• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多階段均值—半方差模糊投資組合決策研究

    2014-11-27 22:07張鵬張衛(wèi)國、
    關(guān)鍵詞:交易成本均值

    張鵬++張衛(wèi)國、

    摘要: 考慮交易成本、借款限制、閥值約束和基數(shù)約束,提出多階段均值—半方差模糊投資組合模型。在該模型中,收益水平被定義為可能的平均回報,風(fēng)險水平被定義為回報的半方差。由于交易成本和基數(shù)約束,多階段投資組合模型為具有路徑依賴性的混合整數(shù)動態(tài)優(yōu)化問題。文章提出了前向動態(tài)規(guī)劃方法求解。最后,以一個具體的算例比較了不同的基數(shù)約束投資組合的最優(yōu)投資策略。

    關(guān)鍵詞:多階段模糊投資組合;均值—半方差;基數(shù)約束;交易成本;前向動態(tài)規(guī)劃方法

    中圖分類號:F83248文獻(xiàn)標(biāo)志碼:A文章編號:1009-055X(2014)05-0021-09

    一、 引言

    Markowitz[1]提出的單階段均值—方差投資組合理論為現(xiàn)代投資組合的發(fā)展奠定了基礎(chǔ)。雖然方差在投資組合決策中得到了廣泛的應(yīng)用,但其也有一些局限性[2, 3]。例如,在均值—方差模型中,同時去掉了高收益和低收益,而高收益正是投資者希望的。由于方差度量風(fēng)險消除高低收益,犧牲了投資者獲取高回報的可能。同時文獻(xiàn)[4, 5]研究發(fā)現(xiàn)許多證券回報都是不對稱分布的。為了克服均值—方差模型的這些局限性,人們運用下偏矩度量風(fēng)險,這種方法只測量收益水平的下偏差,而半方差[2]則是最常用的下偏矩度量風(fēng)險方法。

    為了使Markowitz的模型更符合實際,人們在投資組合中限制資產(chǎn)的數(shù)量(基數(shù)約束)并規(guī)定了每個資產(chǎn)投資比例的上下限(閥值)。在過去幾十年里Markowitz 基數(shù)約束模型被廣泛地研究,尤其是從計算角度,如Anagnostopoulos 和 Mamanis [6]; Bertsimas 和 Shioda [7]; Fernández和Gómez [8]; Li 等 [9]; RuizTorrubiano 和 Suarez [10]; WoodsideOriakhi等[11]; Cesarone等[12]; Murray 和 Shek [13]; Cui 等 [14]; Le Thi 等 [15,16]; Deng 等[17]; Soleimani 等[18]; Sun等[19].這些研究分析了LAM (Limited Asset Markowitz)模型的計算復(fù)雜性,經(jīng)典的Markowitz模型為凸二次規(guī)劃模型,而LAM模型為0-1混合整數(shù)二次規(guī)劃問題 (MIQP),該模型為NPhard 問題(見Bienstock [20]; Shaw [21] 的例子)。

    以上模型假設(shè)投資為單階段,但在現(xiàn)實生活中投資者可以在不同時段內(nèi)重新分配自己的資產(chǎn),所以投資決策應(yīng)該是多階段的。許多學(xué)者將單階段的投資組合拓展到多階段。Mossin [22]運用動態(tài)方法求出多階段投資組合的最優(yōu)投資策略。Hakansson [23] 分析了多階段均值-方差投資組合有效前沿。Li,Chan和Ng [24] 用嵌入的方法把多階段均值-安全首要投資組合模型轉(zhuǎn)變?yōu)橐粋€能用動態(tài)規(guī)劃處理的問題,從而得到了最優(yōu)投資策略及有效前沿的解析表達(dá)式。 使用同樣的方法,Li和Ng [25] 研究了多階段均值-方差投資組合模型,并得到了其有效前沿。Calafiore [26]考慮了具有金融資產(chǎn)分配序貫決策問題,并提出了具有線性控制的多階段投資組合模型。 Zhu等[27] 提出了具有破產(chǎn)控制的多階段均值-方差投資組合模型。Wei和Ye [28] 在隨機(jī)市場情況下提出了具有破產(chǎn)控制的多階段均值-方差投資組合模型。Güplnar和Rustem [29] 在隨機(jī)情景樹框架下構(gòu)建多階段均值-方差投資組合模型。Yu等 [30] 提出了具有破產(chǎn)控制的多階段均值-絕對偏差投資組合模型。likyurt和zekici[31]在隨機(jī)市場情況下提出了幾種多階段均值-方差投資組合模型。Yan和Li [32]和Yan等[33]用半方差代替方差,提出了多階段均值—半方差投資組合模型。Plnar [34] 使用下方風(fēng)險度量方法研究多階段投資組合模型??紤]到線性的交易成本和投資組合的多樣性及其偏度,Zhang等 [35,36] 和 Liu等 [37,38]分別提出了幾種模糊多階段投資組合模型,并分別運用遺傳算法、混合智能算法和微分進(jìn)化算法求解。

