麻海燕+吳雅玲+余紅發(fā)+白康+袁銀峰
文章編號:6732049(2014)02007806
收稿日期:20140322
基金項目:[HT6SS]國家重點基礎(chǔ)研究發(fā)展計劃(“九七三”計劃)項目(2009CB623203);國家自然科學(xué)基金項目(51178221,21276264)
摘要:通過大摻量粉煤灰混凝土(HFCC)試件在質(zhì)量分?jǐn)?shù)為3.5%,12.5%,25%機場道面除冰液(CMA溶液)、質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液、質(zhì)量分?jǐn)?shù)為3.5%的飛機除冰液(AD溶液)、質(zhì)量分?jǐn)?shù)為25%的商品飛機除冰液與水中快速凍融試驗,獲得了凍融過程中HFCC的質(zhì)量損失率和相對彈性模量的變化規(guī)律。結(jié)果表明:在質(zhì)量分?jǐn)?shù)為3.5%的介質(zhì)中,HFCC在NaCl溶液中的凍融破壞以表面剝落為主,在AD,CMA溶液中以內(nèi)部凍融損傷為主;與水中凍融條件相比,質(zhì)量分?jǐn)?shù)為3.5%的CMA溶液延緩了HFCC的凍融破壞作用;HFCC在CMA溶液作用下的凍融破壞與其質(zhì)量分?jǐn)?shù)密切相關(guān),CMA溶液質(zhì)量分?jǐn)?shù)越高,HFCC的凍融破壞作用越小,當(dāng)CMA溶液的質(zhì)量分?jǐn)?shù)在12.5%以上時,即使經(jīng)受600次快速凍融循環(huán),其質(zhì)量損失率和相對動彈性模量損失均很?。辉谫|(zhì)量分?jǐn)?shù)為25%的凍融介質(zhì)中,HFCC在商品飛機除冰液中的抗凍性較差,在機場道面除冰液中抗凍性較好;HFCC完全能夠應(yīng)用于較高質(zhì)量分?jǐn)?shù)CMA溶液進行冬季除冰雪作業(yè)的水泥混凝土機場跑道。
關(guān)鍵詞:大摻量粉煤灰混凝土;機場道面除冰液;抗凍性;凍融循環(huán);動彈性模量
中圖分類號:TU528.2 文獻標(biāo)志碼:A
Freezethaw Durability of High Volume Fly Ash Content Concrete Exposed to Airfield Pavement Deicer
MA Haiyan1, WU Yaling1, YU Hongfa1, BAI Kang2, YUAN Yinfeng1
Abstract: The freezethaw durability of high volume fly ash content concrete (HFCC) specimens were tested by fast freezingthawing experiments. In the experiments, HFCC specimens exposed to different solutions which were composed of airfield pavement deicer, NaCl solution, aircraft deicer (AD), commercial deicer and water. The airfield pavement deicer mainly contained calcium magnesium acetate (CMA) and was changed at mass fractions of 3.5%, 12.5% and 25%. The mass fractions of NaCl solution, aircraft deicer and commercial deicer were 3.5%, 3.5% and 25%, respectively. Through the experiments, the change rules of the mass loss rate per unit area and the relative dynamic elastic modulus of HFCC were obtained.The results show that freezethaw damage of HFCC exposed to 3.5% NaCl solution is closely attributed to surface deterioration.When HFCC specimens exposed to 3.5% AD or 3.5% CMA solution, it will be damaged by internal freezethaw damage.Compared with water,freezethaw damage effect of HFCC is delayed by 3.5% CMA solution.Freezethaw durability of concrete exposed to CMA solutions is closely related to the solution mass fractions,the higher the CMA mass fraction is,the smaller the freezethaw damage effects are.When the CMA mass fraction is greater than 12.5%, the mass loss rate and the relative dynamic elastic modulus losses are small after 600 times fast freezethaw cycle. HFCC has a poor freezethaw durability when exposed to 25% commercial deicer and has a good freezethaw durability when exposed to 25% airfield pavement deicer. Therefore, HFCC can be completely applied to the cement concrete airfield runway which is deiced by high mass fractions of CMA.
