• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    稀疏網(wǎng)格求積分濾波算法在SINS/GPS緊組合導(dǎo)航中的應(yīng)用

    2014-10-21 01:07:00KeyLaboratoryofMicroInertialInstrumentandAdvancedNavigationTechnologyMinistryofEducationSoutheastUniversityNanjing210096ChinaSpaceStarTechnologyCoLtdBeijing100086China
    中國慣性技術(shù)學(xué)報 2014年6期
    關(guān)鍵詞:偽距對準(zhǔn)慣性

    (1. Key Laboratory of Micro Inertial Instrument and Advanced Navigation Technology, Ministry of Education, Southeast University, Nanjing 210096, China; 2. Space Star Technology Co. , Ltd. , Beijing 100086, China)

    (1. Key Laboratory of Micro Inertial Instrument and Advanced Navigation Technology, Ministry of Education, Southeast University, Nanjing 210096, China; 2. Space Star Technology Co. , Ltd. , Beijing 100086, China)

    High-precision navigation information is crucial for high altitude vehicles. Considering the characteristics of high-altitude aircrafts, we select the launch inertial coordinate system as the navigation coordinate system and propose a mathematic model for tightly-coupled SINS/GPS integrated navigation system based on pseudo-range and pseudo-range rate. As the state equations and measurement equations are nonlinear, the sparse grid quadrature filter (SGQF) is adopted. The method proposed in this paper is fit for both aligning and navigating, so it is more efficient compared with the method that designs aligning and navigating separately. Simulation results indicate that, owing to this strong nonlinear system, the sparse grid quadrature filter can not only estimate navigation parameters faster but also more accurately than the unscented Kalman filter (UKF) during the take-off phase of high-altitude aircrafts. They also show that the sparse grid quadrature filter with tightly-coupled integration can greatly improve estimation accuracy of navigation compared with that with loose integration algorithm. Finally, the impact of different levels of accuracy of inertial devices is studied. The result indicates that tightly-coupled integration with SGQF can perform quite well within a large range of accuracy of inertial devices.

    SINS/GPS; tightly-coupled integration; alignment; navigation; sparse grid quadrature; nonlinear filter

    Strap-down inertial navigation systems (SINS)/ global positioning system (GPS) integrated navigation system can provide high accuracy and reliability with low cost, and it has become a hot issue for researches in integrated navigation. Today, most of the integrated navigation systems are loose integration system, but they can’t work well with less than four satellites and have lower precision than tightly-coupled integration system[1]. Considering the characteristics of high altitude vehicles, we select the launch inertial coordinate system as navigation coordinate system and propose a mathematic model for the tightly-coupled SINS/GPS integrated navigation system based on pseudo-range and pseudo-range rate.

    The state equations and measurement equations of the tightly-coupled SINS/GPS integration system are nonlinear when misalignment angles are large. Much has been done to deal with the nonlinearity. With the assumption of small misalignment angles, Zhang linearizes the measurement equations and estimates the integrated navigation system with Kalman filter[2]. A better way of linearizing is to introduce a second-order derivate term into linearity equations[3]. To avoid errors of linearization and obtain higher accuracy, UKFs are applied in tightly-coupled INS/GPS navigation system[4-5].

    The sparse grid method[6-7], proposed by Smolyak in 1963, is a multi-dimensional integral method. When applied to nonlinear filter field, it becomes sparse grid quadrature filter algorithm. By selecting appropriate points, this method does not need to linearize nonlinear equations, so it can overcome errors due to linearization. Compared with UKF, it is more flexible and more accurate and can obtain much better performance by adding the number of quadrature points[8]. This paper will apply this algorithm to tightly-coupled SINS/GPS integrated navigation system and compare its performance with other existing algorithms. A mathematic model for this system is also proposed here.

    1 Mathematic model for navigation system

    1.1 State equation

    Set launch inertial coordinate system as navigationcoordinate system. The launch inertial coordinate system coincides with launch gravity coordinate system at launching time. In the launch inertial coordinate system, the origin of coordinate is at launch point o, oy axis is along the opposite direction of gravity, ox axis is vertical to oy axis and points to the launch direction, and oz axis is defined using the right-hand rule. The following error state equation is applied in this paper.

