• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism analyses of coercivity and remanence enhancement in strontium ferrites

    2014-09-21 07:04:20ZANFenlianMAYongqingZHANGXianMAQianZHENGGanhongDAIZhenxiang

    ZAN Fen-lian,MA Yong-qing ,ZHANG Xian,MA Qian,ZHENG Gan-h(huán)ong,DAI Zhen-xiang

    (Anhui Key Laboratory of Information Materials and Devices,School of Physics and Materials Science,Anhui University,Hefei 230039,China)

    0 Introduction

    M-type strontium hexaferrite(SrFe12O19)was discovered in the 1950s by Philips laboratories[1].As one of ferrous magnetic oxide,it has been intensively investigated during the last years due to its appropriate magnetic properties,chemical stability and low cost compared with rare-earth compounds.It has been recognized that it can be used as permanent magnets,high-density magnetic and magneto-optic recording media,and microwave filters[2-9].

    In M-type hexaferrites, the iron ions occupy on five different sites:the octahedral sites,crystallographically known as 2a,12k and 4f2,and the tetrahedral sites 4f1and 2b.In the magnetically ordered state,the 12k,2a and 2b sites(eight Fe3+ions in all)have their spins aligned parallel to each other and to the crystallographic c-axis,whereas spins of 4f1and 4f2sites(four Fe3+ions in all)align in an opposite direction,which leads to the lower saturation magnetization Ms.High-performance permanent magnets for energy-related applications require a large energy product(BH)max.A permanent magnet with a large(BH)maxvalue should exhibit both high remanent magnetization Mrand large coercivity Hc.Both parameters are determined not only by intrinsic properties such as the magnetocrystalline anisotropy Kuand saturation magnetization Ms,but also by structural parameters such as grain sizes and alignment of the granular materials which are sensitive to the preparation conditions.So many reports focus on improving the magnetic properties of SrFe12O19,such as the cationic substitution[10-11],investigation of synthesis method and optimum to the processing conditions,etc.[12-18].In addition,exchange coupling through the interface between hard and soft magnetic phases was found to drastically modify the magnetic properties of nanocomposite combining the high magnetization of a soft-magnetic phase with the high anisotropy of a hard one[19].However,the mechanism for coercivity(Hc)and remanence(Mr)to saturation(Ms)magnetization ratio(Mr/Ms)deserves further investigation which may be useful for improving the magnetic performance of SrFe12O19.

    In this work,crystal structure,magnetic properties and exchange-coupling behavior of M-type SrFe12O19prepared by chemical co-precipitation method have been systematically studied by tuning the Fe3+/Sr2+mole ratios in the precursor solution and calcinating temperature.The results show that the lower Fe3+/Sr2+mole ratio(10∶1)greatly reduces the crystallization temperature(about 200 ℃)of single phase SrFe12O19.For the single phase SrFe12O19with Fe3+/Sr2+mole ratio 11∶1 at calcinating temperature of 1 000℃,the optimum magnetic parameters are obtained,the coercivity and saturation magnetization are 4 751 Oe and 62.68 emu·g-1,respectively.For the sample with Fe3+/Sr2+mole ratio 12∶1,soft magnetic γ-Fe2O3and hard magnetic SrFe12O19phases coexist in the sample.The improvement of both coercivity and saturation magnetization has been observed in this sample,which has not been reported before in nanacomposite SrFe12O19ferrites,because the exchange coupling generally leads to the increase of saturation magnetization but the decrease of coercivity in previous reports[19-20].The related mechanism for coercivity and remanence enhancement has been discussed.

    1 Experiment

    Strontium hexaferrite powders were prepared by the chemical co-precipitation method.The analytically pure ferric nitrate(Fe(NO3)3·9H2O),strontium carbonate(SrCO3),nitric acid(HNO3)and sodium hydroxide(NaOH)were used as starting materials.HNO3was used to dissolve the strontium carbonate and to obtain strontium nitrate solution.First,a series of ferric nitrate(dissolved in distilled water)and strontium carbonate(dissolved in nitric acid)solutions with various Fe3+/Sr2+molar ratios of 12∶1,11∶1 and 10∶1(referred to as A,B and C,respectively)were mixed by gentle heating and stirring for 1 h using a magnetic stirrer.Then,sodium hydroxide as precipitant was slowly poured into the compound solution at room temperature at pH=10.The co-precipitate solution was kept in air for 24 h at room temperature.The coprecipitate was filtered and washed several times using distilled water until the pH value of the solution became neutral,and dried at 90℃ for 24 h.The dried powders were calcined at 500℃ for 5 h,and then sintered at six different temperatures of 600,700,800,900,1 000 and 1 100 ℃ for 2 h in air.The obtained samples are listed in Tab.1.

    Tab.1 A list of the samples with different Fe3+/Sr 2+molar ratio and calcinations temperatures

    The crystalline structural analysis was performed by an X-ray diffractometer using Cu Kα radiation source.The morphology of samples was investigated by scanning electron microscopy(SEM).The magnetic properties were measured by quantum design superconducting quantum interference device(SQUID)MPMSsystem(T=300 K,0≤H≤2 T).