Key words: high volume fly ash concrete; airfield pavement deicer; freezethaw durability; freezethaw cycle; dynamic elastic modulus
0 引 言
中國北方地區(qū)冬季普遍較低的氣溫致使機場道面及飛機表面都有雪、冰覆蓋,若不及時除去,極易導(dǎo)致飛行事故[1]。為了保證機場飛機起降的安全,需要對飛機跑道進行除冰雪作業(yè)。美國等發(fā)達國家最早使用的機場道面除冰液是醋酸鈣鎂(Calcium Magnesium Acetate,CMA),后來改用了醋酸鉀(鈉),反而加劇了混凝土的堿集料反應(yīng)[23],最近幾年又重新改用醋酸鈣鎂。各國關(guān)于除冰液對機場道面除冰雪的作用研究主要是針對以乙二醇為主要成分的飛機除冰液[413]和以醋酸鈣鎂為主要成分的機場道面除冰液[2]。早在1991年,美國TRB開始關(guān)注CMA溶液對混凝土的危害[5]。隨后的相關(guān)研究表明[67],CMA溶液會降低水泥砂漿的力學(xué)性能,致使混凝土表面剝落加劇,強度大幅降低。宋聿修等[8]和馬好霞等[9]的研究涉及混凝土在含有除冰液條件下的常溫腐蝕剝落破壞。文獻[10]~[13]中的研究表明,混凝土的凍融剝落現(xiàn)象與CMA溶液的質(zhì)量分?jǐn)?shù)關(guān)系密切。本文中筆者將進一步研究CMA溶液對大摻量粉煤灰混凝土(High Volume Fly Ash Content Concrete,HFCC)的抗凍性影響?yīng)┮?guī)律。
1 試驗概況
1.1 原材料
試驗采用的水泥為南京市江南小野田水泥廠生產(chǎn)的P.Ⅱ52.5純硅酸鹽水泥,其基本物理力學(xué)性能見表1,化學(xué)成分見表2,熟料的礦物組成為:w(C3S)=55.5%,w(C2S)=19.9%,w(C3A)=6.6%,w(C4AF)=10.2%,w(·)為原材料各化學(xué)成分的質(zhì)量分?jǐn)?shù)。砂采用南京產(chǎn)黃砂,表觀密度為2 500 kg·m-3,堆積密度為1 615 kg·m-3,含泥量(質(zhì)量分?jǐn)?shù),下同)1.0%,細(xì)度模數(shù)為2.72,屬于Ⅱ區(qū)級配,中砂。石料采用南京六合產(chǎn)玄武巖碎石,最大粒徑為10 mm,表觀密度為2 820 kg·m-3,堆積密度為1 435 kg·m-3,含泥量0.3%,針片狀顆粒含量(質(zhì)量分?jǐn)?shù),下同)11.4%,壓碎指標(biāo)6%,基本屬于粒徑5~10 mm連續(xù)級配。采用南京市自來水。粉煤灰(Fly Ash,FA)為鎮(zhèn)江產(chǎn)風(fēng)選Ⅰ級粉煤灰,細(xì)度6.8%,含水率0.04%,燒失量(質(zhì)量分?jǐn)?shù))2.04%,需水量比(質(zhì)量比)93%,SO3含量1.22%(表2)。高效減水劑采用江蘇省建筑科學(xué)研究院有限公司生產(chǎn)的JMB型萘系高效減水劑,黃褐色粉末,減水率在20%以上,Na2SO4含量小于2%,氯離子含量小于0.01%。引氣劑是江蘇省建筑科學(xué)研究院公司生產(chǎn)的液體JM2000c高效引氣劑,推薦摻量(質(zhì)量分?jǐn)?shù))為0.5×10-4~1.0×10-4。
1.2 配合比設(shè)計及試件的成型與養(yǎng)護
按照《機場道面水泥混凝土配合比設(shè)計技術(shù)標(biāo)準(zhǔn)》(GJB 1578—92)[14],設(shè)計了大摻量粉煤灰混凝土HFCC,其水膠比為0.29,粉煤灰摻量為40%。混凝土拌合物的試驗執(zhí)行《普通混凝土拌合物性能試驗方法標(biāo)準(zhǔn)》(GB/T 50080—2002),出料后測定混凝土拌合物的坍落度,澆注、振動成規(guī)格為40 mm×40 mm×160 mm的試件,養(yǎng)護至150 d齡期時進行凍融試驗,同時制作規(guī)格為100 mm×100 mm×400 mm的試件用于測定強度。混凝土的配合比及150 d強度如表3所示[JP2]。試件成型后在標(biāo)準(zhǔn)養(yǎng)護室?guī)pB(yǎng)護24 h后拆模,然后移入溫度為
表1水泥的基本物理力學(xué)性能
Tab.1 Basic Physical and Mechanical Properties of Cement
水泥型號 密度/(g·cm-3) 80 μm篩余/% 比表面積/(m2·kg-1) [ZB(]
凝結(jié)時間/min
初凝 終凝需水量比/%
抗彎強度/MPa 抗壓強度/MPa
3 d 28 d 3 d 28 d