    where X(t) is a 17×1 system state vector; W is the process noise sequence. X(t) is defined as follows:

    where φx, φy, φzare the misalignment angles; δVx, δVy, δVzare the velocity errors; δRx, δRy, δRzare the position errors; εx, εy, εzare constant gyro drift; ▽x, ▽y, ▽zare constant accelerometer offsets; δtuis the distant corresponding to equivalent clock error; δtruis the distant rate corresponding to the equivalent clock frequency error. The differential equations are established as follows:

    ① Misalignment errors equation:

    ② Velocity error equation:

    Gravity acceleration in earth center inertial coordinate frame can be described as follows:

    where J2is the coefficient of second-order zonal harmonics. Reis the radius of the earth. r is the position vector of vehicle in earth center inertial coordinate system. If we put disturbance to Eq. (4), we get

    ③ Position error equation:

    ④ The error equations of gyro and accelerometer are:

    ⑤ The error equations of distant corresponding to equivalent clock error and distant rate corresponding to the equivalent clock frequency error are:

    1.2 Measurement equation

    The following measurement equation is applied in this paper.

    where Z is a 8×1 observation vector;V is the observation zero-mean white noise vector. Z is defined as follows:

    where the nonlinear measurement equation of pseudo range is

    where Rx, Ryand Rzare vehicle’s positions.,andare the j-th satellite’s positions.

    The measurement equation of pseudo range rate can be described as:

    where Vx, Vyand Vzare vehicle’s velocity.,andare the j-th satellite’s velocity.

    2 Sparse grid quadrature filter

    2.1 Nonlinear Gaussian filter

    Nonlinear Gauss approximate filter in the Bayesian framework is a suboptimal filtering algorithm on the assumption of Gauss noise, and includes prediction step and updating step.

    ① Prediction Step:

    ② Update Step:

    Suppose that the predictive density function p(xk|zk-1)

    It is difficult to get analytic solutions for Gauss cubature, but we can get approximate solutions using numerical quadrature methods. Gauss quadrature can be approximated by

    where the quadrature points γiand the weights ξican be chosen according to different rules, such as Gauss-Hermite quadrature rule, unscented transformation and so on. Npis the number of the quadrature points, and P=ssT.

    2.2 Sparse grid quadrature filter

    Sparse grid method utilizes a linear combination of low-level tensor products of univariate quadrature rules to approximate multivariate integrals. The method can break the curse of dimensionality to some extent, so it can reduce the computational work. Sparse grid quadrature filter can be given as[9]:

    where Id,L(F) is an approximation to the d-dimensional integral of the function F with respect to Gauss distribution function with the accuracy level of L. ?denotes tensor product. Iikis the univariate quadrature rule with the accuracy level of ik∈Ξ, where Ξ is an accuracy level sequence of d natural numbers. Nqdis the set of accuracy level sequences defined by

    The more explicit form of Eq. (24) given by Heiss and Winschel[10]can be written as

    where quadrature points (x1, …, xd) are a combination of all points determined by univariate quadrature rule. The accuracy level i in each dimension is determined by∈and L-d≤q≤L-1, and the corresponding weight isThe set of sparse grid quadrature points is given by

    The meaning of Eq. (27) is that, for a certain q, we can get d-dimension quadrature points by combining univariate quadrature points, and that we can then traverse all d-dimension quadrature points according to q. Bungartz[7]proved that the number of quadrature points would grow polynomially instead of exponentially. Therefore it could break the curse of dimensionality and reduce computational work to some extent.

    2.3 Gauss-Hermite quadrature rule

    As we know from Eq. (27) the d-dimensional quadrature points are a combination of univariate quadrature points and the univariate integral function obeys Gauss distribution. Thus the Gauss-Hermite quadrature rule is adopted, which can be written as:

    where f(x) is integrand. n is the number of quadrature points; εiand ξiare quadrature points and weights, respectively. According to the relationship between Gauss integral and orthogonal polynomial, we can compute the univariate quadrature points and corresponding weights by decomposing a symmetric tri-diagonal matrix[11]. The quadrature points and corresponding weights of accuracy levels 1, 2 and 3 are listed in Tab. 1.

    Tab.1 Gauss-Hermite quadrature points

    3 Simulation results and analysis

    The high altitude vehicle is assumed to be located at a longitude of 116.346° east, a latitude of 39.984° north and height of 0 m. The vehicle launches vertically for 10 s, followed by pushover to achieve nearly level flight. The initial head angle error, pitch angle error and roll angle error are 60°, 7° and 7°, respectively. The gyro constant drifts along three axes of body frame are 0.03 (°)/h with white noise 0.001 (°)/√h. The accelerometer biases along three axes of body frame are 0.1mg with white noise 0.05 mg. The pseudo-range measurement error of the receiver is 15 m, and the pseudo-range rate measurement error of the receiver is 0.2 m/s with the corresponding time of 3600 s. The measurement data are obtained from IMU at a rate of 100 Hz and from GPS at a rate of 1 Hz. The filtering period is 1 second and the simulation time is 20 minutes.