    2 Results and discussion

    2.1 Effects of the Fe3+/Sr 2+ratios on the formation of Sr Fe12O19

    To investigate the effect of Fe3+/Sr2+ratios on the formation of SrFe12O19,the XRD spectra of all prepared samples have been measured,and Fig.1 representatively plots the results of single-phase and approaching single-phase SrFe12O19ferrites.As shown in Fig.1,A and B samples calcinated at 900 ℃ show the coexistence of SrFe12O19and a bit of γ-Fe2O3phases,and they exhibit the single phase SrFe12O19after calcinated at 1 000 ℃.However,for the C sample,there appear three phases of SrFe12O19,γ-Fe2O3and SrCO3in the sample calcinated at 700℃,and it exhibits the single phase of SrFe12O19after calcinated at 800℃.Obviously,the Fe3+/Sr2+mole ratio plays a crucial rule in the crystallization temperature of singlephase SrFe12O19,the smaller Fe3+/Sr2+mole ratio is propitious for reducing the crystallization temperature of SrFe12O19,consistent with the results observed in previous reports[21-22].

    Fig.1 The XRD spectra of the Sr Fe12 O19 samples prepared with different Fe3+/Sr 2+mole ratios under different calcinations temperature

    In the case of the chemical synthesis routes,the deviation of Fe3+/Sr2+mole ratio from 12∶1 may result from the difference of the solubility of the Fe3+and Sr2+cations sources.The optimum Fe3+/Sr2+ratio depends on the use of raw materials as well as the synthesis procedure[23].In the synthesis process of our samples,the solubility of Sr(NO3)2is lower than that of Fe(NO3)3in water which results in the decrease of Sr2+participating in precipitation reaction.And therefore the excess Sr2+or insufficient Fe3+sources facilitates the formation of single-phase SrFe12O19[24].Additionally,the increased diffusion rate of metallic ions in the non-stoichiometric mixture due to induced vacancies permits single-phase SrFe12O19formation at lower temperature[25].

    2.2 Effects of calcinations temperature on the magnetic properties

    The results in the above section indicate that sample C with 10∶1 Fe3+/Sr2+ratio has the lowest crystallization temperature(800 ℃)for single-phase SrFe12O19.In this section,sample C has been chosen to study the effect of calcinations temperature on the magnetic properties.

    The magnetic parameters of the C11-C15samples with Fe3+/Sr2+mole ratio of 10 at the sintering temperatures from 700 to 1 100℃,drawn from the results of magnetic hysteresis loop(not shown here),are shown in Tab.2.

    Tab.2 The magnetic parameters of Sr Fe12O19 with 10∶1 Fe3+/Sr 2+mole ratio

    Where Δσ is stress magnitude and Mssaturation magnetization.For C12,C13and C14samples,Mshardly changes.The decrease of Hcwith increasing calcinations temperature may arise from the decrease of stress magnitude,because repeatedly annealing can effectively remove the stress left in sample.For the C15sample,its saturation magnetization obviously decreases.

    As reported before[26],at the higher calcinations temperature,part of the trivalent Fe3+with electronic configuration of 3d5ions will reduce to bivalent Fe2+ions with electronic configuration of 3d6.According to the Hund’s rule,the molecular magnetic moment of Fe3+(5 μB)is larger than that of Fe2+(4 μB),which is responsible for the low saturation magnetization of the C15sample.Carefully checking the XRD results(not shown here),we observe that the diffraction intensities of the C15sample at 2 θ=23.28,31.14 and 51.88°are 799,1 701 and 526,respectively,which are much stronger than those of the C14sample(23.2,229 and 132,respectively).It maybe indicates a certain phase transformation[26].Therefore the minimum Hcof C15sample may result from the competing interaction between the stress magnitude and the phase transformation.

    The C11sample has the minimum coercivity Hc(957 Oe),saturation magnetization Ms(12.73 emu·g-1)and remnant magnetization Mr(4.92 emu·g-1),respectively,which are due to the presence nonmagnetic impurity of SrCO3and the crystallization of a minute quantity of SrFe12O19as shown in Fig.1.For the singlephase SrFe12O19(samples C12-C15),the coercivity Hcgradually decreases from 4 654 to 1 053 Oe when the calcinations temperature increases from 800 to 1 100℃.According to the technical magnetization theory,the coercivity Hccan be expressed as In addition,the remanence to saturation magnetization ratio Mr/Msfor C12- C14samples exceeds to 0.5,as predicted by Stoner-Wohlfarth model for isotropic nano-crystalline magnetic materials with uniaxial anisotropy,which can be attributed to the intergrain exchange interactions[27-28].The similar phenomenon occurs in the B14sample as discussed below.

    2.3 Effects of the Fe3+/Sr 2+ratios on the magnetic properties

    From the Fig.1 we can see that all samples become the single-phase SrFe12O19at the calcinations temperature of 1 000℃.So we chose samples A14,B14and C14calcinated at 1 000℃ for studying the effects of Fe3+/Sr2+ratios on the magnetic properties.