    在實際投資過程中有許多非概率因素影響投資,因此,風(fēng)險資產(chǎn)的收益為模糊不確定。近來,許多學(xué)者研究了模糊投資組合。Watada[39]和León等[40] 使用模糊決策理論研究投資組合。Tanaka和Guo [41, 42]分別提出了模糊概率和指數(shù)可能性兩種投資組合模型。Inuiguchi和Tanino [43]使用模糊規(guī)劃方法研究了極小極大后悔投資組合模型。Wang和Zhu [44], Lai等[45] and Giove等[46] 構(gòu)建了區(qū)間規(guī)劃投資組合模型。Zhang和Nie [47] ,Zhang等[48] 假設(shè)期望收益和風(fēng)險具有可容許誤差,提出了的可容許有效投資組合,并得到不允許賣空情況下模型的有效前沿。Dubois和Prade [49]定義了模糊數(shù)的區(qū)間期望,認(rèn)為它們是確定的隨機(jī)集合,也提出模糊數(shù)的期望滿足可加性。Carlsson和Fullér [50] 提出了模糊數(shù)的上下可能性均值的一些性質(zhì)。Huang [51, 52, 53] 提出了均值-方差、均值-半方差和均值-風(fēng)險曲線的模糊投資組合模型。Zhang 等[54], Zhang [55], Zhang和Xiao [56] 提出了上下可能性均值和方差投資組合模型。Li等[57, 58]提出了均值-方差和均值-方差-偏度模糊投資組合模型。Carlsson等[59] 假設(shè)收益為梯形模糊數(shù),提出了具有最高效用的模糊投資組合模型。

    雖然模糊過程分析法在單階段模糊投資組合已有較多應(yīng)用,但很少有文章將這一方法運用于多階段模糊投資組合中??紤]交易成本、閥值約束和基數(shù)約束,本文提出了一個具有風(fēng)險控制的多階段模糊投資組合模型,該模型為具有路徑依賴性的混合整數(shù)動態(tài)優(yōu)化問題,并提出了前向動態(tài)規(guī)劃方法求解。華 南 理 工 大 學(xué) 學(xué) 報(社 會 科 學(xué) 版)

    第5期張鵬 等:多階段均值—半方差模糊投資組合決策研究

    二、 可能性均值和方差

    從表1和表2可得:當(dāng)投資組合所含資產(chǎn)的數(shù)量增大時,其終期財富也增大。

    六、結(jié)論

    本文討論了模糊環(huán)境下的多階段投資組合問題,在該模型中收益、風(fēng)險資產(chǎn)的風(fēng)險均為梯形模糊變量。運用模糊分析方法處理不精確數(shù)據(jù),提出多階段模糊投資組合最優(yōu)化模型。由于該模型為模糊規(guī)劃問題,所以運用模糊決策方法將其轉(zhuǎn)化為顯示模型。多階段投資組合模型為具有路徑依賴性的混合整數(shù)動態(tài)最優(yōu)化問題。提出前向動態(tài)規(guī)劃方法求出模型的最優(yōu)投資策略。通過實證研究驗證了模型和算法的有效性。

    參考文獻(xiàn):

    [1]H Markowitz, Portfolio selection [J], Journal of Finance 7 (1952)77-91.

    [2]H. Markowitz, Portfolio Selection: Efficient Diversification of Investments [M], Wiley, New York, 1959.

    [3]H. Grootveld, W. Hallerbach, Variance vs downside risk: is there really that much difference? [J], European Journal of Operational Research 114 (1999)304–319.

    [4]E. Fama, Portfolio analysis in a stable paretian market [J], Management Science 11 (1965)404–419.

    [5]M. Simkowitz, W. Beedles, Diversification in a three moment world [J], J. Financial and Quantitative Anal. 13 (1978)927–941.

    [6]K. P. Anagnostopoulos, G. Mamanis, The meanvariance cardinality constrained portfolio optimization problem: an experimental evaluation of five multiobjective evolutionary algorithms [J], Expert Systems with Applications 38 (2011)14208–14217.

    [7]D. Bertsimas, R. Shioda, Algorithms for cardinalityconstrained quadratic optimization [J], Computational Optimization and Applications 43 (2009)1–22.

    [8]A. Fernández, S. Gómez, Portfolio selection using neural networks [J], Computers & Operations Research 34 (2007)1177–1191.

    [9]D. Li, X. Sun, J. Wang, Optimal lot solution to cardinality constrained meanvariance formulation for portfolio selection [J], Mathematical Finance 16 (2006)83–101.

    [10]R. RuizTorrubiano, A. Suarez, Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constrains [J], IEEE Computational Intelligence Magazine 5 (2010)92–107.

    [11]M. WoodsideOriakhi, C. Lucas, J. E. Beasley, Heuristic algorithms for the cardinality constrained efficient frontier [J], European Journal of Operational Research 213 (2011)538–550.

    [12]F. Cesarone, A. Scozzari, F. Tardella, A new method for meanvariance portfolio optimization with cardinality constraints [J], Ann Oper Res 205 (2013)213–234.

    [13]W. Murray, H. Shek, A local relaxation method for the cardinality constrained portfolio optimization problem [J], Comput Optim Appl 53 (2012)681–709.

    [14]X. T. Cui,X. J. Zheng, S. S. Zhu, X. L. Sun, Convex relaxations and MIQCQP reformulations for a class of cardinalityconstrained portfolio selection problems [J], J Glob Optim 56 (2013)1409–1423.

    [15]H. A. Le Thi, M. Moeini, T. P. Dinh, Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA [J], Comput Manag Sci 6 (2009)459–475.

    [16]H. A. Le Thi, M. Moeini, LongShort Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm [J], J Optim Theory Appl. DOI 10.1007/ s10957 012 -0197-0.

    [17]G.F. Deng, W. T. Lin, C. C. Lo, Markowitzbased portfolio selection with cardinality constraints using improved particle swarm optimization[J], Expert Systems with Applications 39 (2012)4558–4566.

    [18]H. Soleimani ,H. R.Golmakani,M.H. Salimi, Markowitzbased portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm [J], Expert Systems with Applications 36 (2009)5058–5063.

    [19]X.L. Sun, X.J. Zheng, D. Li, Recent Advances in Mathematical Programming with Semicontinuous Variables and Cardinality Constraint [J], JORC 1 (2013)55–77.