    A comparison of alignment accuracy and time between SGQF and UKF is given in Tab. 2. To show the advantage of SGQF explicitly, the curves of errors are given in Fig. 1 to Fig. 3. Tab. 3 indicates the performance of estimation accuracy between tightly-coupled integration and loose integration with SGQF. And to show it explicitly, Fig. 4 and Fig. 5 are drawn.

    Fig.1 Curves of misalignment errors of tightly-coupled integration with SGQF and UKF

    Fig.2 Curves of velocity errors of tightly-coupled integration with SGQF and UKF

    Fig.3 Curves of position errors of tightly-coupled integration with SGQF and UKF

    Fig.4 Curves of velocity errors of tightly-coupled integration and loose integration with SGQF

    Fig.5 Curves of position errors of tightly-coupled integration and loose integration with SGQF

    Tab.2 Alignment accuracy and time oftightly-coupled integration with SQQF and UKF

    Tab.3 Estimation errors of tightly-coupled integration and loose integration with SGQF

    To compare the performance of tightly-coupled integration with SGQF with different accuracy of inertial devices, we set six cases as shown in Tab. 4. The simulation results in different cases above are given in Tab.4.

    Tab. 4 Tightly-coupled integration with SGGQF under different accuracy of inertial devices

    4 Conclusion

    ① The estimation errors of misalignment angles with SGQF is less than 0.30′, and alignment time of misalignment angles is less than 75 s. The alignment time of velocity and position is less than 16 s. During the take-off phase of high-altitude aircrafts, sparse grid quadrature filter can estimate navigation parameters faster and more accurately than UKF owing to this strong nonlinear system.

    ② The velocity errors of tightly-coupled integration with SGQF is less than 0.2 m/s, and the position errors of tightly-coupled integration with SGQF is no more than 3 m. Sparse grid quadrature filter with tightly-coupled integration can greatly improve the estimation accuracy of navigation compared with that using loose integration algorithm.

    ③ The sparse grid quadrature filter with tightly-coupled integration can perform well within a large range of accuracy of inertial devices, which means it can work well with low precision MEMS or high precision fiber optic gyroscope and so on.

    [1] Zheng Xin, Fu Mengyin. SINS/GPS tightly-coupled integrated navigation [J]. Journal of Chinese Inertial Technology, 2011, 19(1): 33-37.

    鄭辛,付夢印. SINS/GPS緊耦合組合導(dǎo)航[J]. 中國慣性技術(shù)學(xué)報,2011,19(1):33-37.

    [2] Zhang Jinliang, Zhang Tao, Jiang Xuehuan, Wang Sishan, et al. Tightly coupled GPS/INS integrated navigation algorithm based on Kalman filter[C]//2012 Second International Conference on Business Computing and Global Information, 2012: 588-591.

    [3] Wang Wei, Liu Zongyu, Xie Rongrong. An improved tightly coupled approach for GPS/INS integration[C]// Proceeding of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, 2004: 1164-1167.

    [4] Bao Qilian, Zhou Yuanyuan. Design of GPS/SINS pseudorange (pseudo-range rate) integrated navigation system based on UKF[J]. Journal of Chinese Inertial Technology, 2008, 16(1): 78-81.

    鮑其蓮,周媛媛. 基于UKF的GPS/SINS偽距(偽距率)組合導(dǎo)航系統(tǒng)設(shè)計[J]. 中國慣性技術(shù)學(xué)報,2008,16(1):78-81.

    [5] Ak?a T, Demirekler M. An Adaptive Unscented Kalman Filter for Tightly Coupled INS/GPS Integration[C]// Position Location and Navigation Symposium (PLANS), IEEE/ION. 2012: 389-395.

    [6] Bungartz H J, Dirnstorfer S. Higher order quadrature on sparse grids[C]//Computational Science-ICCS, 2004: 394-401.

    [7] Gerstner T, Griebel M. Numerical integration using sparse grids[J]. Numerical Algorithms, 1988, 18(3-4): 209-232.

    [8] Wang Haipeng. Research and application of quadrature Kalman filter based on sparse-grid theory[D]. Southeast University, 2013.