P.Ⅱ52.5 3.15 0.3 395 131 185 27.20 6.4 9.1 34.7 60.3
表2 主要原材料的化學(xué)成分
Tab.2 Chemical Compositions of Portland Cement
原材料 w(SiO2) w(Al2O3) w(CaO) w(MgO) w(SO3) w(Fe2O3) w(Na2O) w(K2O) w(I.L) w(R)
P.Ⅱ52.5 21.53 [KG*2]4.60 64.09 0.96 2.09 3.37 0.12 0.62 1.84 0.78
粉煤灰 52.37 32.13 [KG*2]2.16 0.47 0.33 4.13 0.25 0.61 1.30 6.25
注:w(I.L)為燒失量的質(zhì)量分?jǐn)?shù);w(R)為剩余成分的質(zhì)量分?jǐn)?shù)。
表3混凝土的配合比及150 d強度
Tab.3 Mixture Proportions and 150 d Strength of Concrete
混凝土種類
各材料用量/(kg·m-3)
水泥 粉煤灰 砂 粗骨料 水 減水劑 引氣劑[ZB)] 坍落度/mm
150 d強度/MPa
抗壓 抗彎 抗裂水膠比
HFCC 318 212 671 1 095 154 3.445 0.042 4 200 77.14 5.82 3.87 0.29
(20±3) ℃的飽和石灰水中養(yǎng)護90 d,對試件的力學(xué)性能測試執(zhí)行《普通混凝土力學(xué)性能試驗方法標(biāo)準(zhǔn)》(GB/T 50081—2002)。
1.3 試驗方法
試驗在水、NaCl、乙二醇、CMA溶液的凍融介質(zhì)中進行,其中NaCl溶液的質(zhì)量分?jǐn)?shù)為3.5%,乙二醇溶液及CMA溶液的質(zhì)量分?jǐn)?shù)分別為3.5%,12.5%,25%。由于缺少LBRA型商品飛機除冰[CM(22]液,在凍融過程中分別采用相對動彈性模量和質(zhì)量
損失率評判混凝土試件發(fā)生的內(nèi)部凍融損傷和表面剝蝕現(xiàn)象。本文中采用NM4B型無損非金屬超聲波檢測分析儀測定混凝土試件在凍融過程中的超聲波聲時,按下式計算得出動彈性模量Er[9]
Er=En E0 =t2n t20 ×100%
(1)
式中:E0,t0分別為混凝土試件沿長度方向的初始動彈性模量和初始超聲波聲時;En,tn分別為n次凍融循環(huán)后混凝土試件沿長度方向的動彈性模量和超聲波聲時。
按照《普通混凝土長期性能和耐久性能試驗方法》(GB/T 50082—2009)中的相關(guān)規(guī)定,以相對動彈性模量下降到60%作為評判混凝土失效的標(biāo)準(zhǔn)之一。
采用電子天平(精度0.1 g)測定混凝土試件凍融過程中的質(zhì)量損失,質(zhì)量損失率按下式計算
Wl=Gn-G0 G0 ×100%
(2)
式中:Wl為質(zhì)量損失率;G0為試件的初始質(zhì)量;Gn為n次凍融循環(huán)后試件的質(zhì)量。
按照《普通混凝土長期性能和耐久性能試驗方法》(GB/T 50082—2009),采用5%的質(zhì)量損失率作為凍融破壞標(biāo)準(zhǔn)之一。
2 結(jié)果分析
2.1 HFCC在不同凍融介質(zhì)作用下的抗凍性
[JP2]圖1為HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的NaCl,[JP]AD,CMA溶液中的快速凍融循環(huán)作用下的質(zhì)量損失率和相對動彈性模量變化規(guī)律。由圖1(a)可知,在不同凍融介質(zhì)中,HFCC的質(zhì)量損失率隨著凍融循環(huán)次數(shù)的增加而逐漸增大,當(dāng)超過一定的凍融循環(huán)次數(shù)時,其質(zhì)量損失率急劇增大。對于不同的凍融介質(zhì),HFCC發(fā)生質(zhì)量損失率急劇變化的該凍融循環(huán)次數(shù)(臨界凍融點)與凍融介質(zhì)的種類有關(guān)。與水中凍融過程相比,HFCC在質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液中的臨界凍融點沒有明顯差異,均為300次,而在NaCl溶液中的臨界凍融點則提前到250次,凍融循環(huán)次數(shù)減少17%。HFCC在不同凍融介質(zhì)中達到混凝土質(zhì)量損失標(biāo)準(zhǔn)(質(zhì)量損失率為5%)的抗凍融循環(huán)次數(shù)依次為:水中約為375次,在質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA,NaCl溶液中分別為375,375,300次。圖2為HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的NaCl,AD,CMA溶液300次凍融循環(huán)作用下的破壞表面狀態(tài)。由圖2可以看出,HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液中的凍融表面剝蝕規(guī)律比較接近,在質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液中的凍融表面剝蝕破壞作用明顯加快,甚至出現(xiàn)端頭凍酥現(xiàn)象。
