• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于變換路徑法的豎向不規(guī)則RC框架動(dòng)力增大系數(shù)研究

      2014-09-23 08:36:39杜永峰包超李慧徐天妮

      杜永峰+包超+李慧+徐天妮

      文章編號(hào):6732049(2014)02004506

      收稿日期:20140219

      基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(51178211)

      摘要:以一系列不同布置形式的豎向不規(guī)則RC框架為對(duì)象,基于變換路徑法對(duì)底層中柱失效的框架分別進(jìn)行了非線性靜力和非線性動(dòng)力倒塌分析,研究了動(dòng)力增大系數(shù)的取值范圍,提出了針對(duì)該特定結(jié)構(gòu)形式的分類指標(biāo)。結(jié)果表明:GSA 2003中建議的動(dòng)力增大系數(shù)2.0偏于安全,使所設(shè)計(jì)結(jié)構(gòu)具有較高安全儲(chǔ)備的同時(shí),也難免造成一定浪費(fèi);隨著塔裙層數(shù)比的增大,結(jié)構(gòu)抵抗荷載動(dòng)力效應(yīng)的能力逐漸降低,在偶然荷載作用下發(fā)生倒塌的風(fēng)險(xiǎn)也隨之增大;減小結(jié)構(gòu)塔裙層數(shù)比,降低結(jié)構(gòu)不規(guī)則程度能夠減小結(jié)構(gòu)倒塌風(fēng)險(xiǎn)。

      關(guān)鍵詞:豎向不規(guī)則結(jié)構(gòu);動(dòng)力增大系數(shù);變換路徑法;連續(xù)性倒塌:RC框架

      中圖分類號(hào):TU375.4 文獻(xiàn)標(biāo)志碼:A

      Study on Dynamic Increase Factors of Vertically Irregular RC Frame Using Alternate Path Method

      DU Yongfeng1,2, BAO Chao1, LI Hui1,2, XU Tianni1

      Abstract: Taking a set of vertically irregular reinforced concrete (RC) frame as the analysis models, nonlinear static analysis and nonlinear dynamic collapse analysis were carried out based on the alternate path method for framework with the bottom interior column failure. The value range of dynamic increase factor was studied. Meanwhile, a new classification index was presented. The results show that the suggestive dynamic increase factor 2.0 of GSA 2003 is conservative, and it is inevitable to cause a certain waste in design while the design of structure has a high safety reserves. As the ratio of tower layer increases, the ability of structure to resist dynamic load decreases and the structural collapse risk increases under the action of accidental load. The collapse risk of structure can be reduced by decreasing ratio of tower layer and the irregularity of structure.

      Key words: vertically irregular structure; dynamic increase factor; alternate path method; progressive collapse; RC frame

      0 引 言

      目前,各國(guó)學(xué)者對(duì)于結(jié)構(gòu)連續(xù)性倒塌領(lǐng)域的研究已經(jīng)取得了大量成果[13],并且對(duì)于如何防止結(jié)構(gòu)連續(xù)性倒塌給出許多寶貴建議[49]。然而,現(xiàn)有的大部分研究成果都只是針對(duì)結(jié)構(gòu)布置較為規(guī)則的框架結(jié)構(gòu),由于目前不規(guī)則建筑數(shù)量相對(duì)較少,發(fā)生連續(xù)性倒塌的事故不多見(jiàn),并沒(méi)有引起太多關(guān)注。隨著社會(huì)經(jīng)濟(jì)快速發(fā)展和人們審美水平逐步提高,各種造型奇特的建筑日益增多,但是結(jié)構(gòu)形式的不規(guī)則通常會(huì)帶來(lái)明顯區(qū)別于普通規(guī)則結(jié)構(gòu)的連續(xù)性和冗余度降低以及傳力途徑復(fù)雜化等問(wèn)題,這也使得現(xiàn)有針對(duì)規(guī)則結(jié)構(gòu)倒塌的研究成果無(wú)法完全適用,所以非常有必要對(duì)不規(guī)則結(jié)構(gòu)的抗連續(xù)性倒塌性能進(jìn)行研究。

      國(guó)際上普遍采用的抗連續(xù)性倒塌設(shè)計(jì)規(guī)范主要有美國(guó)總務(wù)管理局頒布的GSA 2003[10]以及美國(guó)國(guó)防部制訂的UFC 402303[11]。規(guī)范中有關(guān)防止結(jié)構(gòu)連續(xù)性倒塌的方法可以分為直接設(shè)計(jì)法和間接設(shè)計(jì)法。間接設(shè)計(jì)法是通過(guò)增強(qiáng)剩余結(jié)構(gòu)的傳力路徑和延性、規(guī)定最小配筋率等手段改善結(jié)構(gòu)整體性來(lái)防止結(jié)構(gòu)連續(xù)性倒塌;直接設(shè)計(jì)法主要包括局部加強(qiáng)法和變換路徑法,其中,變換路徑法在GSA 2003和UFC 402303中都得到采用,而且該方法也是進(jìn)行結(jié)構(gòu)連續(xù)性倒塌分析應(yīng)用最為廣泛的方法。