    [20]D. Bienstock, Computational study of a family of mixedinteger quadratic programming problems [J], Mathematical Programming 74 (1996)121–140.

    [21]D. X. Shaw, S. Liu, L. Kopman, Lagrangian relaxation procedure for cardinality constrained portfolio optimization [J], Optimization Methods & Software 23 (2008)411–420

    [22]J. Mossion, Optimal multiperiod portfolio policies [J], Journal of Business 41 (1968)215–229.

    [23]N.H. Hakansson, Multiperiod meanvariance analysis: toward a general theory of portfolio choice [J], Journal of Finance 26 (1971)857–884.

    [24]D. Li, T. F. Chan, W. L. Ng, Safetyfirst dynamic portfolio selection [J], Dynamics of Continuous, Discrete and Impulsive, Systems Series B: Applications and Algorithms 4 (1998)585–600.

    [25]D. Li, W. L. Ng, Optimal dynamic portfolio selection: multiperiod mean–variance formulation [J], Mathematical Finance 10 (2000)387–406.

    [26]G. C. Calafiore,Multiperiod portfolio optimization with linear control policies [J], Automatica 44 (2008)2463–2473.

    [27]S. S. Zhu, D. Li, S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: a generalized mean–variance formulation [J], IEEE Transactions on Automatic Control49 (2004)447–457.

    [28]S. Z. Wei, Z. X. Ye, Multiperiod optimization portfolio with bankruptcy control in stochastic market [J], Applied Mathematics and Computation 186(1)(2007)414–425.

    [29]N. Güp?nar, B. Rustem, Worstcase robust decisions for multiperiod mean–variance portfolio optimization [J], European Journal of Operational Research 183(3)( 2007)981–1000.

    [30]M. Yu, S. Takahashi, H. Inoue, S. Y. Wang, Dynamic portfolio optimization with risk control for absolute deviation model [J], European Journal of Operational Research 201(2)(2010)349 –364.

    [31]U. ?likyurt, S. ?ekici, Multiperiod portfolio optimization models in stochastic markets using the mean–variance approach [J], European Journal of Operational Research 179(1)(2007)186– 202.

    [32]W. Yan, S.R. Li, A class of multiperiod semivariance portfolio selection with a fourfactor futures price model [J], Journal of Applied Mathematics and Computing 29 (2009)19–34.

    [33]W. Yan, R. Miao, S.R. Li, Multiperiod semivariance portfolio selection: Model and numerical solution [J], Applied Mathematics and Computation 194 (2007)128–134.

    [34]M. ?. P?nar, Robust scenario optimization based on downsiderisk measure for multiperiod portfolio selection [J], OR Spectrum 29 (2007)295–309.

    [35]WeiGuo Zhang, YongJun Liu, WeiJun Xu, A possibilistic meansemivarianceentropy model for multiperiod portfolio selection with transaction costs [J], European Journal of Operational Research 222 (2012)41–349.

    [36]WeiGuo Zhang, YongJun Liu , WeiJun Xu, A new fuzzy programming approach for multiperiod portfolio Optimization with return demand and risk control, Fuzzy Sets and Systems,2013, http:// dx.doi.org/ 10.1016/j.fss.2013.09.002

    [37]YongJun Liu,WeiGuo Zhang, WeiJun Xu, Fuzzy multiperiod portfolio selection optimization models using multiple criteria [J],Automatica 48(2012)3042–3053.

    [38]YongJun Liu,WeiGuo Zhang, Pu Zhang,A multiperiod portfolio selection optimization model by using interval analysis [J], Economic Modelling 33 (2013)113–119.

    [39]J. Watada, Fuzzy portfolio selection and its applications to decision making [J], Tatra Mountains Mathematical Publication 13(1997)219248.

    [40]T. León, V. Liem, E. Vercher, Viability of infeasible portfolio selection problems: A fuzzy approach [J], European Journal of Operational Research 139 (2002)178–189.

    [41]H. Tanaka, P. Guo, Portfolio selection based on upper and lower exponential possibility distributions [J], European Journal of Operational research 114 (1999)115-126.

    [42]H. Tanaka, P. Guo, I.B. Türksen, Portfolio selection based on fuzzy probabilities and possibility distributions [J], Fuzzy Sets and Systems 111(2000)387–397.

    [43]M. Inuiguchi, T. Tanino, Portfolio selection under independent possibilistic information [J], Fuzzy Sets and Systems 115 (2000)83–92.

    [44]S.Y. Wang, S.S. Zhu, On fuzzy portfolio selection problems [J], Fuzzy optimization and Decision Marking 1 (2002)361-377.

    [45]K.K. Lai, S.Y. Wang, et al., A class of linear interval programming problems and its application to portfolio selection [J], IEEE Transactions on Fuzzy Systems 10 (2002)698–704.

    [46]S. Giove, S. Funari, C. Nardelli, An interval portfolio selection problems based on regret function [J], European Journal of Operational Research 170 (2006)253–264.

    [47]W.G. Zhang, Z.K. Nie, On admissible efficient portfolio selection problem [J], Applied Mathematics and Computation 159 (2004)357–371.

    [48]W.G. Zhang, W.A. Liu, Y.L. Wang, On admissible efficient portfolio selection: models and algorithms [J], Applied Mathematics and Computation 176 (2006)208–218.

    [49]D. Dubois, H. Prade, Possibility Theory, Plenum Perss, New York, 1988.

    [50]C. Carlsson, R. Fullér, On possibilistic mean value and variance of fuzzy numbers [J], Fuzzy Sets and Systems 122 (2001)315–326.