圖1HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的NaCl,AD,CMA溶液中的抗凍性
Fig.1 Freezthawing Durability of HFCC Exposed to Water, 3.5% NaCl, AD and CMA Solutions
]圖2 HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的NaCl,AD,CMA溶液300次凍融循環(huán)作用下的破壞表面狀態(tài)
Fig.2 Damage Surface States of HFCC Samples Under 300 Times Freezethaw Cycles Exposed to Water, 3.5% NaCl, AD and CMA Solutions
由圖1(b)可見,在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,[JP]CMA溶液的快速凍融過程中,HFCC的相對動彈性模量下降規(guī)律比較接近,但是質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液中其相對動彈性模量的下降速度明顯減慢。對于300次快速凍融循環(huán),HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液中的相對動彈性模量分別為56%,78%,71%,而在質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液中仍然達到88%。按照相對動彈性模量下降到60%的凍融破壞標(biāo)準(zhǔn),HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA,NaCl溶液中的抗凍融循環(huán)次數(shù)分別為275~300,300~325,325~350,425次。與上述按照質(zhì)量損失率的半段結(jié)果進行對比可知,在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液中,HFCC的相對動彈性模量下降速度比質(zhì)量損失率要快,而在質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液中的規(guī)律正好相反。由此可見,HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液中的凍融破壞機理以內(nèi)部的凍融微裂紋等損傷為主,在質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液中的凍融破壞機理則以表面剝蝕為主。綜合分析發(fā)現(xiàn),當(dāng)凍融介質(zhì)的質(zhì)量分?jǐn)?shù)為3.5%時,3種凍融介質(zhì)都不同程度地延緩了HFCC內(nèi)部凍融損傷的發(fā)展過程,但是NaCl溶液卻同時加速了HFCC的表面凍融剝蝕。
2.2 CMA溶液質(zhì)量分?jǐn)?shù)對HFCC抗凍性的影響
Ma等[10]和楊全兵[12]的研究表明,由于除冰液的冰點降低效應(yīng),混凝土在較低質(zhì)量分?jǐn)?shù)的AD溶液和氯化鈉除冰鹽作用下的抗凍性更差。圖3為HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%,12.5%,25%的CMA溶液作用下的抗凍性。由圖3可見,在水、質(zhì)量分?jǐn)?shù)為3.5%,12.5%,25%的CMA溶液作用下,HFCC的質(zhì)量損失率和相對動彈性模量規(guī)律主要分為2大類:一類是以水和質(zhì)量分?jǐn)?shù)為3.5%CMA溶液為代表的低質(zhì)量分?jǐn)?shù)除冰液作用下HFCC的變化規(guī)律,另一類就是質(zhì)量分?jǐn)?shù)在12.5%以上的高質(zhì)量分?jǐn)?shù)CMA溶液作用下的HFCC的變化規(guī)律。