      根據(jù)是否考慮非線性和動(dòng)力效應(yīng),結(jié)構(gòu)連續(xù)性倒塌分析分為線性靜力方法、非線性靜力方法和非線性動(dòng)力方法。結(jié)構(gòu)發(fā)生連續(xù)性倒塌是一個(gè)復(fù)雜的時(shí)變過(guò)程,為了避免計(jì)算復(fù)雜的動(dòng)力荷載重分布和慣性力效應(yīng),GSA 2003和UFC 402303中均提出通過(guò)在非線性靜力方法中引入動(dòng)力增大系數(shù)來(lái)近似考慮倒塌過(guò)程中的動(dòng)力效應(yīng)。

      對(duì)于框架結(jié)構(gòu)倒塌分析時(shí)動(dòng)力增大系數(shù)的取值,各國(guó)學(xué)者存在不同觀點(diǎn),一種觀點(diǎn)認(rèn)為現(xiàn)有取值雖然能夠滿足工程需要,但是一定程度上偏于保守[1213],在結(jié)構(gòu)設(shè)計(jì)中造成大量浪費(fèi);另一種觀點(diǎn)認(rèn)為,現(xiàn)有動(dòng)力增大系數(shù)的取值存在諸多不合理之處,引起動(dòng)力增大系數(shù)取值誤差,需要更加精確地研究其取值方法[14]。

      本文中筆者以一系列典型的豎向不規(guī)則RC框架結(jié)構(gòu)為例,探討了不同布置形式的豎向不規(guī)則框架結(jié)構(gòu)動(dòng)力增大系數(shù)取值情況及其連續(xù)性倒塌行為特征和規(guī)律,針對(duì)性地提出塔裙層數(shù)比作為分析指標(biāo)對(duì)模型做進(jìn)一步歸類分析。

      1 分析模型

      豎向剛度突變的典型不規(guī)則RC框架結(jié)構(gòu)模型如圖1所示,柱距為6 m,層高為3 m?;炷翉?qiáng)度等級(jí)C30,鋼筋選用HRB335。梁的截面尺寸取600 mm×350 mm,柱的截面根據(jù)樓層不同而分別取400 mm×400 mm和500 mm×500 mm兩種尺寸。樓面恒荷載標(biāo)準(zhǔn)值取 6 kPa,活荷載標(biāo)準(zhǔn)值取2 kPa,所有分析模型均根據(jù)抗震設(shè)防烈度7度來(lái)考慮構(gòu)件配筋情況,分別以A,B表示底部裙樓層數(shù)和上部塔樓層數(shù)。在分析時(shí),假定只有1根底層中柱為初始失效構(gòu)件。

      圖1分析模型

      Fig.1Analysis Model

      裙樓層數(shù)A與塔樓層數(shù)B依次取1,2,3,按照排列組合方法利用SAP2000結(jié)構(gòu)有限元軟件分別建立了9個(gè)二維模型和9個(gè)三維模型,以結(jié)構(gòu)裙樓層數(shù)和塔樓層數(shù)作為模型編號(hào),見(jiàn)表1。圖2為A3B2有限元模型。

      表1模型編號(hào)

      Tab.1Numbers of Models

      裙樓層數(shù)A

      塔樓層數(shù)B

      1 2 3

      1 A1B1 A1B2 A1B3

      2 A2B1 A2B2 A2B3

      3 A3B1 A3B2 A3B3

      圖2 A3B2有限元模型

      Fig.2 A3B2 Finite Element Model

      2 分析方法

      因本文分析模型中裙樓水平剛度為上部塔樓水平剛度的2倍,超過(guò)了FEMA 365[15]中規(guī)定的1.4倍限值,故線性靜力方法不適用于本文中建立的模型,采用非線性動(dòng)力方法和非線性靜力方法分別對(duì)該RC框架結(jié)構(gòu)進(jìn)行連續(xù)性倒塌分析??紤]到結(jié)構(gòu)倒塌過(guò)程中構(gòu)件屈服后的材料非線性行為,在梁的兩端及跨中指定M3鉸,柱的兩端指定PMM鉸,塑性鉸參數(shù)的確定則參考FEMA 356。2種方法中均考慮了結(jié)構(gòu)發(fā)生大變形后的重力二階效應(yīng)。

