] Ono K,Moriyama J.Rapid electrochemical determination of dissolved sulphurinliquidcopperbysolid-sulphide electrolytes[J].Solid State Ionics,1981,2(2):127 - 130.
[69]姜周華.Na-β-Al2O3基電化學(xué)探頭測(cè)定鐵液中的硫含量[J].東北工學(xué)院學(xué)報(bào),1991,12(3):241-246.
(Jiang Zhouhua.Determining sulphur content in liquid iron by Na- β - Al2O3base electrochemical cell[J].Journal of Northeast University of Technology,1991,12(3):241-246.)
[70] Gozzi D,Granati P.Sulfur determination in carbon-saturated iron by solid - state electrochemical sensor[J].Metallurgical and Materials Transactions B,1994,25(4):561-568.
[71] Hong Y R,Jin C J,Li L S,et al.An application of the electrochemical sulfur sensor in steelmaking[J].Sensors and Actuators B:Chemical,2002,87(1):13 -17.
[72]姜周華.定硫電化學(xué)傳感器可行性的理論分析和實(shí)驗(yàn)探索[J].鋼鐵研究學(xué)報(bào),1994,6(3):73-80.
(JiangZhouhua.Theoreticalanalysesand experimental researches of possibility of sulphur electrochemical sensors[J].Journal of Iron and Steel Research,1994 ,6(3):73 -80.)
[73] Liu T,Li L,Yu J.An electrochemical sulfur sensor based on ZrO2(MgO)as solid electrolyte and ZrS2+MgS as auxiliary electrode[J].Sensors and Actuators B:Chemical,2009,139(2):501-504.
[74]張宗旺,馮根生,張建良,等.鐵水快速定硫探頭的研制[J].鋼鐵,2000,35(7):57-61.
(Zhang Zhongwang,F(xiàn)eng Gensheng,Zhang Jianliang,et al.Development of sulfur sensor for quick analysis of hot metal[J].Iron and Steel(China),2000,35(7):57 -61.)
[75]周云,宋希文,趙文廣,等.硫氧化釔(Y2O2S)的制備及其在鐵基溶液中的熱力學(xué)[J].包頭鋼鐵學(xué)院學(xué)報(bào),1999,18(3):222-226.
(Zhou Yun,Song Xiwen,Zhao Wenguang,et al.Preparation of yttrium oxide sulfide and its thermodynamics in iron-based solution[J].Journal of Baotou University of Iron and Steel Technology,1999,18(3):222 -226.)
[76]周云,安勝利,董元篪.固體電解質(zhì)化學(xué)定硫傳感器的實(shí)驗(yàn)研究[J].包頭鋼鐵學(xué)院學(xué)報(bào),2002,21(3):273-276.
(Zhou Yun,An Shenli,Dong Yuanchi.Experimental study on determining sulfur sensors for the sulfur content[J].Journal of Baotou University of Iron and Steel Technology,2002,21(3):273 -276.)
[77]楊紅萍,趙文廣,宋希文,等.鐵液電化學(xué)定硫傳感器熱力學(xué)分析[J].包頭鋼鐵學(xué)院學(xué)報(bào),2001,2:118-121.
(Yang Hongping,Zhao Wenguang,Song Xiwen,et al.Thermodynamics of electrochemical sulfur sensors for liquid metal[J].Journal of Baotou University of Iron and Steel Technology,2001,2:118 -121.)
[78]朱苗勇.現(xiàn)代冶金學(xué):鋼鐵冶金卷[M].北京:冶金工業(yè)出版社,2005:149.
(Zhu Miaoyong. Modern Metallurgy[M]. Beijing:Metallurgical Industry Press,2005:149.)
[79]Fischer W A,Janke D.冶金電化學(xué)[M].沈陽(yáng):東北工學(xué)院出版社,1991:476-477.
(Fischer W A,Janke D.Metallurgical Electrochemistry[M].Shenyang:Northeastern University Press,1991:476-477.)
[80]康雪,王常珍,田彥文,等.碳飽和鐵液中磷的傳感法研究[J].中國(guó)稀土學(xué)報(bào),2006,24:381-385.
(Kang Xue,Wang Changzhen,Tian Yanwen,et al.Study on phosphorus sensor of carbon saturated iron melts[J].Journal of the Chinese Rare Earth Society,2006,24:381 -385.)
[81] Iwase M,McLean A,Katogi K,et al.Rapid sensors for ferroalloy production and processing[C] //Tenth International Ferroalloys Congress,Cape Town,South Africa,2004:635-647.