    王海鵬. 基于稀疏網(wǎng)格理論的積分卡爾曼濾波算法研究及應(yīng)用[D].東南大學(xué), 2013.

    [9] Wasilkowski G W, Wozniakowski H. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems[J]. Journal of Complexity, 1995, 11(1): 1-56.

    [10] Heiss F, Winschel V. Likelihood Approximation by Numerical Integration on Sparse Grids[J]. Journal of Econometrics, 2008, 144(1): 62-80.

    [11] Bin Jia, Ming Xin, Yang Cheng. Sparse-grid Quadrature Nonlinear Filtering[J]. Automatica, 2012, 48(2): 327-341.

    1005-6734(2014)06-0799-06

    10.13695/j.cnki.12-1222/o3.2014.06.018

    稀疏網(wǎng)格求積分濾波算法在SINS/GPS緊組合導(dǎo)航中的應(yīng)用

    程向紅1,王曉飛1,劉峰麗2
    (1. 東南大學(xué) 微慣性儀表與先進(jìn)導(dǎo)航技術(shù)教育部重點實驗室,南京 210096;2. 航天恒星科技有限公司,北京 100086)

    高精度的導(dǎo)航信息對于高空飛行器至關(guān)重要。針對高空飛行器的特點,選取發(fā)射點慣性坐標(biāo)系為導(dǎo)航坐標(biāo)系,建立基于偽距、偽距率的SINS/GPS緊組合導(dǎo)航系統(tǒng)數(shù)學(xué)模型。針對該系統(tǒng)的狀態(tài)方程和量測方程非線性的特性,采用基于稀疏網(wǎng)格求積分濾波算法。整個設(shè)計實現(xiàn)了對準(zhǔn)與導(dǎo)航的一體化,避免了將對準(zhǔn)與導(dǎo)航分別設(shè)計的繁瑣過程。仿真結(jié)果表明,在飛行器起飛階段,由于系統(tǒng)的非線性較強(qiáng),稀疏網(wǎng)格求積分濾波算法比 UKF濾波算法的對準(zhǔn)精度更高,并且對準(zhǔn)速度更快;通過比較稀疏網(wǎng)格求積分濾波算法在不同組合方式下的估計效果,可以看出采用緊組合方式可以明顯提高導(dǎo)航精度。最后采用不同精度的傳感器進(jìn)行仿真,結(jié)果表明基于稀疏網(wǎng)格求積分濾波算法的緊組合算法能夠適用的傳感器精度范圍較廣。

    SINS/GPS;緊組合;對準(zhǔn);導(dǎo)航;稀疏網(wǎng)格;非線性濾波

    U666.1

    A

    2014-07-28;

    2014-10-13

    中國航天科技集團(tuán)公司衛(wèi)星應(yīng)用研究院創(chuàng)新基金資助(2014_CXJJ_DH_08);總裝預(yù)研項目(513090604)

    程向紅(1963—),女,教授,博士生導(dǎo)師,從事慣性技術(shù)及其應(yīng)用研究。E-mail:xhcheng@seu.edu.cn

    Application of sparse grid quadrature filter to tightly-coupled SINS/GPS integrated navigation system