      2.1非線性動(dòng)力方法

      發(fā)生結(jié)構(gòu)連續(xù)性倒塌時(shí),目標(biāo)失效構(gòu)件在受到極端事件(如煤氣爆炸、汽車撞擊和恐怖襲擊等)影響時(shí),通常會(huì)在極短的時(shí)間內(nèi)喪失承重能力,此時(shí)結(jié)構(gòu)原本承受的恒荷載和活荷載就可能引起剩余結(jié)構(gòu)的倒塌。根據(jù)GSA 2003中的規(guī)定,在進(jìn)行結(jié)構(gòu)連續(xù)性倒塌分析時(shí),首先在原結(jié)構(gòu)上作用基本荷載[式(1)],計(jì)算將要被拆除的目標(biāo)柱內(nèi)力P0;然后從原結(jié)構(gòu)中拆除目標(biāo)柱,將目標(biāo)柱內(nèi)力P0反向施加在拆除構(gòu)件處,使得剩余結(jié)構(gòu)仍能保持原穩(wěn)定狀態(tài),并對(duì)剩余結(jié)構(gòu)進(jìn)行模態(tài)分析,確定其豎向振動(dòng)周期T;最后讓目標(biāo)柱內(nèi)力P0在極短時(shí)間tp(一般不大于T/10[10])內(nèi)衰減到0,這樣就能夠模擬底層承重構(gòu)件瞬間失效后結(jié)構(gòu)時(shí)變過(guò)程,如圖3所示,其中,P為荷載,t為時(shí)間。

      圖3 荷載時(shí)間曲線

      Fig.3 Loadtime Curve

      結(jié)構(gòu)所承受的荷載為

      SD=Sd+0.25Sl

      (1)

      式中:SD為動(dòng)力分析時(shí)結(jié)構(gòu)所承受的荷載;Sd,Sl分別為恒荷載和活荷載。

      2.2非線性靜力方法

      非線性靜力方法在結(jié)構(gòu)連續(xù)性倒塌分析中應(yīng)用最為廣泛,該方法考慮了材料非線性和幾何非線性因素,并且通過(guò)動(dòng)力增大系數(shù)來(lái)近似考慮構(gòu)件失效時(shí)的動(dòng)力效應(yīng),分析結(jié)果精度較高且操作相對(duì)簡(jiǎn)便。根據(jù)GSA 2003中的規(guī)定,在靜力分析過(guò)程中評(píng)估結(jié)構(gòu)是否倒塌時(shí)對(duì)失效柱所在跨的梁構(gòu)件施加的荷載為

      SS=2.0(Sd+0.25Sl)

      (2)

      式中:SS為靜力分析時(shí)失效構(gòu)件所在跨內(nèi)構(gòu)件所承受的荷載。

      各國(guó)學(xué)者正是對(duì)式(2)中的動(dòng)力增大系數(shù)2.0的取值存在較多爭(zhēng)論,在此筆者針對(duì)豎向不規(guī)則結(jié)構(gòu)的動(dòng)力增大系數(shù)取值進(jìn)行研究。

      結(jié)構(gòu)在倒塌之前,必然有一定數(shù)量的構(gòu)件屈服,產(chǎn)生塑性鉸,并引起剩余結(jié)構(gòu)出現(xiàn)較大變形。而位移是剩余結(jié)構(gòu)變形的最直接評(píng)判指標(biāo),故以失效目標(biāo)柱柱頂節(jié)點(diǎn)的豎向位移Δy作為倒塌衡量指標(biāo),并且以非線性動(dòng)力方法所得到的最為精確的計(jì)算結(jié)果[16]作為評(píng)判剩余結(jié)構(gòu)動(dòng)力響應(yīng)的參考。

      假定在采用非線性靜力分析時(shí),動(dòng)力效應(yīng)在豎向不規(guī)則結(jié)構(gòu)中所引起的荷載系數(shù)為λ,則有

      Sλ=λ(Sd+0.25Sl)

      (3)

      式中:Sλ為荷載系數(shù)λ時(shí)失效構(gòu)件所在跨內(nèi)構(gòu)件所承受的荷載。

      在荷載系數(shù)λ不斷變化的過(guò)程中,當(dāng)某個(gè)λ值引起剩余結(jié)構(gòu)的靜力響應(yīng)與非線性動(dòng)力分析時(shí)剩余結(jié)構(gòu)動(dòng)力響應(yīng)恰好相等,則該荷載系數(shù)λ就是非線性靜力方法中的動(dòng)力增大系數(shù)。

      雖然以上2種計(jì)算方法原理有所差異,但是二者都能夠準(zhǔn)確地反映結(jié)構(gòu)的連續(xù)性倒塌行為,而且有著更多的相同點(diǎn),如結(jié)構(gòu)和構(gòu)件變形形態(tài)、能量轉(zhuǎn)換以及荷載傳遞等。本文中通過(guò)對(duì)2種方法計(jì)算結(jié)果的對(duì)比分析,以剩余結(jié)構(gòu)的變形為監(jiān)控對(duì)象展開(kāi)研究。