    [51]X. Huang, Meanvariance model for fuzzy capital budgeting [J], Computers & Industrial Engineering 55 (2008)34-47.

    [52]X. Huang, MeanSemivariance models for fuzzy portfolio selection, Journal of Computational and Applied Mathematics 217(2008)1 - 8

    [53]X. Huang, Risk Curve and Fuzzy Portfolio Selection [J], Computers and Mathematics with Applications 55(2008)11021112.

    [54]W.G. Zhang, Y.L. Wang, Z.P. Chen, Z.K. Nie, Possibilistic mean–variance models and efficient frontiers for portfolio selection problem [J], Information Sciences 177 (2007)2787– 2801.

    [55]W.G. Zhang, Possibilistic mean–standard deviation models to portfolio selection for bounded assets [J], Applied Mathematics and Computation 189 (2007)1614–1623.

    [56]W.G. Zhang, X. L. Zhang, W.L. Xiao, Portfolio selection under possibilistic mean–variance utility and a SMO algorithm [J], European Journal of Operational Research 197 (2009)693–700.

    [57]X. Li etc, A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns [J], Journal of Computational and Applied Mathematics 233(2009)264-278.

    [58]X. Li, Z. Qin, S. Kar, Meanvarianceskewness model for portfolio selection with fuzzy returns [J] , European Journal of operational Research 202 (2010)239-247.

    [59]C. Carlsson, R. Fulle′r, P. Majlender, A possibilistic approach to selecting portfolios with highest utility score [J], Fuzzy Sets and Systems131 (2002)13–21.

    [60]A.Saeidifar, E. Pasha, The possibilistic moments of fuzzy numbers and their applications[J], Journal of Computational and Applied Mathematics 2 (2009)1028–1042.

    [61]Xue Deng, Rongjun Li, A portfolio selection model with borrowing constraint based on possibility theory [J], Applied Soft Computing 12 (2012)754–758.

    [62]S.J. Sadjadi, S.M. Seyedhosseini, Kh. Hassanlou, Fuzzy multi period portfolio selection with different rates for borrowing and Lending [J], Applied Soft Computing 11 (2011)3821–3826.

    [63]R.D.Arnott, W.H.Wagner, The measurement and control of trading costs [J], Financial Analysts Journal 6 (1990)73–80.

    [64]A. Yoshimoto, The mean–variance approach to portfolio optimization subject to transaction costs [J], Journal of the Operational Research Society of Japan 39 (1996)99–117.

    [65]D. Bertsimas, D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs [J], Computers and Operations Research 35(2008)3–17.

    [66]N.Gulp?nar, B. Rustem, R. Settergren, Multistage stochastic meanvariance portfolio analysis with transaction cost [J], Innovations, in Financial and Economic Networks 3(2003)46–63.

    [67]E. Vercher, J. Bermudez, J. Segura, Fuzzy portfolio optimization under downside risk measures [J], Fuzzy Sets and Systems 158 (2007)769-782.

    The Possibilistic Multiperiod Meansemivariance Portfolio Selection

    ZZHENG Peng1,ZHANG Weiguo2

    (1.School of Management, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.

    2.School of Business Administration, South China University of Technology, Guangzhou 510641, Guangdong, China)

    Abstract: This paper discusses a multiperiod portfolio selection problem in fuzzy environment. A possibilistic mean semivariance model for multiperiod portfolio selection is presented by taking into account the transaction costs, borrowing constraints, threshold constraints and cardinality constraints. In the proposed model, the return level is quantified by the possibilistic mean of return, and the risk level is characterized by the possibilistic semivariance of return. Because of the transaction costs and cardinality constraints, the multiperiod portfolio selection is the mix integer dynamic optimization problem with path dependence. Furthermore, the forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, the comparison analysis of the different cardinality constraints is provided by a numerical example to illustrate the efficiency of the proposed approaches and the designed algorithm.

    Keywords:multiperiod fuzzy portfolio selection; mean semivariance; cardinality constraint; transaction costs; the forward dynamic programming method

    (責(zé)任編輯:余樹華)

    [60]A.Saeidifar, E. Pasha, The possibilistic moments of fuzzy numbers and their applications[J], Journal of Computational and Applied Mathematics 2 (2009)1028–1042.

    [61]Xue Deng, Rongjun Li, A portfolio selection model with borrowing constraint based on possibility theory [J], Applied Soft Computing 12 (2012)754–758.

    [62]S.J. Sadjadi, S.M. Seyedhosseini, Kh. Hassanlou, Fuzzy multi period portfolio selection with different rates for borrowing and Lending [J], Applied Soft Computing 11 (2011)3821–3826.

    [63]R.D.Arnott, W.H.Wagner, The measurement and control of trading costs [J], Financial Analysts Journal 6 (1990)73–80.

    [64]A. Yoshimoto, The mean–variance approach to portfolio optimization subject to transaction costs [J], Journal of the Operational Research Society of Japan 39 (1996)99–117.

    [65]D. Bertsimas, D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs [J], Computers and Operations Research 35(2008)3–17.

    [66]N.Gulp?nar, B. Rustem, R. Settergren, Multistage stochastic meanvariance portfolio analysis with transaction cost [J], Innovations, in Financial and Economic Networks 3(2003)46–63.

    [67]E. Vercher, J. Bermudez, J. Segura, Fuzzy portfolio optimization under downside risk measures [J], Fuzzy Sets and Systems 158 (2007)769-782.

    The Possibilistic Multiperiod Meansemivariance Portfolio Selection

    ZZHENG Peng1,ZHANG Weiguo2

    (1.School of Management, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.