    Tab.3 shows the magnetic parameters of samples A14,B14and C14with different Fe3+/Sr2+mole ratios,demonstrating that a lower Fe3+/Sr2+mole ratio than stoichiometry can improve magnetic properties of strontium ferrite powder as reported before[21].In reference [21],the authors suggested that a lower Fe3+/Sr2+mole ratio than stoichiometry leads to the production of iron and oxygen vacancies,enhancing the ionic diffusion and improving the magnetic properties.More specifically,we suggest that,for the A14,B14and C14samples,the content of Fe3+vacancies gradually increases,i.e.,the volume concentration of defects(Fe3+vacancies)increases with the Fe3+/Sr2+mole ratio decreasing from 12∶1 to 10∶1.As these three samples are prepared by the same synthetic route and calcinations temperature of 1 000℃,it can be tentatively suggested that these three samples have the equivalent stress.

    Tab.3 The magnetic parameters of A14,B14 and C14

    Therefore the coercivity Hcmainly results from the contribution of defects(Fe3+vacancies).In this situation,the coercivity Hccan be expressed as

    whereβis the volume concentration of defects,and Mssaturation magnetization.The B14and C14samples have the higherβ value than the A14sample,and therefore they have the higher coercivity Hc.Additionally,the decrease of Fe3+/Sr2+mole ratio results in the grain refinement l from58.7 to 50.0 nm(calculated using MDI Jade 5.0 software from the XRD results),leading to the larger grain boundary area and subsequently producing more nuclei of reversed domain.The coercivity Hcdetermined by nuclei of reversed domain is directly proportional to saturation magnetization Ms

    which may be the other reason for the higher coercivity of B14and C14samples than that of the A14sample.

    2.4 Exchange-coupling behavior observed in A 12-A 15 samples

    In section 2.2 and 2.3,we discussed the effect of calcinations temperature and Fe3+/Sr2+mole ratio on the magnetic properties of single-phase SrFe12O19,respectively.In this section,we will discuss the magnetic interactions in the A12-A15samples.

    Fig.2 shows the X-ray diffraction patterns of strontium ferrite powders.The A12and A13samples show the diffraction peak of the γ-Fe2O3.The reflection intensity of the γ-Fe2O3decreases with increasing calcinations temperature and disappears after the sample calcinated at 1 000 ℃ which becomes the single-phase SrFe12O19.

    Fig.2 The XRD spectra of the A12- A15samples

    The magnetic parameters of A12- A15samples are shown in Tab.4.From Tab.4 we can see that A12and A13samples containing two phases of soft magnetic γ-Fe2O3and hard magnetic SrFe12O19,both the coercivity and the saturation magnetization are higher than those of A14and A15samples just containing single-phase SrFe12O19.In addition,the Mr/Msratio of the A12and A13samples is also larger than that of the A14and A15samples.With increasing the calcinations temperature,the coercivity monotonously decreases.As is wellknown,the coercivity Hcis determined by the effective anisotropy constantthrough[29].For the soft and hard composite system,the effective anisotropy constantcan be expressed by

    where fsand fhare the volume fraction,and Ksand Khare anisotropy constant of soft and hard phases,respectively[30].From A12to A15,the volume fraction fsof soft magnetic phase γ-Fe2O3decreases,resulting in the increase of Keff.Khis much larger than Ks,consequently resulting in the increase of Hcdue to.Based on this viewpoint,the single-phase A14and A15samples should have the same Khor Hc,but it is not the case.Therefore,we suggest that the coercivity mechanism here should also be determined by stress anisotropy as given by Eq.(1).

    Tab.4 The magnetic parameters of A 12-A 15 samples

    Generally,for an assembly of randomly oriented non-interaction crystallites with uniaxial anisotropy polycrystalline,the Mr/Msis 0.5.If the γ-Fe2O3crystallites are exchange-coupled with SrFe12O19,the magnetization direction within each of crystallites is determined by a balance between the magneto-crystalline anisotropy energy which favors alignment of the local magnetization to the local preferred axis,and the exchange interaction which favors mutual alignment of the direction of the magnetization of neighboring grains.The net result of latter effect leads to an increase of Mr/Msjust as the sample calcinated at 800 and 900℃.Besides the intergrain exchange interaction,the“exchange-spring”behavior which results from the reversible rotation of the soft magnetic component for fields not large enough to reverse the hard magnetic phase[31]can also result in the enhancement of remanence magnetization.Thus what is the nature(type and strength)of the intergrain interactions in A12-A15samples?

