• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NPLS 技術及其在高速飛行器氣動研究中的應用

    2014-11-21 00:42:12易仕和田立豐
    實驗流體力學 2014年1期
    關鍵詞:邊界層超聲速湍流

    易仕和,陳 植,何 霖,武 宇,田立豐

    (1. 國防科學技術大學 航天科學與工程學院,長沙 410073; 2. 防空兵學院,鄭州 450052)

    0 Introduction

    Complex flow field occurs around and inside an aircraft,such as compressible boundary layer,shock/boundary layer interaction,complex engine flows and so on as shown in Fig.1,when it speeds up to supersonic or hypersonic[1]. To improve the performance of high speed flight,endeavors have been made in the past several decades. However,for the complexity and instability of the supersonic turbulence,studying its fine structures and flow mechanism is very difficult. The existing experimental methods have their own shortages for supersonic turbulence study,such as Schlieren,filtered Rayleigh scattering ( FRS) ,and planar laser induced fluorescence ( PLIF) ,and the main reasons are their low resolution and signal noise ratio ( SNR)[2]. NPLS,as a newly developed flow visualization technique by the authors'group,can visualize temporal-resolved flow structures in a cross-section of instantaneous 3D supersonic flow at high spatiotemporal resolution[3]. In recent years,Yi's many studies have demonstrated that NPLS is a powerful tool to study supersonic flow,especially for supersonic turbulence[4-6]. In 2007,Zhao et al visualized the flow structure of pressure unmatched supersonic mixing layer using NPLS,and discussed the influence of shock wave and expand wave on structures of mixing layer and the influence of pressure unmatched[7]. Based on NPLS,Zhao Yuxin et al studied the shocklet in supersonic turbulent mixing layer,and in NPLS images the shocklets could be easily distinguished[8]. Zhao et al studied the interaction between shock wave and turbulent mixing layer based on NPLS[9],and observed the interaction between oblique shock wave and boundary layer and the influence of large vortex in mixing layer on oblique shock wave. In 2008,based on NPLS images of supersonic turbulent mixing layer,Yi et al studied the fractal dimension of transition region and turbulence region of supersonic mixing layer. And they found that in the transition region,the fractal dimension increases with turbulence,and in the turbulence region,the fractal dimension doesn't vary apparently[10]. TIAN et al visualized the supersonic flow around a concave optical spheric conic model by NPLS,and the NPLS images revealed shock wave,expansion wave,turbulent boundary layer and wake in the flow. In 2009,Yi et al studied the supersonic mixing layer with the convective Mach number of 0.5. From the NPLS image of supersonic mixing layer,readers can easily distinguish the fine structures,and estimate its transitional region. Based on the NPLS images,the control effect could be estimated easily[11-12]. And as shown in the NPLS images,Yi et al analyzed geometrical character and temporal evolution of large-scale structure of turbulent boundary layer. In 2009,Yi et al introduced NPLS technique in detail[13-15]. Nanoparticles are used as NPLS tracer,and pulse planar laser is used as its light source. By recording location of the tracer particles with CCD,the flow structure with high spatiotemporal resolution can be imaged in NPLS image. In literature,the flow-following ability and the scattering characteristics of nanoparticles were studied,and the results showed that the dynamic behavior and light scattering characteristics of nanoparticles make NPLS be able to image the supersonic flow structure at high spatiotemporal resolution and SNR.

    Fig.1 Schematic of complex flow field involved with a high speed vehicle[1]圖1 高速飛行器相關的復雜流場結構示意圖[1]

    Based on NPLS technique,several methods have been developed by the authors. In 2009,Tian et al developed a density measurement method named NPLSbased density technique ( NPLS-DT) . This technique can measure planar instantaneous density field in 3D supersonic flow by calibrating the relationship between density field and gray of NPLS image,and has high spatiotemporal resolution[16-18]. In 2010,YI S H et al proposed an aero-optical aberration measuring method,NPLS-based wavefront technique ( NPLS-WT) . This method has three significant innovations: (1) high spatiotemporal resolution; ( 2) it can avoid the integral effects and study the wavefront aberration induced by the flow field of interest locally; (3) it can avoid the influence from the test section wall boundary layers and environmental disturbances[19-20]. Based on the density-velocity simultaneous measurement method, Reynolds stress of supersonic turbulence can be obtained through special experimental arrangement.

    1 NPLS techniques

    The authors have studied on measuring the structures of supersonic turbulence by non-intrusive method in recent years,including the traditional interferometry and the optical scattering. The results indicate that because of the influences of compressibility,shock wave,instability and other factors,the traditional visualization and measurement methods encounter some difficulties.For supersonic flow,the flow visualization technique based on Mie scattering cannot satisfy the requirement of following the flow faithfully,especially when there are shock waves. On the other hand,for the techniques based on molecule tracer,more expensive intensified CCD is necessary because of its weak signal. Thus,it is difficult to achieve high spatiotemporal resolution for these techniques.

    Rapid developments and extensive applications of modern laser technology,imaging,image process technologies,and nanotechnology offer the opportunity for measuring the fine structures of supersonic flow. And in this condition,the authors developed NPLS technique several years ago,which can image fine structures of supersonic flow at high spatiotemporal resolution.