    2.School of Business Administration, South China University of Technology, Guangzhou 510641, Guangdong, China)

    Abstract: This paper discusses a multiperiod portfolio selection problem in fuzzy environment. A possibilistic mean semivariance model for multiperiod portfolio selection is presented by taking into account the transaction costs, borrowing constraints, threshold constraints and cardinality constraints. In the proposed model, the return level is quantified by the possibilistic mean of return, and the risk level is characterized by the possibilistic semivariance of return. Because of the transaction costs and cardinality constraints, the multiperiod portfolio selection is the mix integer dynamic optimization problem with path dependence. Furthermore, the forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, the comparison analysis of the different cardinality constraints is provided by a numerical example to illustrate the efficiency of the proposed approaches and the designed algorithm.

    Keywords:multiperiod fuzzy portfolio selection; mean semivariance; cardinality constraint; transaction costs; the forward dynamic programming method

    (責(zé)任編輯:余樹華)

    [60]A.Saeidifar, E. Pasha, The possibilistic moments of fuzzy numbers and their applications[J], Journal of Computational and Applied Mathematics 2 (2009)1028–1042.

    [61]Xue Deng, Rongjun Li, A portfolio selection model with borrowing constraint based on possibility theory [J], Applied Soft Computing 12 (2012)754–758.

    [62]S.J. Sadjadi, S.M. Seyedhosseini, Kh. Hassanlou, Fuzzy multi period portfolio selection with different rates for borrowing and Lending [J], Applied Soft Computing 11 (2011)3821–3826.

    [63]R.D.Arnott, W.H.Wagner, The measurement and control of trading costs [J], Financial Analysts Journal 6 (1990)73–80.

    [64]A. Yoshimoto, The mean–variance approach to portfolio optimization subject to transaction costs [J], Journal of the Operational Research Society of Japan 39 (1996)99–117.

    [65]D. Bertsimas, D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs [J], Computers and Operations Research 35(2008)3–17.

    [66]N.Gulp?nar, B. Rustem, R. Settergren, Multistage stochastic meanvariance portfolio analysis with transaction cost [J], Innovations, in Financial and Economic Networks 3(2003)46–63.

    [67]E. Vercher, J. Bermudez, J. Segura, Fuzzy portfolio optimization under downside risk measures [J], Fuzzy Sets and Systems 158 (2007)769-782.

    The Possibilistic Multiperiod Meansemivariance Portfolio Selection

    ZZHENG Peng1,ZHANG Weiguo2

    (1.School of Management, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.

    2.School of Business Administration, South China University of Technology, Guangzhou 510641, Guangdong, China)

    Abstract: This paper discusses a multiperiod portfolio selection problem in fuzzy environment. A possibilistic mean semivariance model for multiperiod portfolio selection is presented by taking into account the transaction costs, borrowing constraints, threshold constraints and cardinality constraints. In the proposed model, the return level is quantified by the possibilistic mean of return, and the risk level is characterized by the possibilistic semivariance of return. Because of the transaction costs and cardinality constraints, the multiperiod portfolio selection is the mix integer dynamic optimization problem with path dependence. Furthermore, the forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, the comparison analysis of the different cardinality constraints is provided by a numerical example to illustrate the efficiency of the proposed approaches and the designed algorithm.

    Keywords:multiperiod fuzzy portfolio selection; mean semivariance; cardinality constraint; transaction costs; the forward dynamic programming method

    (責(zé)任編輯:余樹華)