      3 數(shù)值計(jì)算與分析

      動(dòng)力增大系數(shù)的取值

      對(duì)同一豎向不規(guī)則RC框架結(jié)構(gòu)分別進(jìn)行非線性靜力分析和非線性動(dòng)力分析,得到失效柱柱頂節(jié)點(diǎn)相應(yīng)的靜力位移ΔyS和動(dòng)力位移ΔyD,通過(guò)調(diào)試荷載系數(shù)λ使剩余結(jié)構(gòu)在2種方法分析下的豎向位移逐漸逼近直至相等,而此時(shí)所得到的荷載系數(shù)即為該結(jié)構(gòu)的動(dòng)力增大系數(shù),這樣也就確定了靜力分析過(guò)程中應(yīng)當(dāng)予以考慮的動(dòng)力效應(yīng)成分。失效柱頂點(diǎn)豎向位移比值曲線如圖4所示。

      ]圖4 失效柱頂點(diǎn)豎向位移比值曲線

      Fig.4 Ratio Curves of Vertical Displacements at Points Above Failed Columns

      如上所述,當(dāng)ΔyS/ΔyD=1.0時(shí),則表示此時(shí)該剩余結(jié)構(gòu)的靜力荷載經(jīng)放大λ倍后與動(dòng)力荷載有著相同位移響應(yīng)。從圖4可以看出,塔樓層數(shù)和裙樓層數(shù)均會(huì)對(duì)動(dòng)力增大系數(shù)產(chǎn)生一定影響,而且對(duì)二維模型的影響更為明顯:

      (1)對(duì)于裙樓層數(shù)相同的結(jié)構(gòu),在目標(biāo)柱失效后,靜力荷載僅需要被放大較小倍數(shù)即可達(dá)到與動(dòng)力荷載相同的響應(yīng),如二維模型中裙樓層數(shù)均為2層的模型A2B1,A2B2,A2B3,當(dāng)其靜力分析中的監(jiān)測(cè)位移與相對(duì)應(yīng)動(dòng)力分析中的監(jiān)測(cè)位移相等時(shí),靜力荷載組合所需要的動(dòng)力增大系數(shù)分別為1.540,1.363,1.282。這說(shuō)明增加結(jié)構(gòu)的塔樓層數(shù)不僅沒(méi)有提高結(jié)構(gòu)的冗余度和剩余結(jié)構(gòu)的承載能力,反而降低了剩余結(jié)構(gòu)的魯棒性。

      底部裙樓層數(shù)為1層而上部塔樓分別為2層和3層的二維模型A1B2,A1B3,其動(dòng)力增大系數(shù)則更小,且當(dāng)荷載一旦超過(guò)構(gòu)件極限承載力時(shí),結(jié)構(gòu)的靜力響應(yīng)將會(huì)突然增大并破壞。底層承重柱承載力突然喪失后,原本由該構(gòu)件承擔(dān)并傳遞的豎向荷載需要由水平梁構(gòu)件來(lái)承受,而裙樓中水平構(gòu)件屈服后只能通過(guò)梁機(jī)制和懸鏈線機(jī)制來(lái)抵抗荷載和變形,當(dāng)裙樓層數(shù)較少時(shí),該部位可以用作荷載傳遞備用路徑的水平構(gòu)件數(shù)量也隨之減少,所以在上部荷載作用下無(wú)法充分表現(xiàn)出承載能力更高的懸鏈線機(jī)制,進(jìn)而出現(xiàn)“脆性破壞”現(xiàn)象[17]。

      (2)對(duì)于塔樓層數(shù)相同的結(jié)構(gòu),動(dòng)力增大系數(shù)隨著裙樓層數(shù)的增加而增大,即靜力荷載需要乘以更大的動(dòng)力增大系數(shù)才能使靜力位移ΔyS與動(dòng)力位移ΔyD相等,說(shuō)明剩余結(jié)構(gòu)承受動(dòng)力荷載的能力隨著裙樓層數(shù)的增加也得以提升,如塔樓層數(shù)均為2層的三維模型A1B2,A2B2,A3B2,要讓其靜力位移ΔyS與動(dòng)力位移ΔyD相等,靜力荷載組合分別需要被放大1.470,1.570,1.660倍。

      從圖4還可以看出,當(dāng)荷載系數(shù)λ較小時(shí),ΔyS/ΔyD與λ呈線性關(guān)系,而隨著λ取值的增大,二者關(guān)系則呈現(xiàn)非線性趨勢(shì),ΔyS/ΔyD增幅明顯大于λ增幅。此時(shí)一部分構(gòu)件進(jìn)入流塑階段,靜力荷載所引起的位移增量將大于動(dòng)力增大系數(shù)增量,且荷載繼續(xù)增大將導(dǎo)致剩余結(jié)構(gòu)發(fā)生連續(xù)性倒塌[18]。