    CHENG Xiang-hong1, WANG Xiao-fei1, LIU Feng-li2

    猜你喜歡
    偽距對準(zhǔn)慣性
    你真的了解慣性嗎
    沖破『慣性』 看慣性
    對準(zhǔn)提升組織力的聚焦點——陜西以組織振興引領(lǐng)鄉(xiāng)村振興
    無處不在的慣性
    北斗偽距觀測值精度分析
    一種改進(jìn)的速度加姿態(tài)匹配快速傳遞對準(zhǔn)算法
    GNSS偽距粗差的開窗探測及修復(fù)
    測繪通報(2016年12期)2017-01-06 03:37:13
    普遍存在的慣性
    INS/GPS組合系統(tǒng)初始滾轉(zhuǎn)角空中粗對準(zhǔn)方法
    聯(lián)合碼偽距和載波寬巷組合的相對定位技術(shù)研究
    亚洲欧美中文字幕日韩二区| 老熟女久久久| 人妻 亚洲 视频| 久久久久久久久久久免费av| 日本av免费视频播放| 国国产精品蜜臀av免费| 人妻少妇偷人精品九色| 国产午夜精品一二区理论片| 天天操日日干夜夜撸| 七月丁香在线播放| 一级毛片我不卡| 熟妇人妻不卡中文字幕| 国产成人精品在线电影| 精品国产一区二区久久| av国产久精品久网站免费入址| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 亚洲综合色惰| 日本欧美国产在线视频| 国产色婷婷99| 精品人妻偷拍中文字幕| 97在线视频观看| 亚洲国产精品成人久久小说| 热99久久久久精品小说推荐| av播播在线观看一区| 精品一区在线观看国产| 亚洲五月色婷婷综合| 男人添女人高潮全过程视频| 亚洲精品乱码久久久久久按摩| 亚洲av福利一区| 亚洲国产最新在线播放| 国产日韩欧美在线精品| 欧美+日韩+精品| 人体艺术视频欧美日本| 中文精品一卡2卡3卡4更新| 美国免费a级毛片| 日韩制服丝袜自拍偷拍| 夫妻性生交免费视频一级片| 一级毛片 在线播放| 精品卡一卡二卡四卡免费| 狠狠精品人妻久久久久久综合| 99国产精品免费福利视频| av在线观看视频网站免费| 男女国产视频网站| 婷婷色av中文字幕| 久久久国产精品麻豆| 欧美bdsm另类| 亚洲综合精品二区| 国产精品麻豆人妻色哟哟久久| 久久国产精品大桥未久av| 一区二区av电影网| 国产1区2区3区精品| 18禁动态无遮挡网站| 99国产精品免费福利视频| 午夜av观看不卡| 精品一区在线观看国产| 青春草国产在线视频| 欧美激情 高清一区二区三区| 交换朋友夫妻互换小说| 美女xxoo啪啪120秒动态图| 国产日韩欧美视频二区| 亚洲成av片中文字幕在线观看 | 中文字幕人妻丝袜制服| 少妇的逼好多水| a级毛片黄视频| 成人综合一区亚洲| 国产黄色免费在线视频| 亚洲 欧美一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 菩萨蛮人人尽说江南好唐韦庄| 王馨瑶露胸无遮挡在线观看| 国产亚洲av片在线观看秒播厂| 久久久久久久久久人人人人人人| 满18在线观看网站| 国产福利在线免费观看视频| 国产综合精华液| 亚洲一级一片aⅴ在线观看| 午夜久久久在线观看| 啦啦啦中文免费视频观看日本| 五月天丁香电影| 如何舔出高潮| 夜夜爽夜夜爽视频| 午夜日本视频在线| 亚洲国产av影院在线观看| 午夜免费鲁丝| 高清在线视频一区二区三区| 国产精品久久久久久久电影| 有码 亚洲区| 51国产日韩欧美| 97超碰精品成人国产| 只有这里有精品99| 国产成人a∨麻豆精品| 亚洲伊人色综图| 精品国产一区二区三区久久久樱花| 久久免费观看电影| 亚洲成人一二三区av| 9色porny在线观看| 一级毛片 在线播放| 99热网站在线观看| 亚洲欧洲国产日韩| 夫妻午夜视频| 性色avwww在线观看| 韩国av在线不卡| 日本欧美视频一区| 美女大奶头黄色视频| 91久久精品国产一区二区三区| 国产精品国产三级国产专区5o| 伦精品一区二区三区| 国产一区二区三区av在线| 午夜久久久在线观看| 婷婷色综合大香蕉| 亚洲欧美精品自产自拍| 亚洲熟女精品中文字幕| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app| 高清视频免费观看一区二区| 成人手机av| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 国产精品久久久av美女十八| 91精品三级在线观看| 亚洲精品自拍成人| 男女国产视频网站| 熟女人妻精品中文字幕| 内地一区二区视频在线| 久久精品国产鲁丝片午夜精品| 亚洲性久久影院| 视频在线观看一区二区三区| 午夜激情久久久久久久| 欧美少妇被猛烈插入视频| 久久97久久精品| 99热全是精品| 青春草视频在线免费观看| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 啦啦啦啦在线视频资源| 