    猜你喜歡
    交易成本均值
    具有交易成本的證券投資組合策略的選擇
    具有交易成本的證券投資組合策略的選擇
    交易成本對西藏青稞種植農(nóng)戶縱向協(xié)作選擇行為的影響
    試論工程采購合同談判中的交易成本
    均值不等式失效時的解決方法
    均值與方差在生活中的應(yīng)用
    交易成本的視角:大數(shù)據(jù)時代政府治理成本的控制
    關(guān)于均值有界變差函數(shù)的重要不等式
    光滑Weyl和的分?jǐn)?shù)冪均值的數(shù)值上界(Ⅱ)
    對偶均值積分的Marcus-Lopes不等式
    久久国产乱子伦精品免费另类| 熟女少妇亚洲综合色aaa.| 精品熟女少妇八av免费久了| 麻豆av在线久日| 18美女黄网站色大片免费观看| 黄片大片在线免费观看| 69av精品久久久久久| 亚洲精华国产精华精| 国产一区二区三区综合在线观看| 欧美激情久久久久久爽电影 | 琪琪午夜伦伦电影理论片6080| 黑人猛操日本美女一级片| av网站免费在线观看视频| 亚洲片人在线观看| 欧美日韩瑟瑟在线播放| 日本三级黄在线观看| a在线观看视频网站| 黄色女人牲交| 少妇熟女aⅴ在线视频| 黄色视频,在线免费观看| or卡值多少钱| 嫩草影院入口| 亚洲成a人片在线一区二区| 九色国产91popny在线| 国产午夜精品论理片| 熟女电影av网| 自拍偷自拍亚洲精品老妇| 国产精品一及| 观看美女的网站| 在线观看午夜福利视频| 熟女人妻精品中文字幕| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久久免费视频| 精品一区二区三区av网在线观看| 国产色婷婷99| 91在线观看av| 亚洲专区国产一区二区| 久久久久亚洲av毛片大全| 国产免费av片在线观看野外av| 香蕉av资源在线| 免费高清视频大片| 国产在线男女| 午夜精品久久久久久毛片777| 嫩草影院入口| 亚洲成av人片免费观看| 桃红色精品国产亚洲av| ponron亚洲| 久久精品久久久久久噜噜老黄 | 国产一区二区三区在线臀色熟女| 99久久无色码亚洲精品果冻| 丝袜美腿在线中文| 久久九九热精品免费| 老司机午夜福利在线观看视频| 男人舔奶头视频| 夜夜看夜夜爽夜夜摸| 嫩草影视91久久| 国产精品不卡视频一区二区 | 男女床上黄色一级片免费看| 欧美黑人欧美精品刺激| 中文字幕av成人在线电影| 日韩欧美精品v在线| 中文字幕人成人乱码亚洲影| 最好的美女福利视频网| 我的老师免费观看完整版| 美女大奶头视频| 久久久成人免费电影| av视频在线观看入口| 精品欧美国产一区二区三| 一个人免费在线观看电影| 免费av观看视频| 精品人妻一区二区三区麻豆 | 变态另类成人亚洲欧美熟女| 精品国产亚洲在线| 最好的美女福利视频网| 国内少妇人妻偷人精品xxx网站| 国产91精品成人一区二区三区| 18美女黄网站色大片免费观看| www.熟女人妻精品国产| 久久精品91蜜桃| 亚洲av免费在线观看| 一区二区三区免费毛片| 亚洲三级黄色毛片| ponron亚洲| 丰满乱子伦码专区| 欧美黄色淫秽网站| 网址你懂的国产日韩在线| 在线观看一区二区三区| 一个人观看的视频www高清免费观看| 国产精品久久久久久久久免 | 国产精品一区二区三区四区久久| 一进一出抽搐动态| 国产伦一二天堂av在线观看| 91av网一区二区| 岛国在线免费视频观看| 亚洲美女搞黄在线观看 | netflix在线观看网站| 99国产极品粉嫩在线观看| 嫩草影院精品99| 美女 人体艺术 gogo| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 欧美性猛交黑人性爽| 在线免费观看不下载黄p国产 | 91狼人影院| 悠悠久久av| 免费高清视频大片| 一级作爱视频免费观看| 在线观看舔阴道视频| 午夜激情福利司机影院| 内地一区二区视频在线| 免费av不卡在线播放| 色在线成人网| 男女之事视频高清在线观看| 午夜久久久久精精品| 夜夜看夜夜爽夜夜摸| 免费高清视频大片| 日本黄色片子视频| h日本视频在线播放| www.色视频.com| 日韩高清综合在线| 精品久久久久久久久久免费视频| 亚洲真实伦在线观看| 一个人免费在线观看的高清视频| 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| 丰满人妻一区二区三区视频av| 色精品久久人妻99蜜桃| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 欧美黑人巨大hd| 久久久久精品国产欧美久久久| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 俺也久久电影网| 午夜久久久久精精品| 成年女人看的毛片在线观看| or卡值多少钱| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| 亚洲国产欧美人成| 成熟少妇高潮喷水视频| 国产免费一级a男人的天堂| 丰满乱子伦码专区| 日本三级黄在线观看| 国产午夜福利久久久久久| 色哟哟·www| 国产视频内射| 老熟妇乱子伦视频在线观看| 男女床上黄色一级片免费看| 午夜激情欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产极品精品免费视频能看的| 久久午夜福利片| 免费观看人在逋| 51午夜福利影视在线观看| 99久久无色码亚洲精品果冻| 午夜激情福利司机影院| 真实男女啪啪啪动态图| 亚洲va日本ⅴa欧美va伊人久久| 99久久久亚洲精品蜜臀av| 3wmmmm亚洲av在线观看| 亚洲av成人av| 欧美在线一区亚洲| 国内精品久久久久久久电影| 国产激情偷乱视频一区二区| 精品福利观看| eeuss影院久久| 我要看日韩黄色一级片| 熟女人妻精品中文字幕| 又爽又黄a免费视频| 又黄又爽又免费观看的视频| 午夜福利高清视频| 丰满人妻一区二区三区视频av| 国产成年人精品一区二区| 毛片一级片免费看久久久久 | 日韩欧美 国产精品| 亚洲精品在线观看二区| 我的女老师完整版在线观看| 黄色视频,在线免费观看| 亚洲五月婷婷丁香| 国产成人欧美在线观看| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 久久国产乱子免费精品| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区三| 久久欧美精品欧美久久欧美| 国产精品免费一区二区三区在线| 日本精品一区二区三区蜜桃| 夜夜爽天天搞| 内地一区二区视频在线| 免费无遮挡裸体视频| 悠悠久久av| 97人妻精品一区二区三区麻豆| 精品午夜福利在线看| 久久亚洲真实| 国产色婷婷99| 97人妻精品一区二区三区麻豆| 