      從計(jì)算結(jié)果可知,二維模型和三維模型動(dòng)力增大系數(shù)分別為1.596,1.700,遠(yuǎn)未達(dá)到GSA 2003中所建議的取值2.0,說(shuō)明該建議值對(duì)已分析的一系列模型均略顯保守。而本文中建立的模型數(shù)量有限,無(wú)法完全代表所有該類型結(jié)構(gòu),為此,筆者建立了裙樓10層、塔樓1層的二維和三維模型A10B1做更進(jìn)一步驗(yàn)證,經(jīng)計(jì)算可知,其動(dòng)力增大系數(shù)分別為1.775,1.770,而該驗(yàn)證模型裙樓層數(shù)為塔樓層數(shù)的10倍,可以視為規(guī)則結(jié)構(gòu),其動(dòng)力增大系數(shù)也遠(yuǎn)未達(dá)到GSA 2003中所建議的取值2.0,表明該建議值對(duì)于豎向不規(guī)則RC框架結(jié)構(gòu)較為保守,具有較大的安全儲(chǔ)備。此外,該驗(yàn)證模型的分析結(jié)果也再次證明,增加裙樓層數(shù)可以提高剩余結(jié)構(gòu)承擔(dān)荷載動(dòng)力效應(yīng)的能力。

      3.2動(dòng)力增大系數(shù)與塔裙層數(shù)比

      為了更加清晰地展現(xiàn)計(jì)算模型的特點(diǎn)并進(jìn)行歸類,以塔樓層數(shù)B與裙樓層數(shù)A的比值B/A來(lái)對(duì)模型進(jìn)行分類和研究,并將B/A稱作塔裙層數(shù)比。引入塔裙層數(shù)比的概念,就可以將模型特點(diǎn)與動(dòng)力增大系數(shù)聯(lián)系起來(lái)。圖5為模型塔裙層數(shù)比B/A與動(dòng)力增大系數(shù)的關(guān)系。從圖5可以看出:隨著塔裙層數(shù)比的逐漸增大,二維模型和三維模型動(dòng)力增大系數(shù)均表現(xiàn)出減小趨勢(shì);由于塔裙層數(shù)比能夠反映出結(jié)構(gòu)的不規(guī)則程度,對(duì)于這種帶裙樓的豎向不規(guī)則RC框架結(jié)構(gòu)特殊形式,隨著結(jié)構(gòu)不規(guī)則程度的加劇,結(jié)構(gòu)承受動(dòng)力效應(yīng)的能力也逐漸下降。

      圖5 塔裙層數(shù)比與動(dòng)力增大系數(shù)的關(guān)系

      Fig.5 Relations of Ratio of Tower Layer and Dynamic Increase Factor

      為了檢驗(yàn)分析模型的數(shù)據(jù)對(duì)于具有相同塔裙層數(shù)比的其他結(jié)構(gòu)是否有一定指導(dǎo)性,又分別建立了1個(gè)10層二維模型和1個(gè)10層三維模型,二維模型的裙樓層數(shù)和塔樓層數(shù)均為5層,用A5B5表示,塔裙層數(shù)比為1.0;三維模型的裙樓層數(shù)和塔樓層數(shù)分別為4層和6層,用A4B6表示,塔裙層數(shù)比為1.5。經(jīng)過(guò)對(duì)比分析可知,二維模型A5B5的動(dòng)力增大系數(shù)為1.354,而二維模型塔裙層數(shù)比1.0時(shí)的動(dòng)力增大系數(shù)平均值為1.385,該模型動(dòng)力增大系數(shù)僅比平均值小2.238%。三維模型A4B6的動(dòng)力增大系數(shù)為1.545,而三維模型塔裙層數(shù)比1.5時(shí)的動(dòng)力增大系數(shù)平均值為1.420,該模型動(dòng)力增大系數(shù)僅比平均值大8.091%。從以上計(jì)算結(jié)果可以看出,2個(gè)驗(yàn)證模型的動(dòng)力增大系數(shù)與所對(duì)應(yīng)的平均值相差甚小,基本滿足工程需要,這說(shuō)明計(jì)算所得到的動(dòng)力增大系數(shù)對(duì)具有相同塔裙層數(shù)比的結(jié)構(gòu)有一定的參考價(jià)值。