    As shown in Fig.2,the NPLS system is composed of light source system,nanoparticle generator,recording system,synchronization system,and a computer. The light source is a dual-cavity Nd: Yag laser,whose wavelength is 532nm,laser pulse width is 6ns,and the maxima pulse energy is 500mJ. A laser sheet with thickness of about 0.5mm is formed by the sheet optics system,and then illuminates the flow region of interest. The nanoparticle generator is driven by high pressure,and the concentration of the output particles can be adjusted. The recording system is an interline transfer CCD whose resolution is 2048 ×2048 and the shortest time interval of double-exposure is 0.2μs. The synchronizer receive signals sent from the computer,and control the time sequences of laser and the CCD to make sure that the two laser beams are exposed in the frames of dualexposure respectively. The computer not only sends synchronization signals to the synchronizer,but also stores and processes NPLS images. With the dual-exposure technique,NPLS can measure the instantaneous flow structure,and the temporal evolution of the flow between the two pulses can also be yielded.

    The flow-following ability of the NPLS tracer particle in supersonic flow was studied from particle dynamics by Zhao Y X,et al[3],and the particle diameter was measured with oblique shock wave calibration experiment,as shown in Fig.3. The effective diameter of nanoparticle of NPLS is 42.5nm,and its relaxation time is 66.3ns. As a flow visualization technique,NPLS focuses on holistic scattering character of a cluster of particles,whose scattering character can be calculated from Mie scattering theory,and the results revealed that its scattering character is relative to scattering angle,wavelength of incident laser,its diameter and refractive index.

    Fig.2 The schematic of NPLS system圖2 NPLS 系統(tǒng)示意圖

    Fig.3 NPLS image of shock wave and relative grey across it圖3 斜激波NPLS 圖像及垂直激波方向的相對灰度分布

    Based on NPLS,a density measurement method( NPLS-DT,NPLS-based Density Technique)was first proposed by Tian et al. The main principle is that in the working range of CCD,the variation of gray scale of the images represents the variation of local density in the flow. The relationship between gray scale and local density can be qualified after removing the effects from background,dark signal and non-uniform distribution of laser sheet. To be brief,it can be divided into 3 steps. First,NPLS is affirmatively used to get high SNR images of testing flow field. Second,these NPLS images should be calibrated to eliminate impacts from background,dark signal and laser non-uniformity. Third,perform a density field calibration to work out the relationship:

    To solve this problem,a series of ρi=f( Ii) ,i =1,2,3…is needed. Mount a wedge in the testing chamber and get NPLS images of oblique shock,then work out the density of sampling region downstream of the oblique shock based on the oblique shock equation,and get a first pair of sample data ( ρ1,I1) . Change the angle of the wedge; repeat this process to obtain a series of ρi=f( Ii) ,i=1,2,3…,as shown in Fig.4( c) . Owning to this method,Reynolds stress distribution can be obtained by performing density-velocity simultaneous measurement.

    Fig.4 Density field calibration圖4 密度場校準

    2 NPLS application in supersonic flows

    For the advantages of NPLS in measuring fine structures of supersonic turbulence,several typical supersonic flows were studied, including supersonic boundary layer,shock/boundary layer interaction,mixing layer and so on.

    2.1 Supersonic boundary layer

    Supersonic boundary layer,a typical flow,has been studied using NPLS in the past several years. The flow structures of the supersonic boundary layer in vertical plane and spanwise plane were captured by NPLS.As shown in Fig. 5,it is a NPLS image of flat plate boundary layer in vertical plane in Ma = 3 flow. The flow region is 100 ~320mm from the leading edge of plate. Fig.5 displays the whole transition process of the boundary layer. Until 180mm distance from the leading edge,the flow is still laminar. Then the flow transits into turbulence and becomes fully developed from X =250mm. Fig. 6 and Fig. 7 are the flow regions within 170 ~250mm and 190 ~220mm from the leading edge of the plate,respectively. From these images,it is easy to find the development of instability and the emergence of hairpin vortexes. Fig.8 is the NPLS image of fully developed turbulent boundary layer,which is at the location of 250 ~320mm from the leading edge. Compared with the cases in Fig.6 and Fig.7,the flow structures in Fig.8 are different absolutely and much more complex.However,the fine structures in the turbulent boundary layer are revealed clearly in Fig.8 all the same. Fig.9( a) shows the spanwise NPLS image of supersonic boundary layer corresponding to Fig. 8. And in addition,the fully developed turbulent boundary layer of wind tunnel is different from that on a flat plate,as shown in Fig. 9 ( b) . By performing PIV technique,time-averaged streamwise velocity profiles at different locations and Reynolds stress distributions of turbulent boundary layer are present as shown in Fig.10 to Fig.12 by velocity-density measurements.The flow structures of the transition region of supersonic boundary layer in different spanwise planes are shown in Fig.13 which reveals the hairpin vortex. While that of fully developed turbulent boundary layer is shown in Fig. 14 revealing the self-similar feature of turbulent boundary layer.