圖3 HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%,12.5%,25%的CMA溶液下的抗凍性
Fig.3 Freezethawing Durability of HFCC Exposed to Water, 3.5%, 12.5%, 25% CMA Solutions
由圖3(a)可見,在275次快速凍融循環(huán)之前,無論CMA溶液的質(zhì)量分?jǐn)?shù)高低,HFCC均不發(fā)生質(zhì)量損失,但是HFCC在水和3.5%CMA溶液中分別經(jīng)受275次和300次凍融循環(huán)(臨界凍融點)以后,其質(zhì)量損失率急劇升高,按照GB/T 50082—2009中的質(zhì)量損失率標(biāo)準(zhǔn)確定的抗凍融循環(huán)次數(shù)均為350次。HFCC在質(zhì)量分?jǐn)?shù)為12.5%,25%的CMA溶液中,即使經(jīng)受600次快速凍融循環(huán)作用,仍然沒有出現(xiàn)表面剝蝕現(xiàn)象。由圖3(b)可以看出,HFCC在水和3.5%CMA溶液作用下的相對動彈性模量下降速度相似,按照GB/T 50082—2009的相對動彈性模量標(biāo)準(zhǔn),其抗凍融循環(huán)次數(shù)分別為275~300次和325~350次,后者比前者延緩了50次。隨著CMA溶液質(zhì)量分?jǐn)?shù)的提高,HFCC的抗凍性增強,在質(zhì)量分?jǐn)?shù)為12.5%,25%的CMA溶液中快速凍融循環(huán)600次,其相對動彈性模量仍然高達100%。
綜上所述,CMA溶液能夠延緩HFCC的凍融破壞作用,且HFCC的抗凍融循環(huán)次數(shù)與CMA溶液的質(zhì)量分?jǐn)?shù)關(guān)系密切,其溶液質(zhì)量分?jǐn)?shù)越高,延緩HFCC凍融破壞的效果越好,當(dāng)質(zhì)量分?jǐn)?shù)在12.5%以上時,HFCC在經(jīng)受600次快速凍融循環(huán)而質(zhì)量損失率和相對動彈性模量幾乎無變化,因此,質(zhì)量分?jǐn)?shù)高于12.5%的CMA機場道面除冰液對HFCC沒有凍融破壞作用,HFCC完全能夠用于水泥混凝土機場跑道。
2.3 [ZK(]商品飛機除冰液與CMA溶液對HFCC抗凍性影響的差異[ZK)]
圖4為HFCC在水、質(zhì)量分?jǐn)?shù)為25%的CMA溶液和質(zhì)量分?jǐn)?shù)為25%的商品飛機除冰液中的抗凍性。由圖4(a)可知,HFCC在水和質(zhì)量分?jǐn)?shù)為25%的商品飛機除冰液中的臨界凍融點分別為275次和200次,在臨界凍融點后,隨著凍融循環(huán)次數(shù)的增加,兩
圖4 HFCC在水、質(zhì)量分?jǐn)?shù)為25%的CMA溶液和質(zhì)量分?jǐn)?shù)25%的商品飛機除冰液中的抗凍性
Fig.4 Freezethawing Durability of HFCC Exposed to Water, 25% CMA Solution and 25% Commercial Deicer
者的質(zhì)量損失率和相對動彈性模量下降速度也加快,達到凍融破壞標(biāo)準(zhǔn)的抗凍融循環(huán)次數(shù)分別為275~300次和225~250次??梢?,質(zhì)量分?jǐn)?shù)25%商品飛機除冰液加速了HFCC的表面凍融剝蝕和內(nèi)部凍融損傷作用,其抗凍融循環(huán)次數(shù)減少了33%。相對而言,HFCC在質(zhì)量分?jǐn)?shù)為25%的CMA溶液中經(jīng)受600次凍融循環(huán)并不發(fā)生凍融破壞,證明商品飛機除冰液不但加速了HFCC的內(nèi)部凍融損傷,而且加速了HFCC的表面凍融剝蝕,因而對HFCC具有非常嚴(yán)重的凍融危害。因此,為了避免對HFCC機場跑道的凍融破壞,應(yīng)該禁止將商品飛機除冰液用于水泥混凝土機場跑道的除冰雪作業(yè)。
3 結(jié) 語
(1)HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液的凍融表面剝蝕規(guī)律和相對動彈性模量比較接近,在質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液中的凍融表面剝蝕破壞比在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液中快,而相對動彈性模量下降速度比這3種凍融介質(zhì)要慢。