    A usual method to monitor the interactions between the grains is by constructing the δm plots.The δm curves were built using the magnetizing Mr(H)and demagnetizing Md(H)remanent magnetizations.The measuring methods of Mr(H)and Md(H)are identical with those reported in Ref.[20].Mr(H)and Md(H)are normalized by the saturation remanence

    and

    Any deviations from this law are attributed to interactions between grains.These are monitored usually by plotting the quantity δm which measures the deviations from Eq.(4)according to the following definition[33-35]

    The dependence ofδm(H)on the magnetic field H is shown in Fig.3.For the A12and A13samples containing soft magnetic γ-Fe2O3and hard magnetic SrFe12O19phases,theδm values are initially positive(H ≤ 0.6 ×104Oe for the A12sample and H ≤ 0.5 ×104Oe for the A13sample)because the hard phase prevents the demagnetization of the sample due to the presence of magnetizing(exchange-type)interactions.But the values become small negative after reversal,indicating that magnetostatic interactions become dominant.For the A14and A15samples with single-phase SrFe12O19,all the δm values are negative as a result of the cooperative switching of the exchange-coupled grains.The negative peak becomes pronounced for the A15sample.

    Fig.3 δm curves for A 12-A 15 samples

    Subsequently,we will further discuss the magnetic interactions in A12- A15samples.The derivatives of md(H)and mr(H)with respect to the applied field H are the corresponding irreversible susceptibilities(H)which give a measure of the switching field distributions[34,36],as shown in Fig.4.All the(H)curves exhibit the peaks and corresponding valuesanddrawn from d md/d H and d mr/d H,respectively,are listed in Tab.5.For the A12sample,its/44.05 and/73.13 values are obviously greater than those of A13- A15samples,maybe indicating that the“exchange-spring”appears in the A12sample.

    Fig.4 (H)curves for A12- A15 samples

    Tab.5 The(H)peaks values of A 12 - A 15 samples 104 Oe-1

    Tab.5 The(H)peaks values of A 12 - A 15 samples 104 Oe-1

    Samples χmrpeak χmdpeak χmr peak 44.05 χmd peak 73.13 A1259.44 139.34 1.349 38 1.905 37 A13 45.96 110.56 1.043 36 1.511 83 A14 44.55 98.85 1.011 35 1.351 7 A1544.05 73.13 1 1

    3 Conclusion

    By tuning the Fe3+/Sr2+mole ratios and calcinations temperature,the crystal structure,magnetic properties and exchange-coupling behavior of M-type strontium hexaferrite prepared by chemical coprecipitation method have been systematically studied.The results show that the lower Fe3+/Sr2+mole ratio(10∶1)greatly reduces the crystallization temperature.

    For the single phase SrFe12O19with the Fe3+/Sr2+mole ratio of 10∶1,the increase of calcinations temperature results in the monotonous decrease of coercivity.It can be assigned to decreases of the stress magnitude,and results in the decrease of saturation magnetization,which can be assigned to the certain phase transformation.

    For the single phase SrFe12O19calcinated at 1 000℃ with different Fe3+/Sr2+mole ratio,the variation of coercivity may result from the difference of both the volume concentration of deformation(Fe3+vacancies)and nuclei of reversed domain.In addition,the remanence enhancement has been observed in the single phase SrFe12O19samples which can be attributed to the intergrain exchange interactions.

    For the samples with Fe3+/Sr2+mole ratio being 12∶1,δm plots indicate exchange type interaction for fields not large enough to switch the hard magnetic phases and magnetostatic interactions for higher fields in the composite ferrites,and complete magnetostatic interactions in the single-phase SrFe12O19ferrite.The results of the irreversible susceptibilitiesχirr(H)drawn from d md/d H and d mr/d H,respectively,indicate that the“exchange-spring”maybe appears in the A12sample.

    [1]Thompson G K,Evans B J.The structure-property relationships in M-type hexaferrites:hyperfine interactions and bulk magnetic properties[J].Journal of Applied Physics,1993,73:6295 -6297.

    [2]Fu Y P,Lin CH,Pan K Y.Strontium hexaferrite powders prepared by a microwave-induced combustion process and some of their properties[J].Journal of Alloys and Compounds,2003,349:228 -231.

    [3]Iqbal M J,Ashiq M N,Pablo H G,et al.Synthesis,physical,magnetic and electrical properties of Al-Gasubstituted co-precipitated nanocrystalline strontium hexaferrite[J].Journal of Magnetism and Magnetic Materials,2008,320:881-886.

    [4]Bobzin K,Bolelli G,Bruehl M,et al.Characterisation of plasma-sprayed SrFe12O19coatings for electromagnetic wave absorption[J].Journal of the European Ceramic Society,2011,31:1439 -1449.

    [5]Pullar R C,Bdikin I K,Bhattacharya A K.Magnetic properties of randomly oriented BaM,SrM,Co2Y,Co2Z and Co2W hexagonal ferrite fibres[J].Journal of the European Ceramic Society,2012,32:905 -913.

    [6]Thakur A,Singh R R,Barman P B.Crystallization kinetics of strontium hexaferrite:correlation to structural,morphological,dielectric and magnetic properties[J].Electronic Materials Letters,2012,8(6):595 - 603.

    [7]Bsoul I,Mahmood SH,Lehlooh A F,et al.Structural and magnetic properties ofTixRuxO19[J].Journal of Alloys and Compounds,2013,551:490 -495.