      因此,對(duì)于某種典型的不規(guī)則結(jié)構(gòu)形式來(lái)說(shuō),如果能夠計(jì)算足夠多的模型,并運(yùn)用數(shù)學(xué)方法加以統(tǒng)計(jì)分析,就可以得到一個(gè)動(dòng)力增大系數(shù)取值的參考范圍。當(dāng)對(duì)類似的實(shí)際工程采用非線性靜力方法進(jìn)行抗連續(xù)性倒塌設(shè)計(jì)和分析時(shí),工程設(shè)計(jì)人員就可以很方便地從該范圍內(nèi)選擇一個(gè)合適的動(dòng)力增大系數(shù)參考值。通過(guò)這種針對(duì)性更強(qiáng)的分析和計(jì)算,就可以把動(dòng)力增大系數(shù)與各種不同的結(jié)構(gòu)形式對(duì)應(yīng)起來(lái),而不是籠統(tǒng)地給定一個(gè)數(shù)值,這樣也使得設(shè)計(jì)更加經(jīng)濟(jì)和高效。

      4 結(jié)語(yǔ)

      (1)當(dāng)利用非線性靜力方法進(jìn)行連續(xù)性倒塌分析和設(shè)計(jì)時(shí),采用GSA 2003中建議的動(dòng)力增大系數(shù)2.0,該取值較為保守,從而在設(shè)計(jì)過(guò)程中造成一定的浪費(fèi),建議對(duì)豎向不規(guī)則RC框架動(dòng)力增大系數(shù)取1.8左右,這樣更為經(jīng)濟(jì)合理。

      (2)隨著塔裙層數(shù)比的增大,結(jié)構(gòu)抵抗荷載動(dòng)力效應(yīng)的能力逐漸降低,在偶然荷載作用下發(fā)生倒塌的風(fēng)險(xiǎn)也隨之增大。適當(dāng)降低結(jié)構(gòu)塔裙層數(shù)比,增加裙樓層數(shù)并減少塔樓層數(shù),即調(diào)低結(jié)構(gòu)不規(guī)則程度,能夠一定程度上降低豎向不規(guī)則結(jié)構(gòu)發(fā)生連續(xù)性倒塌的風(fēng)險(xiǎn)。

      (3)利用變換路徑法對(duì)結(jié)構(gòu)進(jìn)行連續(xù)性倒塌分析簡(jiǎn)便實(shí)用,但是非線性靜力方法中動(dòng)力增大系數(shù)的取值,尤其對(duì)于造型特殊結(jié)構(gòu)的動(dòng)力增大系數(shù)取值仍需要做進(jìn)一步的研究。

      參考文獻(xiàn):

      References:

      [1]顧祥林,印小晶,林 峰,等.建筑結(jié)構(gòu)倒塌過(guò)程模擬與防倒塌設(shè)計(jì)[J].建筑結(jié)構(gòu)學(xué)報(bào),2010,31(6):179187.

      GU Xianglin,YIN Xiaojing,LIN Feng,et al.Simulation of Collapse Process and Design Method to Resist Collapse for Building Structures[J].Journal of Building Structures,2010,31(6):179187.

      [CM2-3][2]李 易,陸新征,葉列平,等.基于Pushdown分析的RC框架抗連續(xù)倒塌承載力研究[J].沈陽(yáng)建筑大學(xué)學(xué)報(bào):自然科學(xué)版,2011,27(1):1018.

      LI Yi,LU Xinzheng,YE Lieping,et al.Study on Progressivecollapse Resistance Capacity of RC Frame Structures Based on Pushdown Analysis[J].Journal of Shenyang Jianzhu University:Natural Science,2011,27(1):1018.

      [CM2-3][3]SASANI M.Response of a Reinforced Concrete Infilledframe Structure to Removal of Two Adjacent Columns[J].Engineering Structures,2008,30(9):24782491.

      [CM2-3][4]易偉建,何慶鋒,肖 巖.鋼筋混凝土框架結(jié)構(gòu)抗倒塌性能的試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào),2007,28(5):104109,117.

      YI Weijian,HE Qingfeng,XIAO Yan.Collapse Performance of RC Frame Structure[J].Journal of Building Structures,2007,28(5):104109,117.

      [CM2-3][5]KRISHNAN S,MUTO M.Mechanism of Collapse of Tall Steel Momentframe Buildings Under Earthquake Excitation[J].Journal of Structural Engineering,2012,138(11):13611387

      [CM2-3][6]潘 元,劉伯權(quán),邢國(guó)華,等.基于破壞準(zhǔn)則的鋼筋混凝土結(jié)構(gòu)抗倒塌研究進(jìn)展[J].建筑科學(xué)與工程學(xué)報(bào),2010,27(2):5160.

      PAN Yuan,LIU Boquan,XING Guohua,et al.Research Progress of Seismic Collapse Resistance of Reinforced Concrete Structures Based on Damage Criteria[J].Journal of Architecture and Civil Engineering,2010,27(2):5160.

      [CM2-3][7]陸新征,馬玉虎,唐代遠(yuǎn),等.汶川地震典型RC框架結(jié)構(gòu)抗倒塌加固效果分析[J].建筑科學(xué)與工程學(xué)報(bào),2011,28(2):2127.