日韩欧美精品免费久久 | 国内揄拍国产精品人妻在线| 国产麻豆成人av免费视频| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 国产精品久久久久久久久免 | 51午夜福利影视在线观看| 99久久成人亚洲精品观看| 日本成人三级电影网站| 丰满乱子伦码专区| 国产aⅴ精品一区二区三区波| 人妻夜夜爽99麻豆av| 国产精品爽爽va在线观看网站| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 宅男免费午夜| 99热这里只有是精品在线观看 | 一本久久中文字幕| 国产精品人妻久久久久久| 男女做爰动态图高潮gif福利片| 国产淫片久久久久久久久 | 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线二视频| 一进一出抽搐gif免费好疼| 一二三四社区在线视频社区8| 18美女黄网站色大片免费观看| 午夜福利成人在线免费观看| 日本熟妇午夜| 亚洲精品一区av在线观看| 精品久久国产蜜桃| 精品欧美国产一区二区三| 免费在线观看日本一区| 免费av不卡在线播放| 国产精品1区2区在线观看.| 免费观看精品视频网站| 有码 亚洲区| 九九久久精品国产亚洲av麻豆| 草草在线视频免费看| 男女下面进入的视频免费午夜| 亚洲色图av天堂| av在线老鸭窝| 国产综合懂色| 最近最新中文字幕大全电影3| 免费在线观看日本一区| 永久网站在线| 变态另类丝袜制服| 色精品久久人妻99蜜桃| 乱码一卡2卡4卡精品| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 色视频www国产| 我的老师免费观看完整版| 99久久无色码亚洲精品果冻| 亚洲va日本ⅴa欧美va伊人久久| 天堂√8在线中文| 亚洲国产精品久久男人天堂| 亚洲成人中文字幕在线播放| 欧美色欧美亚洲另类二区| 99视频精品全部免费 在线| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 精品人妻视频免费看| 久久午夜亚洲精品久久| 亚洲人成网站在线播放欧美日韩| 久久6这里有精品| 国产伦精品一区二区三区四那| 国产主播在线观看一区二区| 99在线视频只有这里精品首页| 国产伦精品一区二区三区四那| 亚洲成人免费电影在线观看| 国产高清视频在线观看网站| 国产精品精品国产色婷婷| 久久热精品热| 精品午夜福利在线看| 毛片一级片免费看久久久久 | 村上凉子中文字幕在线| 变态另类成人亚洲欧美熟女| 好男人电影高清在线观看| 久久久久久久午夜电影| 嫁个100分男人电影在线观看| 国产精品永久免费网站| 国产精品久久久久久久电影| 日韩中字成人| 日韩av在线大香蕉| 高清在线国产一区| 精品国产亚洲在线| 日韩中字成人| 亚洲激情在线av| 男人和女人高潮做爰伦理| 99久国产av精品| 亚洲午夜理论影院| 91字幕亚洲| 亚洲精品成人久久久久久| 亚洲精品成人久久久久久| 高清日韩中文字幕在线| 国产欧美日韩精品亚洲av| 国产精品精品国产色婷婷| 国产精品女同一区二区软件 | 午夜免费男女啪啪视频观看 | 久久久久免费精品人妻一区二区| 国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| avwww免费| 琪琪午夜伦伦电影理论片6080| 女人十人毛片免费观看3o分钟| 国产亚洲av嫩草精品影院| 久久久国产成人精品二区| 欧美成狂野欧美在线观看| 久久久久久九九精品二区国产| 18禁黄网站禁片免费观看直播| 久久久久久久久大av| 国产精品精品国产色婷婷| 18美女黄网站色大片免费观看| 亚洲成人久久爱视频| 国产高清三级在线| 内射极品少妇av片p| 亚洲精品亚洲一区二区| 琪琪午夜伦伦电影理论片6080| 欧美丝袜亚洲另类 | 99国产综合亚洲精品| 国产av不卡久久| bbb黄色大片| 白带黄色成豆腐渣| 日韩欧美三级三区| 欧美日韩福利视频一区二区| 久久精品国产99精品国产亚洲性色| 波多野结衣巨乳人妻| 又紧又爽又黄一区二区| 99热只有精品国产| 美女 人体艺术 gogo| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| 淫妇啪啪啪对白视频| 亚洲精品亚洲一区二区| 久久精品综合一区二区三区| 老司机福利观看| 麻豆久久精品国产亚洲av| 51午夜福利影视在线观看| 夜夜躁狠狠躁天天躁| 18禁黄网站禁片免费观看直播| 午夜老司机福利剧场| 99热精品在线国产| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 久久人妻av系列| 每晚都被弄得嗷嗷叫到高潮| 最近视频中文字幕2019在线8| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩乱码在线| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人澡欧美一区二区| 亚洲欧美清纯卡通| 757午夜福利合集在线观看| 久久精品综合一区二区三区| 国产高清三级在线| 五月伊人婷婷丁香| 国产真实乱freesex| 国产精品一区二区三区四区免费观看 | 亚洲精品色激情综合| 中文字幕精品亚洲无线码一区| 欧美最新免费一区二区三区 | 亚洲天堂国产精品一区在线| 成年女人看的毛片在线观看| 欧美zozozo另类| 国产精品野战在线观看| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费观看的黄片| 欧美最新免费一区二区三区 | 国产精品美女特级片免费视频播放器| 国产伦精品一区二区三区四那| 少妇被粗大猛烈的视频| 在现免费观看毛片| 在线播放无遮挡| 国产精品一及| 国产v大片淫在线免费观看| 国产精品1区2区在线观看.