    [8]Rai B K,Mishra S R,Nguyen V V,et al.Synthesis and characterization of high coercivity rare-earth ion dopedRE0.1Fe10Al2O19(RE:Y,La,Ce,Pr,Nd,Sm,and Gd)[J].Journal of Alloys and Compounds,2013,550:198-203.

    [9]Yasukawa Y,Liu X X,Morisako A.Observation of magnetic/electric domains and control of electric polarization by magnetic field in BiFeO3/SrFe12O19bilayers[J].Journal of Magnetism and Magnetic Materials,2013,327:95 -102.

    [10]Song F Z,Shen X Q,Xiang J,et al.Characterization and magnetic properties of BaxSr1-xFe12O19(x=0 -1)ferrite hollow fibers via gel-precursor transformation process[J].Journal of Alloys and Compounds,2010,507:297 - 301.

    [11]Rezlescu N,Doroftei C,Rezlescu E,et al.The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19[J].Journal of Alloys and Compounds,2008,451:492 -496.

    [12]Ataie A,Heshmati-Manesh S.Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method[J].Journal of the European Ceramic Society,2001,21:1951 -1955.

    [13]Zi Z F,Sun Y P,Zhu X B,et al.Structural and magnetic properties of SrFe12O19hexaferrite synthesized by a modified chemical co-precipitation method[J].Journal of Magnetism and Magnetic Materials,2008,320:2746 -2751.

    [14]Wang J F,Ponton C B,Harris I R.A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis[J].Journal of Alloys and Compounds,2005,403:104 -109.

    [15]Brito P CA,Gomes R F,Duque J G S,et al.SrFe12O19prepared by the proteic sol-gel process[J].Physica B,2006,384:91 -93.

    [16]Ding J,Miao W F,McCormick P G,et al.High-coercivity ferrite magnets prepared by mechanical alloying[J].Journal of Alloys and Compounds,1998,281:32 -36.

    [17]Guo Z B,Ding W P,Zhong W,et al.Preparation and magnetic properties of SrFe12O19particles prepared by the salt-melt method[J].Journal of Magnetism and Magnetic Materials,1997,175:333 -336.

    [18]Nikkhah-Moshaie R,Ataie A,Ebrahimi SA.Processing of nano-structured barium hexaferrite by self-propagating high temperature synthesis(SHS)using nitrate precursor[J].Journal of Alloys and Compounds,2007,429:324 -328.

    [19]Liu X S,Zhong W,Gu B X,et al.Exchange-coupling interaction in nanocomposite SrFe12O19/γ - Fe2O3permanent ferrites[J].Journal of Applied Physics,2002,92:1028 -1032.

    [20]Soares J M,Cabral F A O,Araújo J H D,et al.Exchange-spring behavior in nanopowders of CoFe2O4- CoFe2[J].Applied Physics Letters,2011,98:072502.

    [21]Fu Y P,Lin C H.Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwaveinduced combustion process[J].Journal of Alloys and Compounds,2005,386:222 -227.

    [22]Hessien M M,Rashad M M,El-Barawy K.Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method[J].Journal of Magnetism and Magnetic Materials,2008,320:336-343.

    [23]Mali A,Ataie A,Mali A,et al.Influence of Fe/Ba molar ratio on the characteristics of Ba-h(huán)exaferrite particles prepared by sol-gel combustion method[J].Journal of Alloys and Compounds,2005,399:245 -250.

    [24]Liua X Y,Wanga J,Ganb L M,et al.An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion[J].Journal of Magnetism and Magnetic Materials,1998,184:344 -354.

    [25]Ranea M V,Bahadura D,Kulkarnib SD,et al.Magnetic properties of Ni/Zr substituted barium ferrite[J].Journal of Magnetism and Magnetic Materials,1999,195:256 -260.

    [26]Seifert D,T?pfer J,Langenhorst F,et al.Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites[J].Journal of Magnetism and Magnetic Materials,2009,321:4045 - 4051.

    [27]Hadjipanayis G C,Gong W.Magnetic hysteresis in melt-spun Nd-Fe-Al-B-Si alloys with high remanence[J].Journal of Applied Physics,1988,64:5559 -5561.

    [28]Schrefl T,F(xiàn)idler J,Kronmiiller H.Remanence and coercivity in isotropic nanocrystalline permanent magnets[J].Physical Review B,1994,49:6100 -6114.

    [29]Sun T,Borrasso A,Liu B,et al.Synthesis and characterization of nanocrystalline zinc manganese ferrite[J].Journal of the American Ceramic Society,2011,94(5):1490 -1495.

    [30]Skomski R,Coey JM D.Giant energy product in nanostructured two-phase magnets[J].Physical Review B,1993,48(21):15812-15815.

    [31]Kneller E F,Hawig R.The exchange-spring magnet:a new material principle for permanent magnets[J].IEEE Transaction on Magnetics,1991,27:3588 -3560.