      LU Xinzheng,MA Yuhu,TANG Daiyuan,et al.Strengthening Effect Analysis of Seismic Collapse Resistance of Typical RC Frame Structures in Wenchuan Earthquake[J].Journal of Architecture and Civil Engineering,2011,28(2):2127.

      [CM2-3][8]劉 源,辛 力,王 敏,等.框架梁剛度放大系數(shù)對(duì)結(jié)構(gòu)的影響及合理取值[J].長(zhǎng)安大學(xué)學(xué)報(bào):自然科學(xué)版,2013,33(5):6468.

      LIU Yuan,XIN Li,WANG Min,et al.Reasonable Value of Rigidity Amplification Factor of Frame Beams [J].Journal of Changan University:Natural Science Edition,2013,33(5):6468.

      [CM2-3][9]易偉建,張 穎.混凝土框架結(jié)構(gòu)抗震設(shè)計(jì)的彎矩增大系數(shù)[J].建筑科學(xué)與工程學(xué)報(bào),2006,23(2):4651.

      YI Weijian,ZHANG Ying.Moment Magnification Factor in Antiseismic Design of Concrete Frame Structure[J].Journal of Architecture and Civil Engineering,2006,23(2):4651.

      [10]GSA 2003,Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S].

      [11][KG-*5]UFC 402303,Unified Facilities Criteria:Design of Buildings to Resist Progressive Collapse[S].

      [12]KIM J,KIM T.Assessment of Progressive Collapse Resisting Capacity of Steel Moment Frames[J].Journal of Constructional Steel Research,2009,65(1):169179.

      [13]TSAI M,LIN B.Investigation of Progressive Collapse Resistance and Inelastic Response for an Earthquakeresistant RC Building Subjected to Column Failure[J].Engineering Structures,2008,30(12):36193628.

      [14]胡曉斌,錢稼茹.單層平面鋼框架連續(xù)倒塌動(dòng)力效應(yīng)分析[J].工程力學(xué),2008,25(6):3843.

      HU Xiaobin,QIAN Jiaru.Dynamic Effect Analysis During Progressive Collapse of a Singlestory Steel Plane Frame[J].Engineering Mechanics,2008,25(6):3843.

      [15][KG-0.2mm][JP2]FEMA 356,[JP]Prestandard and Commentary for the Seismic Rehabilitation of Buildings[S].

      [16]LI Z X,SHI Y C.Methods for Progressive Collapse Analysis of Building Structures Under Blast and Impact Loads[J].Transactions of Tianjin University,2008,14(5):329339.

      [17]TAGARIELLI V L,DESHPANDE V S,FLECK N A.Prediction of the Dynamic Response of Composite Sandwich Beams Under Shock Loading[J].International Journal of Impact Engineering,2010,37(7):854864.

      [18]何 政,黃國(guó)輝.框架結(jié)構(gòu)懸鏈線效應(yīng)研究新進(jìn)展[J].力學(xué)進(jìn)展,2012,42(5):547561.

      HE Zheng,HUANG Guohui.Progress in Studies of Catenary Action in Frame Structures[J].Advance in Mechanics,2012,42(5):547561.

      [CM2-3][8]劉 源,辛 力,王 敏,等.框架梁剛度放大系數(shù)對(duì)結(jié)構(gòu)的影響及合理取值[J].長(zhǎng)安大學(xué)學(xué)報(bào):自然科學(xué)版,2013,33(5):6468.

      LIU Yuan,XIN Li,WANG Min,et al.Reasonable Value of Rigidity Amplification Factor of Frame Beams [J].Journal of Changan University:Natural Science Edition,2013,33(5):6468.

      [CM2-3][9]易偉建,張 穎.混凝土框架結(jié)構(gòu)抗震設(shè)計(jì)的彎矩增大系數(shù)[J].建筑科學(xué)與工程學(xué)報(bào),2006,23(2):4651.

      YI Weijian,ZHANG Ying.Moment Magnification Factor in Antiseismic Design of Concrete Frame Structure[J].Journal of Architecture and Civil Engineering,2006,23(2):4651.

      [10]GSA 2003,Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S].

      [11][KG-*5]UFC 402303,Unified Facilities Criteria:Design of Buildings to Resist Progressive Collapse[S].

      [12]KIM J,KIM T.Assessment of Progressive Collapse Resisting Capacity of Steel Moment Frames[J].Journal of Constructional Steel Research,2009,65(1):169179.

      [13]TSAI M,LIN B.Investigation of Progressive Collapse Resistance and Inelastic Response for an Earthquakeresistant RC Building Subjected to Column Failure[J].Engineering Structures,2008,30(12):36193628.