    Fig.5 NPLS image of supersonic boundary layer in Ma=3 flow圖5 Ma=3 超聲速邊界層NPLS 圖像

    Fig.6 NPLS image of supersonic boundary layer in the front of the plate圖6 平板前緣區(qū)域的超聲速邊界層NPLS 圖像

    Fig.7 NPLS image of supersonic boundary layer in the middle of the plate圖7 平板中段的超聲速邊界層NPLS 圖像

    Fig.8 NPLS image of fully developed supersonic turbulent boundary layer圖8 充分發(fā)展的超聲速邊界層NPLS 圖像

    Fig.9 Spanwise NPLS image of supersonic boundary layer in Ma=3 flow ( a) and the fully developed supersonic turbulent boundary layer of the wind tunnel ( b)圖9 超聲速邊界層展向結構的NPLS 圖像( a) ; 超聲速風洞充分發(fā)展的湍流邊界層的NPLS 圖像( b)

    Fig.10 Time-averaged velocity of supersonic boundary layer in the front of the plate corresponding to Fig.6圖10 與圖6 對應的平板前緣超聲速邊界層的時間平均速度剖面

    Fig.11 Time-averaged velocity of fully developed supersonic turbulent boundary layer corresponding to Fig.8圖11 與圖8 對應的充分發(fā)展的超聲速湍流邊界層的時間平均速度剖面

    Fig.12 Reynolds stress distribution of fully developed supersonic turbulent boundary layer corresponding to Fig.9( b)圖12 與圖9(b)對應的充分發(fā)展的超聲速湍流邊界層的雷諾應力分布

    Fig.13 Spanwise structures in the transition region of supersonic boundary layer圖13 超聲速邊界層轉捩區(qū)的展向結構

    Fig.14 Spanwise structures of fully developed supersonic turbulent boundary layer圖14 充分發(fā)展的超聲速湍流邊界層的展向結構

    2.2 Shock/boundary layer interaction

    Based on NPLS,the structure of shock/boundary layer interaction ( SWBLI) was studied. As shown in Fig.15,it is the NPLS image of SWBLI in Ma=3 flow,and its spatial resolution is 43.5μm/pixel. The image revealed shock wave,expansion wave,turbulent boundary layer,and separation bubble. From the NPLS image,we can find that the vortex moves downstream,and its transfiguration is not obvious. Using NPLS_DT,the density field of the flow field shown in Fig.15 was measured at high spatial resolution. Density variation and temporal evolution of the SWBLI can be distinguished easily. Fig.16 is the velocity field and the stream lines of the SWBLI flow field.

    2.3 Supersonic flow over a compression ramp

    Fig.15 NPLS image ( a) and the corresponding density field( b) of shock/boundary layer interaction in Ma=3 flow圖15 Ma=3 激波/邊界層相互作用流場的NPLS 圖像( a) 以及相應的密度場分布( b)

    Fig.16 Velocity filed ( a) and the corresponding stream lines ( b) of the flow field as shown in Fig.15圖16 與圖15 流場對應的速度場( a) 及相應的流線( b)

    Fig.17 Supersonic laminar flow ( a) and supersonic turbulent flow ( b) over a compression ramp圖17 超聲速層流壓縮拐角流動( a) 及超聲速湍流壓縮拐角流動( b)

    NPLS images of supersonic laminar/turbulent flow over a compression ramp are shown in Fig.17,it can be seen distinctly from the images that there are obvious differences between the laminar flow and the turbulent flow in compression ramp,even though the ramp angle is the same. For laminar flow,the of the supersonic flow and its transition to turbulence are rapid. Flow separation occurs due to the influence of adverse pressure gradient. Some typical flow structures such as K-H vortices,shear layer,separation shock and reattachment shock are visible clearly. However the thickness of turbulent boundary layer does not increase obviously and there is not evident separation in the flow field,as shown in Fig.17 ( b) . The boundary layer adheres to the wall in the whole flow field. These experimental results of flow visualization have revealed that,compared with laminar flow,the performance of turbulent flow is more stable when suffering the effects of adverse pressure gradient,and is more difficult to separate.

    2.4 Transition of the hypersonic boundary layer

    The following ability,scattering characteristic and reuniting of nano particles are the key points under the consideration of NPLS. The distribution of nano particles can reveal the exact flow field structures as long as its following ability meets the flows. However,when tested flow accelerates to hypersonic,the following ability of nano particles would be challenged again. NPLS was applied in the KD-01 shock wind tunnel to study hypersonic flow as shown in Fig 18. In Fig.19,it is the hypersonic flow structure of boundary layer transition measured by NPLS. The boundary layer changed from laminar to turbulent. By now,investigations on separating and scattering nano particles have to be kept going on,in order to improve NPLS technique and make it more applicable in hypersonic flow measurements development

    2.5 Supersonic mixing layer

    Fig.18 The schematic diagram of the model圖18 模型示意圖

    Fig.19 NPLS image of hypersonic boundary layer transition圖19 高超聲速邊界層轉捩結構的NPLS 圖像

    In the past several years,spatiotemporal characteristic of supersonic mixing layers with convective Mach number 0.12,0.21,0.24,0.32,0.50 and 0.60 were studied by the authors. The supersonic mixing layer wind tunnel is designed using double supersonic laminar nozzle and optical accesses for non-intrusive measurement,which can generate uniform flow filed with low noise,as shown in Fig.20. Changing the Mach number of the double nozzle,various convective Mach number can be gained for experimental study. The results revealed Kelvin-Helmholtz instable vortexes in the flow field. Its spatial features and temporal evolution can be yielded from NPLS images,which are shown in Fig.21.Zhao et al also studied its spanwise structure,and found the intriguing vortexes due to the secondary instability.Fig.22 shows Reynolds stress of supersonic mixing layer in this plane,which is quite valuable for constructing compressible turbulent models.The NPLS technique has been widely used to study other important problems of supersonic mixing layer,including the velocity field of the transition process,the turbulent structure with unmatched pressure,the fractal characteristics of the mixing interface,and the multi-resolution analysis of the density field[11,16-18].