    [32]Wohlfarth E P.Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles[J].Journal of Applied Physics,1958,29:595 -596.

    [33]Zeng H,Sun S H.Exchange-coupled FePt nanoparticle assembly[J].Applied Physics Letters,2002,80:2583 -2585.

    [34]O'Grady K,EI-Hilo M,Chantrell R W.The characterisation of interaction effects in fine particle systems[J].IEEE Transaction on Magnetics,1993,29:2608 -2613.

    [35]Che R X,Gao H,Zhao H B.Preparation of permanent magnetic nanocomposite by sol-gel method and the magnetic properties[J].Journal of Functional Materials,2006,37:146 -149.

    [36]Soares J M,Machado F L A.Fe interparticle interactions in Fexgranular alloys(2 < x<50)[J].Physical Review B,2005,72:184405.

    亚洲精品日韩在线中文字幕| 在线天堂最新版资源| 欧美成人午夜免费资源| 超碰97精品在线观看| 一边摸一边做爽爽视频免费| 一本久久精品| 色视频在线一区二区三区| 国产片内射在线| 国产高清国产精品国产三级| 国产精品国产三级国产av玫瑰| 婷婷色综合大香蕉| 99香蕉大伊视频| 最新中文字幕久久久久| 欧美精品一区二区免费开放| 老司机影院毛片| 国产免费现黄频在线看| 国产毛片在线视频| 国产欧美亚洲国产| 成人亚洲精品一区在线观看| 亚洲国产日韩一区二区| 中国美白少妇内射xxxbb| 国产不卡av网站在线观看| 久久久精品免费免费高清| 天天影视国产精品| 精品国产一区二区三区四区第35| 精品国产一区二区三区四区第35| 亚洲国产看品久久| 久久国产精品男人的天堂亚洲 | 黄色一级大片看看| 久久鲁丝午夜福利片| 大香蕉久久网| 精品酒店卫生间| 中文字幕另类日韩欧美亚洲嫩草| 国产av精品麻豆| 一级毛片黄色毛片免费观看视频| 亚洲av电影在线进入| 成人亚洲精品一区在线观看| 国产av码专区亚洲av| 最近最新中文字幕大全免费视频 | 免费在线观看黄色视频的| 国产成人91sexporn| 69精品国产乱码久久久| 91aial.com中文字幕在线观看| 欧美激情极品国产一区二区三区 | 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| 免费av不卡在线播放| 国产熟女欧美一区二区| 久久久亚洲精品成人影院| a级毛片在线看网站| 国产精品偷伦视频观看了| 婷婷色综合大香蕉| av免费在线看不卡| 国产亚洲午夜精品一区二区久久| 日韩大片免费观看网站| 午夜激情久久久久久久| 欧美另类一区| 国产成人av激情在线播放| 91精品国产国语对白视频| 热re99久久国产66热| 国产精品一区www在线观看| 国产精品一二三区在线看| 婷婷色av中文字幕| 亚洲国产欧美日韩在线播放| 亚洲伊人色综图| 成人综合一区亚洲| 秋霞伦理黄片| 国产不卡av网站在线观看| 97超碰精品成人国产| 久久久久精品人妻al黑| 国产免费现黄频在线看| 老司机影院毛片| 男女边摸边吃奶| 大香蕉久久成人网| 日韩不卡一区二区三区视频在线| 中国三级夫妇交换| 桃花免费在线播放| 日韩大片免费观看网站| 一级a做视频免费观看| 国国产精品蜜臀av免费| 一级a做视频免费观看| 日本爱情动作片www.在线观看| 亚洲精品av麻豆狂野| 国产在视频线精品| 国产精品熟女久久久久浪| 久久久久精品性色| 久久久精品区二区三区| 久久久久久人妻| 男人添女人高潮全过程视频| h视频一区二区三区| 国产日韩欧美在线精品| 国产精品蜜桃在线观看| 亚洲av在线观看美女高潮| 国产免费又黄又爽又色| 国产一级毛片在线| 国产精品久久久久久精品古装| 亚洲国产色片| 一边摸一边做爽爽视频免费| 亚洲国产精品国产精品| 又黄又爽又刺激的免费视频.| 一区二区日韩欧美中文字幕 | 久久国产精品大桥未久av| 九九在线视频观看精品| 久久99一区二区三区| 汤姆久久久久久久影院中文字幕| 精品国产一区二区久久| 又粗又硬又长又爽又黄的视频| 97在线视频观看| 看免费av毛片| 亚洲精品av麻豆狂野| 9热在线视频观看99| 色婷婷久久久亚洲欧美| 春色校园在线视频观看| 我要看黄色一级片免费的| 日韩一区二区三区影片| 久久久久久人妻| 日韩电影二区| 热99久久久久精品小说推荐| 色94色欧美一区二区| 男女免费视频国产| 国产精品一国产av| 亚洲综合色网址| 亚洲精品久久午夜乱码| 国产亚洲精品久久久com| 飞空精品影院首页| 日韩欧美一区视频在线观看| 捣出白浆h1v1| av.