(2)HFCC在水、質(zhì)量分?jǐn)?shù)為3.5%的AD,CMA溶液中的凍融破壞機理以內(nèi)部的凍融微裂紋等損傷為主,在質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液中的凍融破壞機理則以表面剝蝕為主。
(3)當(dāng)凍融介質(zhì)的質(zhì)量分?jǐn)?shù)為3.5%時,AD,CMA溶液都不同程度地延緩了HFCC的內(nèi)部凍融損傷的發(fā)展過程,但是NaCl溶液卻同時加速了HFCC的表面凍融剝蝕。
(4)CMA溶液有延緩HFCC凍融破壞的作用,且HFCC的抗凍融循環(huán)次數(shù)與CMA溶液的質(zhì)量分?jǐn)?shù)關(guān)系密切,其溶液質(zhì)量分?jǐn)?shù)越高,延緩HFCC凍融破壞的效果越明顯,當(dāng)質(zhì)量分?jǐn)?shù)在12.5%以上時,HFCC在經(jīng)受600次快速凍融而質(zhì)量損失率和相對動彈性模量幾乎無變化,因此,HFCC完全能夠用于水泥混凝土機場跑道。
(5)質(zhì)量分?jǐn)?shù)為25%的商品飛機除冰液加速了HFCC的內(nèi)部凍融損傷的發(fā)展過程和表面凍融剝蝕。為了避免對HFCC機場跑道的凍融破壞,冬季除冰雪作業(yè)時,建議使用質(zhì)量分?jǐn)?shù)高于12.5%的CMA機場道面除冰液,同時必須禁止將商品飛機除冰液用于對水泥混凝土道面的除冰液作業(yè)。
參考文獻:
References:
[1]夏祖西,彭華喬,蘇正良,等.機場除冰液對環(huán)境的影響[J].中國民用航空,2008,93(9):5152.
XIA Zuxi,PENG Huaqiao,SU Zhengliang,et al.Impact of Airport Deicing Fluid on the Environment[J].China Civil Aviation,2008,93(9):5152.
[2]RANGARAJU P R.Mitigation of ASR in Presence of Pavement Deicing Chemicals[R].Skokie:Programs Management Office,2007.
[3]SHI X.Impact of Airport Pavement Deicing Products on Aircraft and Airfield Infrastructure[R].Washington DC:TRB,2008.
[4]MH 3145.49—1998,民用航空器維修標(biāo)準(zhǔn)[S].
MH 3145.49—1998,Maintenance Standards for Civil Aircraft[S].
[5]Committee on the Comparative Costs of Rock Salt and Calcium Magnesium Acetate (CMA) for Highway Deicing.Highway Deicing:Comparing Salt and Calcium Magnesium Acetate[R].Washington DC:TRB,1991.
[6][KG-*7]PETERSON O.The Chemical Effects on Cement Mortar of Solutions of Calcium Magnesium Acetate and Other Deicing Salts[R].Lund:University of Lund,1991.
[7]SANTAGATA M C,COLLEPARDI M.The Effect of CMA Deicers on Concrete Properties[J].Cement and Concrete Research,2000,30(9):13891394.
[8]宋聿修,劉雪松.“三北”地區(qū)機場水泥混凝土道面損壞原因分析[J].民航經(jīng)濟與技術(shù),1995(6):2526.
SONG Yuxiu,LIU Xuesong.Broke Analysis of Airport Runway in Sanbei Region[J].Civil Economics & Technology,1995(6):2526.
[9]馬好霞,余紅發(fā),盧一亭,等.水泥混凝土在機場道面除冰液作用下的化學(xué)腐蝕[J].建筑科學(xué)與工程學(xué)報,2012,29(2):6166.
MA Haoxia,YU Hongfa,LU Yiting,et al.Chemical Corrosion of Cement Concrete Exposed to Airport Pavement Deicers[J].Journal of Architecture and Civil Engineering,2012,29(2):6166.