    Fig.20 Nozzle section and test section of the supersonic mixing layer wind tunnel圖20 超聲速混合層風洞噴管段和試驗段

    Fig.21 NPLS images of K-H vortices of supersonic mixing layer ( time interval of the images 10μs)圖21 超聲速混合層K-H 渦的NPLS 圖像( 圖像間的時間間隔為10μs)

    Fig.22 Reynolds stress of supersonic mixing layer圖22 超聲速混合層的雷諾應力

    2.6 Flow around a spheric conic model

    The flow field around a spheric conic model in Ma=3.8 flow was studied using NPLS,and its flow structure[6],density field[17],aero-optical effect[19]and velocity field[20],were studied. The structure of the flow around a spheric conic model is rather complex,which includes shock wave,expansion wave,boundary layer and wake. Fig.23 is NPLS image of the flow field and the corresponding density field measured by NPLS_DT.Compared with the results obtained by schlieren,the shock waves in NPLS image is much thinner. The reason is that the spatial resolution of the NPLS is much higher than that of schlieren. The density field in Fig.23 shows clearly the existence of flow structures mentioned above,and the transition of boundary layer.

    Fig.23 NPLS image and corresponding density field of the flow around a spheric conic model in Ma=3.8 flow圖23 Ma=3.8 超聲速球錐繞流的NPLS 圖像及其相應的密度場分布

    3 Conclusions

    From the results mentioned above,we can find that NPLS is a powerful tool to visualize the fine structures of supersonic turbulence and measure the corresponding instantaneous density and velocity field. A great number of experiments have been performed,and several important flow structures have been revealed by NPLS images.As a newly developed technique,however,NPLS and its application are still under development.

    Currently,the measurement region of NPLS is only the scattering plane of laser pulse,and the temporal-resolved images are restricted to the pair obtained by frame,which prevents it from giving a more complete description of the flow structure. We are now updating the crucial components of the system to overcome these limitations,including employing multi-cavity laser to achieve high repetition frequency ( hundreds of millions per second) ,employing proper CCD with very high recording speed and the synchronizer with accuracy of picosecond. Our ultimate goal is to synchronously measure several parameters ( including density,velocity) of super flow with temporal correlation across many frames.

    [1] Humble R A. Unsteady flow organization of a shock waveboundary layer interaction[D]. Technische Universiteit Dlft,2008

    [2] Yi S H,He L,Zhao Y X,et al. A flow control study of a supersonic mixing layer via NPLS[J]. Sci China Ser G,2009,52(12) : 2001-2006.

    [3] Zhao Y X,Yi S H,Tian L F,et al. Supersonic flow imaging via nanoparticles[J]. Science China Ser E-Tech Sci,2009,52(12) : 3640-3648.

    [4] Zhao Y X,Yi S H,Tian L F,et al. The quantificational measurement of supersonic mixing layer growth rate[J].Journal of Experiments in Fluid Mechanics,2009,23(3) :100-103.趙玉新,易仕和,田立豐,等. 超聲速混合層增長速度定量測量與比較[J]. 實驗流體力學,2009,23(3) : 100-103.

    [5] Yi S H,Zhao Y X,Tian L F,et al. Recent advances of experimental study of supersonic mixing layer transition[J].Acta Aerodynamica Sinica,2009,27: 114-119.

    [6] Tian L F,Yi S H,Zhao Y X,et al. Flow visualization of supersonic flow around a concave optical bow cap model[J]. Journal of Experiments in Fluid Mechanics,2009,23(1) : 15-17.田立豐,易仕和,趙玉新,等. 超聲速彈頭凹型光學頭罩流動顯示研究[J]. 實驗流體力學,2009,23( 1) : 15-17.

    [7] Zhao Y X,Tian L F,Yi S H,et al. Experimental study of flow structure in pressure unmatched mixing layer[J].Journal of Experiments in Fluid Mechanics,2007,21(3) :14-17.趙玉新,田立豐,易仕和,等. 壓力不匹配混合層流場結構的實驗研究[J]. 實驗流體力學,2007,21( 3) : 14-17.

    [8] Zhao Y X,Yi S H,He L,et al. The experimental research of shocklet in supersonic turbulent mix layer[J].Journal of National University of Defense Technology,2007,29(1) : 12-15.

    [9] Zhao Y X,Yi S H,He L,et al. The experimental study of interaction between shock wave and turbulence[J]. Chinese Science Bulletin,2007,52(10) : 1297-1301.

    [10]Zhao Y X,Yi S H,He L,et al. The fractal measurement of experimental images of supersonic turbulent mixing layer[J]. Sci China Ser G-Phys Mech Astron,2008,51( 8) :1134-1143.

    [11] Zhao Y X. Experimental investigation of spatiotemporal structures of supersonic mixing layer[D]. National University of Defence Technology,2008.

    [12]Yi S H,Zhao Y X,Tian L F,et al. Advances of experimental study to transition of supersonic mixing layer[C]//Proceedings of the 13th National Symposium on Shock Wave and Shock Tube Technology,2008.

    [13] Yi S H,Zhao Y X,He L,et al. Experimental study of temporal and spatial characters of the transition of supersonic mixing layer[C]//Proceedings of the 12th National Symposium on Shock Wave and Shock Tube Technology,2006.