在线天堂| 亚洲色图 男人天堂 中文字幕 | 欧美日韩国产mv在线观看视频| 欧美丝袜亚洲另类| 国产色爽女视频免费观看| 午夜免费男女啪啪视频观看| 最近中文字幕2019免费版| 免费观看av网站的网址| 午夜av观看不卡| 黑人猛操日本美女一级片| 最近中文字幕高清免费大全6| 老司机影院成人| 国产精品一二三区在线看| 巨乳人妻的诱惑在线观看| 岛国毛片在线播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品视频女| 69精品国产乱码久久久| 成人国语在线视频| xxxhd国产人妻xxx| 亚洲国产精品成人久久小说| av网站免费在线观看视频| 日韩一本色道免费dvd| 精品一区二区免费观看| 五月玫瑰六月丁香| 最近中文字幕高清免费大全6| 高清欧美精品videossex| 国产精品一区www在线观看| 狠狠精品人妻久久久久久综合| 91成人精品电影| 少妇被粗大的猛进出69影院 | 中文欧美无线码| 黑人高潮一二区| xxxhd国产人妻xxx| 久久国内精品自在自线图片| 亚洲国产精品成人久久小说| 韩国精品一区二区三区 | 久久久久久伊人网av| 精品一区在线观看国产| 亚洲成人手机| 日韩 亚洲 欧美在线| tube8黄色片| 亚洲人成网站在线观看播放| 国产成人精品在线电影| 国产永久视频网站| 婷婷色综合大香蕉| 男女边吃奶边做爰视频| 91在线精品国自产拍蜜月| 亚洲精品第二区| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲高清精品| 亚洲欧美中文字幕日韩二区| 丰满少妇做爰视频| 人人妻人人添人人爽欧美一区卜| 有码 亚洲区| 在线观看三级黄色| 亚洲国产av新网站| 国产 一区精品| 欧美亚洲 丝袜 人妻 在线| 成人毛片a级毛片在线播放| 香蕉丝袜av| 免费大片黄手机在线观看| 久久久久精品人妻al黑| 午夜福利,免费看| 伦精品一区二区三区| 人成视频在线观看免费观看| 精品一区二区免费观看| 久久青草综合色| 欧美xxxx性猛交bbbb| 日日啪夜夜爽| 久久久久久久久久久免费av| 婷婷色麻豆天堂久久| 日本猛色少妇xxxxx猛交久久| 午夜福利影视在线免费观看| 亚洲国产成人一精品久久久| 日韩在线高清观看一区二区三区| 欧美xxⅹ黑人| 我的女老师完整版在线观看| 男女国产视频网站| 老司机影院成人| 伊人久久国产一区二区| 国产一区二区三区综合在线观看 | 日本欧美国产在线视频| 亚洲图色成人| 欧美激情国产日韩精品一区| 天天操日日干夜夜撸| 又大又黄又爽视频免费| 久久综合国产亚洲精品| 97精品久久久久久久久久精品| 日本欧美视频一区| 亚洲av日韩在线播放| 国产极品粉嫩免费观看在线| 国产成人精品婷婷| 久久午夜福利片| 飞空精品影院首页| 少妇的逼水好多| 国产成人精品久久久久久| 国产极品天堂在线| 国产男人的电影天堂91| 中文字幕精品免费在线观看视频 | 日韩不卡一区二区三区视频在线| 黄片播放在线免费| 国产精品99久久99久久久不卡 | 精品一区在线观看国产| 男人爽女人下面视频在线观看| 久久国产精品男人的天堂亚洲 | 久久韩国三级中文字幕| 国产精品久久久久久久久免| kizo精华| 丝袜人妻中文字幕| 中文精品一卡2卡3卡4更新| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 伦理电影大哥的女人| 国产精品一国产av| 伦理电影免费视频| 日韩 亚洲 欧美在线| 又黄又爽又刺激的免费视频.| 免费女性裸体啪啪无遮挡网站| av福利片在线| 久久99热这里只频精品6学生| 韩国av在线不卡| 国产av一区二区精品久久| 在线看a的网站| 欧美精品国产亚洲| 国产精品嫩草影院av在线观看| 十八禁高潮呻吟视频| 成人亚洲欧美一区二区av| 亚洲综合色惰| 亚洲高清免费不卡视频| 自线自在国产av| 精品酒店卫生间| 91成人精品电影| 亚洲美女搞黄在线观看| 免费高清在线观看日韩| 一级毛片 在线播放| av电影中文网址| 天天影视国产精品| 男女边摸边吃奶| 成人影院久久| 久久99热6这里只有精品| 熟女av电影| 亚洲美女黄色视频免费看| 欧美性感艳星| 黄色 视频免费看| 日韩熟女老妇一区二区性免费视频| 亚洲美女视频黄频| 丰满少妇做爰视频| 天天影视国产精品| 天天操日日干夜夜撸| 亚洲精品国产色婷婷电影| a级毛色黄片| 亚洲,欧美,日韩| 五月伊人婷婷丁香| 美女福利国产在线| 国产在线一区二区三区精| 国产欧美亚洲国产| 国产麻豆69| 国产精品熟女久久久久浪| 亚洲人成网站在线观看播放| 2022亚洲国产成人精品| 欧美国产精品一级二级三级| 久久精品久久久久久久性| videosex国产| av免费在线看不卡| 欧美国产精品va在线观看不卡| 久久久久久久亚洲中文字幕| 天天操日日干夜夜撸| 欧美精品av麻豆av| 一级黄片播放器| 免费看光身美女| 