| 黄色视频,在线免费观看| 91在线观看av| 国产精品女同一区二区软件 | 少妇人妻一区二区三区视频| 男人狂女人下面高潮的视频| 美女大奶头视频| 国产成人欧美在线观看| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 午夜视频国产福利| 久久精品久久久久久噜噜老黄 | 禁无遮挡网站| 国产久久久一区二区三区| 亚洲一区二区三区色噜噜| 我要看日韩黄色一级片| 精品日产1卡2卡| 永久网站在线| 久久6这里有精品| 看片在线看免费视频| 九九久久精品国产亚洲av麻豆| 国产中年淑女户外野战色| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| 国产高清三级在线| 18禁黄网站禁片免费观看直播| 日韩 亚洲 欧美在线| 悠悠久久av| 久久久久九九精品影院| 国内精品一区二区在线观看| 高清日韩中文字幕在线| 桃色一区二区三区在线观看| 好看av亚洲va欧美ⅴa在| 一级a爱片免费观看的视频| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 美女黄网站色视频| 久久99热6这里只有精品| 精品一区二区三区视频在线观看免费| 51午夜福利影视在线观看| 麻豆一二三区av精品| 国产精品,欧美在线| 尤物成人国产欧美一区二区三区| 精品久久久久久久末码| 欧美日韩亚洲国产一区二区在线观看| 久久久精品大字幕| av国产免费在线观看| 国产精品久久久久久人妻精品电影| 淫妇啪啪啪对白视频| 九九久久精品国产亚洲av麻豆| 女人被狂操c到高潮| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 免费在线观看亚洲国产| 精品国产亚洲在线| 亚洲国产精品成人综合色| 国产欧美日韩精品一区二区| 国产高清视频在线观看网站| 国产久久久一区二区三区| 一级a爱片免费观看的视频| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av| 少妇裸体淫交视频免费看高清| 国产大屁股一区二区在线视频| 亚洲精品成人久久久久久| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 一夜夜www| 小蜜桃在线观看免费完整版高清| 国产精品一及| 色视频www国产| 日韩欧美国产一区二区入口| 一本一本综合久久| 三级男女做爰猛烈吃奶摸视频| 少妇裸体淫交视频免费看高清| 久久久久久久久中文| 国产精品久久久久久精品电影| 天堂影院成人在线观看| 麻豆国产97在线/欧美| 中文资源天堂在线| 一个人观看的视频www高清免费观看| 国产精品1区2区在线观看.| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 99久久精品热视频| 国产精华一区二区三区| 成人欧美大片| 久久亚洲精品不卡| 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 成人性生交大片免费视频hd| 乱人视频在线观看| 日韩大尺度精品在线看网址| 五月玫瑰六月丁香| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 亚洲精品乱码久久久v下载方式| 一级a爱片免费观看的视频| 久久99热6这里只有精品| 中文字幕av成人在线电影| 国产欧美日韩一区二区精品| 永久网站在线| 精品欧美国产一区二区三| 欧美三级亚洲精品| 午夜精品在线福利| 国产一区二区三区视频了| 久久久久九九精品影院| 一区二区三区激情视频| 给我免费播放毛片高清在线观看| 动漫黄色视频在线观看| 国产精华一区二区三区| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看 | 久久性视频一级片| av天堂在线播放| 午夜福利成人在线免费观看| 国产高清视频在线观看网站| 成人永久免费在线观看视频| 性色avwww在线观看| 亚洲 国产 在线| 成熟少妇高潮喷水视频| 久久人人爽人人爽人人片va | 成人特级av手机在线观看| 99国产精品一区二区三区| 一本久久中文字幕| 最好的美女福利视频网| 中文字幕人妻熟人妻熟丝袜美| 色哟哟·www| 欧美日韩瑟瑟在线播放| 99在线视频只有这里精品首页| 久久国产乱子伦精品免费另类| 中文字幕人妻熟人妻熟丝袜美| 欧美性猛交黑人性爽| 伦理电影大哥的女人| 麻豆国产av国片精品| 美女大奶头视频| 亚洲人成网站高清观看| 免费大片18禁| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 亚洲片人在线观看| 真人做人爱边吃奶动态| 嫩草影院入口| 亚洲av成人不卡在线观看播放网| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 国产白丝娇喘喷水9色精品| 午夜精品久久久久久毛片777| 丁香欧美五月| 高潮久久久久久久久久久不卡| 欧美日韩乱码在线| 国产一区二区三区视频了| 老司机午夜福利在线观看视频| www.色视频.com| 国产精品一区二区免费欧美| 欧美精品国产亚洲| 丁香六月欧美| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 国产aⅴ精品一区二区三区波| 国产私拍福利视频在线观看| 国产综合懂色| 日本精品一区二区三区蜜桃| 美女被艹到高潮喷水动态| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕精品亚洲无线码一区| 搡老熟女国产l中国老女人| 国产精品自产拍在线观看55亚洲| 在线观看舔阴道视频| 国产黄色小视频在线观看| 国产白丝娇喘喷水9色精品| 午夜免费激情av| 国产精品一区二区性色av| 成人性生交大片免费视频hd| av中文乱码字幕在线| 免费看日本二区| 久久亚洲精品不卡| 国产精品久久电影中文字幕| 欧美+日韩+精品| 国产精品自产拍在线观看55亚洲| 757午夜福利合集在线观看| 中国美女看黄片| 久久久久久九九精品二区国产| 最新在线观看一区二区三区| 精品国产三级普通话版| 亚洲av成人精品一区久久| 亚洲无线在线观看| 亚洲最大成人中文| 青草久久国产| 欧美+亚洲+日韩+国产| 蜜桃亚洲精品一区二区三区| 国产私拍福利视频在线观看| av专区在线播放| 免费大片18禁| 国产老妇女一区| 亚洲五月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品综合久久99| 国产精品,欧美在线| 亚洲av中文字字幕乱码综合| 天美传媒精品一区二区| 在线观看免费视频日本深夜| 久久久色成人| 日韩欧美精品v在线| 国产久久久一区二区三区| 国产国拍精品亚洲av在线观看| 99久久精品一区二区三区| 观看美女的网站| 在线观看66精品国产| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区 | 日韩欧美精品免费久久 | 可以在线观看的亚洲视频| 亚洲真实伦在线观看| 欧美成人免费av一区二区三区| 国产野战对白在线观看| 国产视频内射| 国产免费av片在线观看野外av| 精品久久久久久久久久久久久| 我的女老师完整版在线观看| 午夜久久久久精精品| 床上黄色一级片| 欧美日韩瑟瑟在线播放| 亚洲成av人片免费观看| 日本与韩国留学比较| 直男gayav资源| 久久久久久大精品| 成人国产综合亚洲| 精品一区二区三区视频在线| 国产av在哪里看| 久久精品国产亚洲av天美| 少妇的逼好多水| 人人妻人人看人人澡| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕一区二区三区有码在线看| 麻豆av噜噜一区二区三区|