免费女性裸体啪啪无遮挡网站| √禁漫天堂资源中文www| 国产亚洲一区二区精品| 九九在线视频观看精品| 黑人欧美特级aaaaaa片| 高清毛片免费看| 天堂中文最新版在线下载| 精品一区在线观看国产| 女人被躁到高潮嗷嗷叫费观| 你懂的网址亚洲精品在线观看| 有码 亚洲区| 欧美丝袜亚洲另类| 制服丝袜香蕉在线| 美女xxoo啪啪120秒动态图| 久久人人97超碰香蕉20202| 永久网站在线| 免费观看性生交大片5| 极品少妇高潮喷水抽搐| 国产精品成人在线| 夜夜骑夜夜射夜夜干| 考比视频在线观看| 亚洲国产精品专区欧美| 麻豆乱淫一区二区| 免费高清在线观看日韩| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 边亲边吃奶的免费视频| 少妇猛男粗大的猛烈进出视频| 又黄又爽又刺激的免费视频.| 这个男人来自地球电影免费观看 | 日韩中字成人| 亚洲精品日本国产第一区| 国产毛片在线视频| 亚洲国产欧美在线一区| 性色av一级| 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 三级国产精品片| 久久久久久久久久久免费av| 中国国产av一级| 老熟女久久久| 亚洲一区二区三区欧美精品| 一级毛片我不卡| 免费看不卡的av| 亚洲欧美成人综合另类久久久| 中文乱码字字幕精品一区二区三区| 亚洲性久久影院| 桃花免费在线播放| 晚上一个人看的免费电影| 免费女性裸体啪啪无遮挡网站| 久久久久人妻精品一区果冻| 在线观看一区二区三区激情| 看非洲黑人一级黄片| 久久久久网色| 亚洲经典国产精华液单| 国产精品一区二区在线不卡| 亚洲欧美色中文字幕在线| 大香蕉久久成人网| 下体分泌物呈黄色| 九草在线视频观看| 国产日韩一区二区三区精品不卡| 在线观看人妻少妇| 婷婷色综合大香蕉| 国产日韩欧美视频二区| 成人毛片60女人毛片免费| 免费观看性生交大片5| 久久国产精品男人的天堂亚洲 | 久久精品国产鲁丝片午夜精品| 国产精品 国内视频| 国产av国产精品国产| 国产免费又黄又爽又色| 国产永久视频网站| 国产精品三级大全| 久久狼人影院| 国产精品人妻久久久久久| h视频一区二区三区| 91精品伊人久久大香线蕉| 啦啦啦中文免费视频观看日本| 中文乱码字字幕精品一区二区三区| 伊人久久国产一区二区| 久久精品人人爽人人爽视色| 美女大奶头黄色视频| 中文天堂在线官网| av在线app专区| 看免费成人av毛片| av播播在线观看一区| 精品少妇久久久久久888优播| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| av.在线天堂| 最近最新中文字幕免费大全7| 久久综合国产亚洲精品| 亚洲精品456在线播放app| 免费看光身美女| 欧美精品人与动牲交sv欧美| 制服诱惑二区| 欧美日韩视频高清一区二区三区二| 另类精品久久| 日本黄色日本黄色录像| 26uuu在线亚洲综合色| 好男人视频免费观看在线| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 一级毛片我不卡| 久热这里只有精品99| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 边亲边吃奶的免费视频| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 亚洲av男天堂| 九色亚洲精品在线播放| 寂寞人妻少妇视频99o| av国产精品久久久久影院| 人妻 亚洲 视频| 最近最新中文字幕免费大全7| 美女视频免费永久观看网站| 蜜臀久久99精品久久宅男| 午夜福利影视在线免费观看| 国产免费现黄频在线看| 亚洲,一卡二卡三卡| 午夜视频国产福利| 国产激情久久老熟女| 国产深夜福利视频在线观看| av福利片在线| 亚洲av综合色区一区| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 少妇的丰满在线观看| 纯流量卡能插随身wifi吗| 日韩av在线免费看完整版不卡| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 亚洲精品久久午夜乱码| 久久av网站| 国产亚洲欧美精品永久| 又黄又爽又刺激的免费视频.