    [14]Yi S H,Zhao Y X,He L,et al. Fractal study of experiment images of supersonic mixing layer[C]//Proceedings of the 12th National Symposium on Shock Wave and Shock Tube Technology,2006.

    [15] Yi S H,Zhao Y X,He L,et al. The quantificational measurement of supersonic mixing layer growth rate based on NPLS image[C]//Proceedings of the 12th National Symposium on Shock Wave and Shock Tube Technology,2006.

    [16]Zhao Y X,Yi S H,Tian L F,et al. An experimental study of aero-optical aberration and dithering of supersonic mixing layer via BOS[J]. Science China: Physics,Mechanics &Astronomy,2009,53(1) : 81-93.

    [17]Tian L F,Yi S H,Zhao Y X,et al. Study of density field measurement based on NPLS technique in supersonic flow[J]. Sci China Ser G,2009,52(9) :1357-1363.

    [18]Zhao Y X,Yi S H,Tian L F,et al. Multiresolution analysis of density fluctuation in supersonic mixing layer[J].Sci China Tech Sci,2010,53(2) : 584-591.

    [19]Yi S H,Tian L F,Zhao Y X,et al. Aero-optical aberration measuring method based on NPLS and its application[J]. Chinese Sci Bull,2010,55(31) : 3545-3549.

    [20]He L,Tian L F,Yi S H,et al. PIV study of supersonic flow around an optical bow cap[J]. Journal of Experiments in Fluid Mechanics,2010,24(1) : 26-29.何霖,田立豐,易仕和,等. 超聲速光學頭罩流場的PIV 研究[J]. 實驗流體力學,2010,24(1) : 26-29.