      [14]胡曉斌,錢稼茹.單層平面鋼框架連續(xù)倒塌動(dòng)力效應(yīng)分析[J].工程力學(xué),2008,25(6):3843.

      HU Xiaobin,QIAN Jiaru.Dynamic Effect Analysis During Progressive Collapse of a Singlestory Steel Plane Frame[J].Engineering Mechanics,2008,25(6):3843.

      [15][KG-0.2mm][JP2]FEMA 356,[JP]Prestandard and Commentary for the Seismic Rehabilitation of Buildings[S].

      [16]LI Z X,SHI Y C.Methods for Progressive Collapse Analysis of Building Structures Under Blast and Impact Loads[J].Transactions of Tianjin University,2008,14(5):329339.

      [17]TAGARIELLI V L,DESHPANDE V S,FLECK N A.Prediction of the Dynamic Response of Composite Sandwich Beams Under Shock Loading[J].International Journal of Impact Engineering,2010,37(7):854864.

      [18]何 政,黃國(guó)輝.框架結(jié)構(gòu)懸鏈線效應(yīng)研究新進(jìn)展[J].力學(xué)進(jìn)展,2012,42(5):547561.

      HE Zheng,HUANG Guohui.Progress in Studies of Catenary Action in Frame Structures[J].Advance in Mechanics,2012,42(5):547561.

      [CM2-3][8]劉 源,辛 力,王 敏,等.框架梁剛度放大系數(shù)對(duì)結(jié)構(gòu)的影響及合理取值[J].長(zhǎng)安大學(xué)學(xué)報(bào):自然科學(xué)版,2013,33(5):6468.

      LIU Yuan,XIN Li,WANG Min,et al.Reasonable Value of Rigidity Amplification Factor of Frame Beams [J].Journal of Changan University:Natural Science Edition,2013,33(5):6468.

      [CM2-3][9]易偉建,張 穎.混凝土框架結(jié)構(gòu)抗震設(shè)計(jì)的彎矩增大系數(shù)[J].建筑科學(xué)與工程學(xué)報(bào),2006,23(2):4651.

      YI Weijian,ZHANG Ying.Moment Magnification Factor in Antiseismic Design of Concrete Frame Structure[J].Journal of Architecture and Civil Engineering,2006,23(2):4651.

      [10]GSA 2003,Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S].

      [11][KG-*5]UFC 402303,Unified Facilities Criteria:Design of Buildings to Resist Progressive Collapse[S].

      [12]KIM J,KIM T.Assessment of Progressive Collapse Resisting Capacity of Steel Moment Frames[J].Journal of Constructional Steel Research,2009,65(1):169179.

      [13]TSAI M,LIN B.Investigation of Progressive Collapse Resistance and Inelastic Response for an Earthquakeresistant RC Building Subjected to Column Failure[J].Engineering Structures,2008,30(12):36193628.

      [14]胡曉斌,錢稼茹.單層平面鋼框架連續(xù)倒塌動(dòng)力效應(yīng)分析[J].工程力學(xué),2008,25(6):3843.

      HU Xiaobin,QIAN Jiaru.Dynamic Effect Analysis During Progressive Collapse of a Singlestory Steel Plane Frame[J].Engineering Mechanics,2008,25(6):3843.

      [15][KG-0.2mm][JP2]FEMA 356,[JP]Prestandard and Commentary for the Seismic Rehabilitation of Buildings[S].

      [16]LI Z X,SHI Y C.Methods for Progressive Collapse Analysis of Building Structures Under Blast and Impact Loads[J].Transactions of Tianjin University,2008,14(5):329339.

      [17]TAGARIELLI V L,DESHPANDE V S,FLECK N A.Prediction of the Dynamic Response of Composite Sandwich Beams Under Shock Loading[J].International Journal of Impact Engineering,2010,37(7):854864.

      [18]何 政,黃國(guó)輝.框架結(jié)構(gòu)懸鏈線效應(yīng)研究新進(jìn)展[J].力學(xué)進(jìn)展,2012,42(5):547561.

      HE Zheng,HUANG Guohui.Progress in Studies of Catenary Action in Frame Structures[J].Advance in Mechanics,2012,42(5):547561.

      清远市| 德庆县| 当雄县| 灵山县| 芜湖市| 绍兴县| 介休市| 皮山县| 昆山市| 漳浦县| 孝感市| 屯昌县| 梓潼县| 乌拉特中旗| 宝应县| 同心县| 阿坝| 平昌县| 肃南| 郴州市| 兴国县| 临邑县| 邢台县| 永康市| 云梦县| 汽车| 三明市| 云和县| 洪雅县| 个旧市| 久治县| 昭通市| 乐陵市| 遂平县| 忻州市| 西乌珠穆沁旗| 肇州县| 阜康市| 镇安县| 铅山县| 崇文区|