| 日韩伦理黄色片| 欧美成人午夜精品| 1024视频免费在线观看| 欧美xxxx性猛交bbbb| 免费女性裸体啪啪无遮挡网站| 久久国产亚洲av麻豆专区| 久久亚洲国产成人精品v| 啦啦啦在线观看免费高清www| 熟妇人妻不卡中文字幕| 26uuu在线亚洲综合色| 天堂俺去俺来也www色官网| 男女免费视频国产| 精品久久久精品久久久| 久久鲁丝午夜福利片| 青春草亚洲视频在线观看| 国产又爽黄色视频| 日韩三级伦理在线观看| 一个人免费看片子| 99久久中文字幕三级久久日本| 久久久久久人人人人人| 欧美日韩精品成人综合77777| 亚洲精品成人av观看孕妇| 成年美女黄网站色视频大全免费| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 黄片播放在线免费| 深夜精品福利| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 成人漫画全彩无遮挡| 人妻 亚洲 视频| 欧美精品国产亚洲| 美女中出高潮动态图| 亚洲综合色惰| videos熟女内射| 国产国语露脸激情在线看| 另类精品久久| 亚洲熟女精品中文字幕| 国产成人欧美| 最黄视频免费看| 韩国高清视频一区二区三区| av播播在线观看一区| 侵犯人妻中文字幕一二三四区| 日本黄大片高清| 人妻人人澡人人爽人人| 欧美日韩一区二区视频在线观看视频在线| 一二三四中文在线观看免费高清| 国产在线免费精品| 亚洲精品av麻豆狂野| 亚洲,欧美,日韩| 亚洲欧洲精品一区二区精品久久久 | 成人亚洲欧美一区二区av| 免费观看性生交大片5| 亚洲性久久影院| 搡老乐熟女国产| 午夜免费观看性视频| 大码成人一级视频| 国产免费又黄又爽又色| 日韩av免费高清视频| av在线老鸭窝| 亚洲综合色网址| 在线观看人妻少妇| 国产精品人妻久久久影院| 97在线人人人人妻| 亚洲一级一片aⅴ在线观看| 极品少妇高潮喷水抽搐| 亚洲成国产人片在线观看| 男女午夜视频在线观看 | 国产淫语在线视频| 色哟哟·www| 在线观看免费视频网站a站| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看人妻少妇| 精品午夜福利在线看| 91成人精品电影| 99热网站在线观看| 欧美精品高潮呻吟av久久| 亚洲成国产人片在线观看| 老女人水多毛片| 亚洲综合色惰| 国产一区有黄有色的免费视频| 成人国产av品久久久| 国产在视频线精品| 免费观看av网站的网址| 免费日韩欧美在线观看| av.在线天堂| 欧美人与性动交α欧美软件 | 秋霞在线观看毛片| 两性夫妻黄色片 | 日韩,欧美,国产一区二区三区| 欧美精品国产亚洲| 五月天丁香电影| 欧美精品av麻豆av| 最近的中文字幕免费完整| 99re6热这里在线精品视频| 日本wwww免费看| a级毛片黄视频| 国产精品.久久久| 欧美另类一区| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 一级毛片我不卡| 色5月婷婷丁香| 亚洲欧洲日产国产| 国产在线一区二区三区精| 1024视频免费在线观看| 人妻人人澡人人爽人人| 久久av网站| 黑人高潮一二区| 女人被躁到高潮嗷嗷叫费观| 国产免费福利视频在线观看| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 三级国产精品片| 国产精品成人在线| 久久久久久久国产电影| 我的女老师完整版在线观看| 美女中出高潮动态图| 色哟哟·www| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 精品酒店卫生间| 男男h啪啪无遮挡| 色网站视频免费| 中文字幕精品免费在线观看视频 | 好男人视频免费观看在线| 大陆偷拍与自拍| av不卡在线播放| 人成视频在线观看免费观看| 麻豆精品久久久久久蜜桃| 日本av免费视频播放| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 老女人水多毛片| 国产成人精品婷婷| 亚洲欧美成人精品一区二区| 最近中文字幕高清免费大全6| av有码第一页| 我要看黄色一级片免费的| 国产成人精品无人区| 欧美精品亚洲一区二区| 如日韩欧美国产精品一区二区三区| 婷婷成人精品国产| 日本wwww免费看| 国产色爽女视频免费观看| 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 在线观看免费高清a一片| 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇| 午夜av观看不卡| 自线自在国产av| 日本vs欧美在线观看视频| 一个人免费看片子| 亚洲精品国产色婷婷电影| 人人妻人人爽人人添夜夜欢视频| 热re99久久国产66热| 久久人妻熟女aⅴ| 午夜激情av网站| 久久99蜜桃精品久久| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 青春草视频在线免费观看| 国产高清国产精品国产三级| 岛国毛片在线播放| 国产在视频线精品| 视频在线观看一区二区三区| 亚洲国产成人一精品久久久| 各种免费的搞黄视频| 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 黄色一级大片看看| 日韩免费高清中文字幕av| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 日韩制服骚丝袜av| 免费人成在线观看视频色| 国产视频首页在线观看| 五月开心婷婷网| 婷婷色综合www| 久久久亚洲精品成人影院| 蜜桃国产av成人99| 成人国产av品久久久| 国产精品国产三级国产专区5o| 日本色播在线视频| 免费黄频网站在线观看国产| 一级毛片电影观看| 看免费成人av毛片| 国产亚洲精品久久久com| 亚洲精品视频女| 女人被躁到高潮嗷嗷叫费观| 亚洲精品色激情综合| 蜜桃在线观看..