    猜你喜歡
    邊界層超聲速湍流
    高超聲速出版工程
    高超聲速飛行器
    基于HIFiRE-2超燃發(fā)動機內流道的激波邊界層干擾分析
    重氣瞬時泄漏擴散的湍流模型驗證
    超聲速旅行
    一類具有邊界層性質的二次奇攝動邊值問題
    非特征邊界的MHD方程的邊界層
    高超聲速大博弈
    太空探索(2014年5期)2014-07-12 09:53:28
    “青春期”湍流中的智慧引渡(三)
    “青春期”湍流中的智慧引渡(二)
    国产一区二区三区av在线| videossex国产| 国产免费一区二区三区四区乱码| 肉色欧美久久久久久久蜜桃| 伊人久久国产一区二区| www.色视频.com| 成人综合一区亚洲| 人妻人人澡人人爽人人| 美女福利国产在线| 久久国产亚洲av麻豆专区| 国产极品粉嫩免费观看在线| 夫妻性生交免费视频一级片| 女人被躁到高潮嗷嗷叫费观| 亚洲 欧美一区二区三区| 搡女人真爽免费视频火全软件| 成人亚洲精品一区在线观看| 精品亚洲乱码少妇综合久久| 春色校园在线视频观看| 久久精品久久久久久噜噜老黄| 国产白丝娇喘喷水9色精品| 久久精品国产a三级三级三级| 成人无遮挡网站| 五月玫瑰六月丁香| 男女下面插进去视频免费观看 | 好男人视频免费观看在线| 亚洲国产精品专区欧美| 久久99精品国语久久久| 亚洲欧美精品自产自拍| 9191精品国产免费久久| 日日啪夜夜爽| 亚洲婷婷狠狠爱综合网| 菩萨蛮人人尽说江南好唐韦庄| 香蕉丝袜av| 久久精品熟女亚洲av麻豆精品| 日韩一区二区三区影片| 大片免费播放器 马上看| 精品卡一卡二卡四卡免费| 啦啦啦在线观看免费高清www| 又大又黄又爽视频免费| 久久久久久伊人网av| 少妇人妻久久综合中文| 在线观看三级黄色| 欧美精品av麻豆av| 免费观看无遮挡的男女| 亚洲欧美清纯卡通| 欧美精品亚洲一区二区| 18禁在线无遮挡免费观看视频| 欧美精品一区二区免费开放| 国产精品偷伦视频观看了| 亚洲图色成人| 99热全是精品| 免费在线观看黄色视频的| 欧美激情国产日韩精品一区| 国产高清三级在线| 18+在线观看网站| 精品熟女少妇av免费看| 欧美精品一区二区免费开放| 成人国产av品久久久| 视频中文字幕在线观看| 成人国产av品久久久| 夫妻性生交免费视频一级片| 五月开心婷婷网| 熟女电影av网| 亚洲av日韩在线播放| 免费高清在线观看视频在线观看| av在线观看视频网站免费| 成人毛片60女人毛片免费| 国产精品一区二区在线观看99| 最近中文字幕2019免费版| 日本黄大片高清| 国产极品天堂在线| 中文字幕人妻熟女乱码| 亚洲欧洲国产日韩| av片东京热男人的天堂| 国产日韩欧美亚洲二区| 在线精品无人区一区二区三| 日本欧美视频一区| 老司机影院成人| 热99国产精品久久久久久7| 国产乱来视频区| 国产精品久久久久久精品电影小说| 麻豆乱淫一区二区| 少妇人妻精品综合一区二区| 欧美精品亚洲一区二区| 五月天丁香电影| 国产在视频线精品| 人妻人人澡人人爽人人| 午夜视频国产福利| 一区二区日韩欧美中文字幕 | 亚洲,欧美,日韩| 国产白丝娇喘喷水9色精品| 国产av精品麻豆| 在线看a的网站| 欧美精品一区二区免费开放| 亚洲熟女精品中文字幕| 菩萨蛮人人尽说江南好唐韦庄| av又黄又爽大尺度在线免费看| av天堂久久9| 精品国产一区二区久久| 亚洲欧美精品自产自拍| a级毛片在线看网站| 国产一区二区在线观看日韩| av又黄又爽大尺度在线免费看| 欧美另类一区| 嫩草影院入口| 青春草国产在线视频| 国产精品蜜桃在线观看| 久热久热在线精品观看| 久久久a久久爽久久v久久| 国产精品国产av在线观看| 日韩视频在线欧美| 91精品三级在线观看| 99国产综合亚洲精品| 国产在线视频一区二区| 肉色欧美久久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 久久这里只有精品19| www.色视频.com| 欧美精品国产亚洲| 丰满迷人的少妇在线观看| 丝袜美足系列| 2021少妇久久久久久久久久久| 亚洲精品第二区| 亚洲五月色婷婷综合| 乱人伦中国视频| 日韩视频在线欧美| 熟女av电影| 中国美白少妇内射xxxbb| 久久久久久久久久久免费av| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 久久久久久久大尺度免费视频| 内地一区二区视频在线| 日韩欧美一区视频在线观看| 在线精品无人区一区二区三| 满18在线观看网站| 午夜av观看不卡| 日日撸夜夜添| 自拍欧美九色日韩亚洲蝌蚪91| www.色视频.com| 午夜久久久在线观看| 国产成人免费无遮挡视频| 看免费av毛片| 国产成人免费无遮挡视频| 美女国产高潮福利片在线看| 超碰97精品在线观看| 久久久a久久爽久久v久久| 人人妻人人爽人人添夜夜欢视频| 精品国产露脸久久av麻豆| 国产精品无大码| 久久久久视频综合| 国产综合精华液| 午夜老司机福利剧场| 五月天丁香电影| 国产一级毛片在线| 一级爰片在线观看| 亚洲性久久影院| 国产免费福利视频在线观看| 22中文网久久字幕| 午夜福利在线观看免费完整高清在| 国产熟女午夜一区二区三区| 如日韩欧美国产精品一区二区三区| 中文欧美无线码| 又大又黄又爽视频免费| av播播在线观看一区| 亚洲av成人精品一二三区| 精品久久国产蜜桃| 精品久久久精品久久久| 99热这里只有是精品在线观看| 亚洲第一av免费看| 国产精品.