[10]MA H Y,YU H F,CAO W T,et al.Freezethaw Durability of Portland Cement Concrete Subjected to Aircraft Deicer[J].Advanced Materials Research,2010,152/153:18561861.
[11]LANCASTER I E.Assessment of Alternative Deicing Chemicals to Rock Salt[R].Crowthorne:Transportation Research Laboratory,1993.
[12]楊全兵.鹽及融雪劑種類對混凝土剝蝕破壞影響的研究[J].建筑材料學(xué)報,2006,9(4):464467.
YANG Quanbing.Effects of Salt and Snowthawing Agent Types on Saltscaling Damage of Concrete[J].Journal of Building Materials,2006,9(4):464467.
[13]趙鴻鐸,姚祖康,張長安,等.飛機除冰液對停機坪水泥混凝土的影響[J].交通運輸工程學(xué)報,2004,4(2):15.
ZHAO Hongduo,YAO Zukang,ZHANG Changan,et al.Influence of Aircraft Deicer on Apron Cement Concrete[J].Journal of Traffic and Transportation Engineering,2004,4(2):15.
[14]GJB 1578—92,機場道面水泥混凝土配合比設(shè)計技術(shù)標(biāo)準(zhǔn)[S].
GJB 1578—92,Technical Standard for Airport Pavement Cement Concrete Mix Design[S].
參考文獻:
References:
[1]夏祖西,彭華喬,蘇正良,等.機場除冰液對環(huán)境的影響[J].中國民用航空,2008,93(9):5152.
XIA Zuxi,PENG Huaqiao,SU Zhengliang,et al.Impact of Airport Deicing Fluid on the Environment[J].China Civil Aviation,2008,93(9):5152.
[2]RANGARAJU P R.Mitigation of ASR in Presence of Pavement Deicing Chemicals[R].Skokie:Programs Management Office,2007.
[3]SHI X.Impact of Airport Pavement Deicing Products on Aircraft and Airfield Infrastructure[R].Washington DC:TRB,2008.
[4]MH 3145.49—1998,民用航空器維修標(biāo)準(zhǔn)[S].
MH 3145.49—1998,Maintenance Standards for Civil Aircraft[S].
[5]Committee on the Comparative Costs of Rock Salt and Calcium Magnesium Acetate (CMA) for Highway Deicing.Highway Deicing:Comparing Salt and Calcium Magnesium Acetate[R].Washington DC:TRB,1991.
[6][KG-*7]PETERSON O.The Chemical Effects on Cement Mortar of Solutions of Calcium Magnesium Acetate and Other Deicing Salts[R].Lund:University of Lund,1991.
[7]SANTAGATA M C,COLLEPARDI M.The Effect of CMA Deicers on Concrete Properties[J].Cement and Concrete Research,2000,30(9):13891394.
[8]宋聿修,劉雪松.“三北”地區(qū)機場水泥混凝土道面損壞原因分析[J].民航經(jīng)濟與技術(shù),1995(6):2526.
SONG Yuxiu,LIU Xuesong.Broke Analysis of Airport Runway in Sanbei Region[J].Civil Economics & Technology,1995(6):2526.
[9]馬好霞,余紅發(fā),盧一亭,等.水泥混凝土在機場道面除冰液作用下的化學(xué)腐蝕[J].建筑科學(xué)與工程學(xué)報,2012,29(2):6166.
MA Haoxia,YU Hongfa,LU Yiting,et al.Chemical Corrosion of Cement Concrete Exposed to Airport Pavement Deicers[J].Journal of Architecture and Civil Engineering,2012,29(2):6166.
[10]MA H Y,YU H F,CAO W T,et al.Freezethaw Durability of Portland Cement Concrete Subjected to Aircraft Deicer[J].Advanced Materials Research,2010,152/153:18561861.
[11]LANCASTER I E.Assessment of Alternative Deicing Chemicals to Rock Salt[R].Crowthorne:Transportation Research Laboratory,1993.
[12]楊全兵.鹽及融雪劑種類對混凝土剝蝕破壞影響的研究[J].建筑材料學(xué)報,2006,9(4):464467.
YANG Quanbing.Effects of Salt and Snowthawing Agent Types on Saltscaling Damage of Concrete[J].Journal of Building Materials,2006,9(4):464467.