| 日日摸夜夜添夜夜爱| 一级毛片黄色毛片免费观看视频| 久久久久国产精品人妻一区二区| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影小说| 一区二区三区精品91| 欧美成人午夜免费资源| 国产精品免费大片| 亚洲精品美女久久av网站| 黄片播放在线免费| 深夜精品福利| 哪个播放器可以免费观看大片| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 少妇被粗大猛烈的视频| 国产爽快片一区二区三区| 亚洲美女视频黄频| av在线app专区| 亚洲成国产人片在线观看| 久久久久久久亚洲中文字幕| 一级毛片 在线播放| 一个人免费看片子| 国产一区二区在线观看av| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 日韩一区二区三区影片| 日产精品乱码卡一卡2卡三| 亚洲五月色婷婷综合| 18在线观看网站| 久久精品夜色国产| 精品福利永久在线观看| 在现免费观看毛片| 久久久久久久久久久久大奶| 久久精品国产综合久久久 | 制服人妻中文乱码| 日韩电影二区| 在线观看三级黄色| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片| 久久人人97超碰香蕉20202| 街头女战士在线观看网站| 国产成人欧美| 欧美亚洲 丝袜 人妻 在线| 丝袜脚勾引网站| 男女边摸边吃奶| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 国产亚洲一区二区精品| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 免费观看av网站的网址| 美女国产高潮福利片在线看| freevideosex欧美| 晚上一个人看的免费电影| www.色视频.com| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 久久精品国产鲁丝片午夜精品| 亚洲国产av影院在线观看| 久久久a久久爽久久v久久| 七月丁香在线播放| 91成人精品电影| 国产精品国产三级国产av玫瑰| 精品人妻一区二区三区麻豆| 精品一区二区三区四区五区乱码 | 久久精品国产鲁丝片午夜精品| 日本vs欧美在线观看视频| av在线老鸭窝| 国产男女内射视频| 午夜福利乱码中文字幕| 九色成人免费人妻av| 80岁老熟妇乱子伦牲交| 国产精品女同一区二区软件| 秋霞伦理黄片| 久久久精品94久久精品| 久久这里有精品视频免费| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区 | 亚洲欧美日韩另类电影网站| 亚洲美女黄色视频免费看| 国产成人aa在线观看| 婷婷色麻豆天堂久久| 三上悠亚av全集在线观看| 免费在线观看黄色视频的| 女人被躁到高潮嗷嗷叫费观| 国产麻豆69| 涩涩av久久男人的天堂| 亚洲国产欧美在线一区| 热99久久久久精品小说推荐| 黑丝袜美女国产一区| 国产免费一区二区三区四区乱码| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区国产| 中文欧美无线码| 999精品在线视频| 视频区图区小说| 又黄又爽又刺激的免费视频.| 精品久久国产蜜桃| 高清视频免费观看一区二区| 91精品国产国语对白视频| 岛国毛片在线播放| 国产1区2区3区精品| 全区人妻精品视频| 下体分泌物呈黄色| 91aial.com中文字幕在线观看| 三上悠亚av全集在线观看| 桃花免费在线播放| 在线观看免费视频网站a站| 成人影院久久| 女人久久www免费人成看片| 热99国产精品久久久久久7| 午夜福利网站1000一区二区三区| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 久久精品夜色国产| av免费观看日本| videos熟女内射| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| av天堂久久9| 黄色一级大片看看| 咕卡用的链子| 久久久久久久久久久久大奶| 欧美丝袜亚洲另类| 精品一区二区三区四区五区乱码 | 国产淫语在线视频| 青春草亚洲视频在线观看| 五月开心婷婷网| 热99国产精品久久久久久7| 国产极品天堂在线| 九九爱精品视频在线观看| xxx大片免费视频| 18禁国产床啪视频网站| 午夜福利视频精品| 国产女主播在线喷水免费视频网站| 性色av一级| 亚洲av成人精品一二三区| 青春草视频在线免费观看| 国产综合精华液| 欧美日韩综合久久久久久|