久久久| 亚洲av日韩在线播放| 成人手机av| 少妇被粗大猛烈的视频| 一级片'在线观看视频| 9色porny在线观看| 国产亚洲精品久久久com| 国产69精品久久久久777片| 精品亚洲成国产av| 日韩在线高清观看一区二区三区| 国产男女超爽视频在线观看| 国产黄色免费在线视频| 2018国产大陆天天弄谢| 精品卡一卡二卡四卡免费| 啦啦啦啦在线视频资源| av在线老鸭窝| 国产精品人妻久久久久久| 免费观看在线日韩| 男人操女人黄网站| 久久久久视频综合| 久久午夜福利片| 青春草国产在线视频| 韩国精品一区二区三区 | 国产一区二区在线观看av| 少妇的逼好多水| 大香蕉97超碰在线| 久久久久久久亚洲中文字幕| 久久久久久久久久久免费av| 午夜av观看不卡| 制服人妻中文乱码| 又黄又粗又硬又大视频| av黄色大香蕉| 成人免费观看视频高清| 一区在线观看完整版| 亚洲av福利一区| 嫩草影院入口| 麻豆精品久久久久久蜜桃| 日韩欧美一区视频在线观看| 熟女电影av网| 日韩制服骚丝袜av| 久久韩国三级中文字幕| 亚洲国产成人一精品久久久| 亚洲成av片中文字幕在线观看 | videos熟女内射| 中文字幕另类日韩欧美亚洲嫩草| 一本色道久久久久久精品综合| 国内精品宾馆在线| 伊人久久国产一区二区| 欧美最新免费一区二区三区| 国产精品国产三级国产av玫瑰| 多毛熟女@视频| 夜夜骑夜夜射夜夜干| 两个人看的免费小视频| 日本wwww免费看| 午夜91福利影院| 午夜福利乱码中文字幕| freevideosex欧美| 9色porny在线观看| 亚洲av免费高清在线观看| 国产精品99久久99久久久不卡 | 寂寞人妻少妇视频99o| 亚洲美女视频黄频| 黄色毛片三级朝国网站| 97精品久久久久久久久久精品| 18禁国产床啪视频网站| 如日韩欧美国产精品一区二区三区| 亚洲精品久久午夜乱码| 久久久久久久国产电影| 成年人免费黄色播放视频| 亚洲国产av影院在线观看| 最近手机中文字幕大全| 国产日韩欧美在线精品| 日本黄大片高清| 在线观看三级黄色| 人妻人人澡人人爽人人| 国产淫语在线视频| 91精品三级在线观看| 国产精品秋霞免费鲁丝片| 最近最新中文字幕大全免费视频 | 99国产精品免费福利视频| 亚洲熟女精品中文字幕| 久久影院123| 夫妻午夜视频| 51国产日韩欧美| 日韩精品免费视频一区二区三区 | 国产欧美日韩综合在线一区二区| 久久国产亚洲av麻豆专区| 晚上一个人看的免费电影| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲图色成人| 精品久久久精品久久久| 精品一区二区三区视频在线| 丰满迷人的少妇在线观看| 亚洲欧美中文字幕日韩二区| 久久久久国产精品人妻一区二区| 一边摸一边做爽爽视频免费| 久久久久网色| 国产精品蜜桃在线观看| 少妇精品久久久久久久| 亚洲精华国产精华液的使用体验| 久久久久久久久久成人| 日韩免费高清中文字幕av| 热re99久久国产66热| 国产精品久久久久久精品电影小说| 欧美3d第一页| 免费少妇av软件| 18禁国产床啪视频网站| 老司机影院毛片| 狠狠婷婷综合久久久久久88av| 人成视频在线观看免费观看| 日韩av免费高清视频| 久久久久国产精品人妻一区二区| 国产又爽黄色视频| 日韩av在线免费看完整版不卡| 777米奇影视久久| 国产片特级美女逼逼视频| 精品视频人人做人人爽| 日韩一本色道免费dvd| 青青草视频在线视频观看| 韩国精品一区二区三区 | 91在线精品国自产拍蜜月| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久av网站| 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 亚洲国产精品一区二区三区在线| 久久久精品94久久精品| 丝瓜视频免费看黄片| 中文字幕另类日韩欧美亚洲嫩草| 伊人亚洲综合成人网| 国产成人a∨麻豆精品| 亚洲少妇的诱惑av| 国产精品久久久久久久电影| 亚洲欧洲精品一区二区精品久久久 | 国产熟女欧美一区二区| av又黄又爽大尺度在线免费看| 九色亚洲精品在线播放| 午夜福利,免费看| 美女大奶头黄色视频| av播播在线观看一区| 在线观看美女被高潮喷水网站| 热99国产精品久久久久久7| 久久精品国产a三级三级三级| 成人亚洲精品一区在线观看| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 美女福利国产在线| 18+在线观看网站| 国产极品粉嫩免费观看在线| 午夜91福利影院| a级毛色黄片| 午夜免费观看性视频| 亚洲精品自拍成人| 国产综合精华液| 五月天丁香电影| 秋霞伦理黄片| 午夜日本视频在线| 9色porny在线观看| 久久久久久久国产电影| 国产有黄有色有爽视频| 在线观看三级黄色| 三级国产精品片| 伦理电影大哥的女人| 欧美日韩成人在线一区二区| 丝袜美足系列| 在线观看一区二区三区激情| 亚洲av中文av极速乱| 午夜免费鲁丝| 亚洲精品456在线播放app| 亚洲欧美成人精品一区二区| 26uuu在线亚洲综合色| 亚洲综合精品二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人一区二区在线| 国产熟女午夜一区二区三区| 下体分泌物呈黄色| 国产伦理片在线播放av一区| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 在线免费观看不下载黄p国产| 免费看不卡的av| 人人妻人人澡人人看| 国产黄色视频一区二区在线观看| 日本黄色日本黄色录像| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 免费在线观看完整版高清| 91国产中文字幕| 一区二区三区乱码不卡18| 精品亚洲成国产av| 人成视频在线观看免费观看| 黄色怎么调成土黄色| 乱码一卡2卡4卡精品| 1024视频免费在线观看| 在线观看国产h片| av在线app专区| av在线观看视频网站免费| 午夜91福利影院| 国产精品国产av在线观看| 少妇人妻久久综合中文| 亚洲精品成人av观看孕妇| 久久av网站| 免费人妻精品一区二区三区视频| 有码 亚洲区| 狠狠精品人妻久久久久久综合| 日韩熟女老妇一区二区性免费视频| 亚洲av.av天堂| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 亚洲av欧美aⅴ国产| 亚洲av国产av综合av卡| 亚洲内射少妇av| 美女国产高潮福利片在线看| 国产爽快片一区二区三区| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 日韩人妻精品一区2区三区| 日韩欧美精品免费久久| 日本黄色日本黄色录像| 欧美精品国产亚洲| 久久精品夜色国产| 少妇高潮的动态图| 99热国产这里只有精品6| 又黄又粗又硬又大视频| 国产又色又爽无遮挡免| 日日撸夜夜添| 久久99热6这里只有精品| 在线天堂中文资源库| av网站免费在线观看视频| 在线观看国产h片| 涩涩av久久男人的天堂| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 亚洲,欧美精品.