[13]趙鴻鐸,姚祖康,張長安,等.飛機除冰液對停機坪水泥混凝土的影響[J].交通運輸工程學(xué)報,2004,4(2):15.
ZHAO Hongduo,YAO Zukang,ZHANG Changan,et al.Influence of Aircraft Deicer on Apron Cement Concrete[J].Journal of Traffic and Transportation Engineering,2004,4(2):15.
[14]GJB 1578—92,機場道面水泥混凝土配合比設(shè)計技術(shù)標(biāo)準(zhǔn)[S].
GJB 1578—92,Technical Standard for Airport Pavement Cement Concrete Mix Design[S].
參考文獻:
References:
[1]夏祖西,彭華喬,蘇正良,等.機場除冰液對環(huán)境的影響[J].中國民用航空,2008,93(9):5152.
XIA Zuxi,PENG Huaqiao,SU Zhengliang,et al.Impact of Airport Deicing Fluid on the Environment[J].China Civil Aviation,2008,93(9):5152.
[2]RANGARAJU P R.Mitigation of ASR in Presence of Pavement Deicing Chemicals[R].Skokie:Programs Management Office,2007.
[3]SHI X.Impact of Airport Pavement Deicing Products on Aircraft and Airfield Infrastructure[R].Washington DC:TRB,2008.
[4]MH 3145.49—1998,民用航空器維修標(biāo)準(zhǔn)[S].
MH 3145.49—1998,Maintenance Standards for Civil Aircraft[S].
[5]Committee on the Comparative Costs of Rock Salt and Calcium Magnesium Acetate (CMA) for Highway Deicing.Highway Deicing:Comparing Salt and Calcium Magnesium Acetate[R].Washington DC:TRB,1991.
[6][KG-*7]PETERSON O.The Chemical Effects on Cement Mortar of Solutions of Calcium Magnesium Acetate and Other Deicing Salts[R].Lund:University of Lund,1991.
[7]SANTAGATA M C,COLLEPARDI M.The Effect of CMA Deicers on Concrete Properties[J].Cement and Concrete Research,2000,30(9):13891394.
[8]宋聿修,劉雪松.“三北”地區(qū)機場水泥混凝土道面損壞原因分析[J].民航經(jīng)濟與技術(shù),1995(6):2526.
SONG Yuxiu,LIU Xuesong.Broke Analysis of Airport Runway in Sanbei Region[J].Civil Economics & Technology,1995(6):2526.
[9]馬好霞,余紅發(fā),盧一亭,等.水泥混凝土在機場道面除冰液作用下的化學(xué)腐蝕[J].建筑科學(xué)與工程學(xué)報,2012,29(2):6166.
MA Haoxia,YU Hongfa,LU Yiting,et al.Chemical Corrosion of Cement Concrete Exposed to Airport Pavement Deicers[J].Journal of Architecture and Civil Engineering,2012,29(2):6166.
[10]MA H Y,YU H F,CAO W T,et al.Freezethaw Durability of Portland Cement Concrete Subjected to Aircraft Deicer[J].Advanced Materials Research,2010,152/153:18561861.
[11]LANCASTER I E.Assessment of Alternative Deicing Chemicals to Rock Salt[R].Crowthorne:Transportation Research Laboratory,1993.
[12]楊全兵.鹽及融雪劑種類對混凝土剝蝕破壞影響的研究[J].建筑材料學(xué)報,2006,9(4):464467.
YANG Quanbing.Effects of Salt and Snowthawing Agent Types on Saltscaling Damage of Concrete[J].Journal of Building Materials,2006,9(4):464467.
[13]趙鴻鐸,姚祖康,張長安,等.飛機除冰液對停機坪水泥混凝土的影響[J].交通運輸工程學(xué)報,2004,4(2):15.
ZHAO Hongduo,YAO Zukang,ZHANG Changan,et al.Influence of Aircraft Deicer on Apron Cement Concrete[J].Journal of Traffic and Transportation Engineering,2004,4(2):15.
[14]GJB 1578—92,機場道面水泥混凝土配合比設(shè)計技術(shù)標(biāo)準(zhǔn)[S].
GJB 1578—92,Technical Standard for Airport Pavement Cement Concrete Mix Design[S].