| 亚洲美女黄色视频免费看| 国产在视频线精品| 午夜福利,免费看| 国产视频首页在线观看| 国产精品久久久av美女十八| 中文字幕人妻熟女乱码| 热99国产精品久久久久久7| 国产一区二区激情短视频 | 深夜精品福利| 亚洲av福利一区| 五月天丁香电影| 国产高清不卡午夜福利| 青青草视频在线视频观看| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 一本久久精品| 久久久久国产网址| 精品一区在线观看国产| 精品亚洲成国产av| av福利片在线| 国产精品国产三级国产专区5o| 最近最新中文字幕大全免费视频 | 国产1区2区3区精品| 国产黄色视频一区二区在线观看| 欧美激情国产日韩精品一区| 免费av中文字幕在线| 国产乱人偷精品视频| 两性夫妻黄色片 | 卡戴珊不雅视频在线播放| 成人国产麻豆网| 999精品在线视频| 亚洲精品久久久久久婷婷小说| av不卡在线播放| 成人午夜精彩视频在线观看| 最近最新中文字幕免费大全7| 高清毛片免费看| 亚洲美女视频黄频| 亚洲美女搞黄在线观看| 丝袜人妻中文字幕| 欧美日韩av久久| 美女脱内裤让男人舔精品视频| 午夜久久久在线观看| 巨乳人妻的诱惑在线观看| 少妇被粗大猛烈的视频| 多毛熟女@视频| 亚洲精品第二区| 一级,二级,三级黄色视频| 国产精品久久久久成人av| 99国产综合亚洲精品| 嫩草影院入口| 国产成人精品福利久久| 成人漫画全彩无遮挡| 精品人妻在线不人妻| 日本wwww免费看| 九色亚洲精品在线播放| 亚洲精品aⅴ在线观看| 又黄又粗又硬又大视频| 亚洲第一av免费看| 亚洲国产av影院在线观看| 晚上一个人看的免费电影| 欧美日韩视频精品一区| 亚洲人与动物交配视频| 高清黄色对白视频在线免费看| 毛片一级片免费看久久久久| av有码第一页| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 亚洲综合色网址| tube8黄色片| 极品人妻少妇av视频| 老熟女久久久| 国产极品粉嫩免费观看在线| 免费黄网站久久成人精品| 亚洲伊人久久精品综合| 新久久久久国产一级毛片| 色吧在线观看| 亚洲欧美色中文字幕在线| 五月玫瑰六月丁香| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 高清在线视频一区二区三区| www.色视频.com| 九九爱精品视频在线观看| 亚洲熟女精品中文字幕| 免费看av在线观看网站| 国产一区二区三区av在线| 国产无遮挡羞羞视频在线观看| 国产一区二区三区av在线| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 久久久精品区二区三区| 欧美精品一区二区免费开放| 麻豆精品久久久久久蜜桃| 午夜日本视频在线| a级毛片黄视频| 久久99一区二区三区| 最近手机中文字幕大全| 亚洲av日韩在线播放| 99久久综合免费| 国产探花极品一区二区| 成人18禁高潮啪啪吃奶动态图| 精品视频人人做人人爽| 色哟哟·www| 成年女人在线观看亚洲视频| 少妇的丰满在线观看| 国产色爽女视频免费观看| www.色视频.com| 伊人久久国产一区二区| 亚洲综合色惰| 久久精品国产亚洲av天美| 99热国产这里只有精品6| 纯流量卡能插随身wifi吗| 婷婷色综合大香蕉| 久久久精品区二区三区| 91国产中文字幕| 国产69精品久久久久777片| 成人黄色视频免费在线看| 久久精品国产a三级三级三级| 中国三级夫妇交换| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| av在线老鸭窝| 亚洲国产欧美在线一区| 青春草视频在线免费观看| 少妇人妻久久综合中文| 日日啪夜夜爽| av免费在线看不卡| 国产在线一区二区三区精| 搡女人真爽免费视频火全软件| 如何舔出高潮| 亚洲色图 男人天堂 中文字幕 | 国产69精品久久久久777片| 日韩一本色道免费dvd| 侵犯人妻中文字幕一二三四区| 如日韩欧美国产精品一区二区三区| 久久久久久久大尺度免费视频| 日韩中字成人| 狠狠精品人妻久久久久久综合| 一区二区av电影网| 十八禁高潮呻吟视频| 十分钟在线观看高清视频www| 亚洲三级黄色毛片| 亚洲精品国产色婷婷电影| 热99久久久久精品小说推荐| 色视频在线一区二区三区| 精品酒店卫生间| 精品国产国语对白av| 免费观看av网站的网址| 99久久精品国产国产毛片| 满18在线观看网站| 黄色视频在线播放观看不卡| 日韩av不卡免费在线播放| 日韩一区二区三区影片| 国产 一区精品| 在线亚洲精品国产二区图片欧美| 亚洲国产av新网站| 欧美精品高潮呻吟av久久| 97在线视频观看| 亚洲在久久综合| 男男h啪啪无遮挡| 寂寞人妻少妇视频99o| 亚洲五月色婷婷综合| 免费观看a级毛片全部| 精品人妻一区二区三区麻豆| 大陆偷拍与自拍| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 最后的刺客免费高清国语| 寂寞人妻少妇视频99o| 黄色视频在线播放观看不卡| 91aial.com中文字幕在线观看| 麻豆乱淫一区二区| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 亚洲精品国产av蜜桃| 亚洲欧美成人综合另类久久久| 18禁观看日本| 我的女老师完整版在线观看| 在线观看免费视频网站a站| 亚洲欧洲日产国产| 看免费成人av毛片| 欧美人与性动交α欧美软件 | 日日摸夜夜添夜夜爱| 中文字幕人妻丝袜制服| 国语对白做爰xxxⅹ性视频网站| 国产福利在线免费观看视频| 少妇人妻精品综合一区二区| 少妇人妻 视频| 在线观看免费视频网站a站| 久久精品久久精品一区二区三区| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 亚洲av男天堂| 日韩在线高清观看一区二区三区| 亚洲成人手机| 美女大奶头黄色视频| 一边摸一边做爽爽视频免费| 免费在线观看黄色视频的| 亚洲精品一区蜜桃| 国产精品三级大全| 欧美激情极品国产一区二区三区 | 精品国产露脸久久av麻豆|