国产国语露脸激情在线看| 婷婷色综合www| 午夜免费观看性视频| 国产极品天堂在线| 日日爽夜夜爽网站| av在线app专区| 国产免费福利视频在线观看| 九色成人免费人妻av| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| 免费高清在线观看视频在线观看| 国产成人av激情在线播放| 老熟女久久久| 永久免费av网站大全| 激情五月婷婷亚洲| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 一本色道久久久久久精品综合| 最近的中文字幕免费完整| 久久久久久久久久成人| 精品久久久久久电影网| 最后的刺客免费高清国语| 亚洲三级黄色毛片| 最新的欧美精品一区二区| 国产成人a∨麻豆精品| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 久久久久久久精品精品| 内地一区二区视频在线| 狠狠婷婷综合久久久久久88av| 国产精品人妻久久久影院| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 亚洲美女视频黄频| 女性被躁到高潮视频| 深夜精品福利| 国产成人免费观看mmmm| 国产精品99久久99久久久不卡 | 日日爽夜夜爽网站| 超碰97精品在线观看| 日本黄色日本黄色录像| 国产一区二区在线观看日韩| 最近手机中文字幕大全| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲人成77777在线视频| 日本猛色少妇xxxxx猛交久久| 欧美丝袜亚洲另类| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 亚洲五月色婷婷综合| 在线天堂中文资源库| 久久久久视频综合| 天堂俺去俺来也www色官网| videosex国产| 中文精品一卡2卡3卡4更新| 建设人人有责人人尽责人人享有的| 国产白丝娇喘喷水9色精品| 国产成人精品婷婷| 香蕉精品网在线| 中文字幕另类日韩欧美亚洲嫩草| 国产精品欧美亚洲77777| 欧美亚洲日本最大视频资源| 九九在线视频观看精品| av一本久久久久| 老熟女久久久| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 国产精品一国产av| 99视频精品全部免费 在线| 国产成人精品婷婷| 一边摸一边做爽爽视频免费| 捣出白浆h1v1| 桃花免费在线播放| 国产精品嫩草影院av在线观看| 日韩成人伦理影院| 精品久久久久久电影网| 国产片特级美女逼逼视频| 国产精品久久久av美女十八| 日韩av在线免费看完整版不卡| 日本av手机在线免费观看| 久久久a久久爽久久v久久| 国产精品无大码| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 视频区图区小说| 97人妻天天添夜夜摸| 高清视频免费观看一区二区| 最近最新中文字幕免费大全7| 欧美性感艳星| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩在线播放| 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| 免费人妻精品一区二区三区视频| 男男h啪啪无遮挡| 亚洲国产看品久久| 国产黄色免费在线视频| 丝袜美足系列| 男女无遮挡免费网站观看| 黄片无遮挡物在线观看| 少妇猛男粗大的猛烈进出视频| 久久精品aⅴ一区二区三区四区 | 少妇被粗大的猛进出69影院 | 9色porny在线观看| 国产日韩欧美视频二区| 看十八女毛片水多多多| 亚洲精品乱久久久久久| 啦啦啦啦在线视频资源| 久久女婷五月综合色啪小说| xxx大片免费视频| 久久精品久久久久久久性| 大陆偷拍与自拍| 欧美性感艳星| 久久久a久久爽久久v久久| 国产黄频视频在线观看| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 欧美 亚洲 国产 日韩一| 80岁老熟妇乱子伦牲交| 午夜av观看不卡| 国产精品一区www在线观看| 老司机影院毛片| 精品少妇久久久久久888优播| 伊人久久国产一区二区| 成人手机av| 春色校园在线视频观看| 日韩,欧美,国产一区二区三区| 国产亚洲午夜精品一区二区久久| 狠狠精品人妻久久久久久综合| 午夜福利网站1000一区二区三区| 中文字幕av电影在线播放| 国产午夜精品一二区理论片| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的| 肉色欧美久久久久久久蜜桃| 高清不卡的av网站| 日韩电影二区| 日日撸夜夜添| 飞空精品影院首页| 亚洲av欧美aⅴ国产| 男男h啪啪无遮挡| 久久久久久久久久成人| 亚洲内射少妇av| 中文字幕免费在线视频6| 永久免费av网站大全| 在线免费观看不下载黄p国产| 人体艺术视频欧美日本| 国产综合精华液| 日韩一区二区视频免费看| 桃花免费在线播放| 婷婷成人精品国产| 男女免费视频国产| 亚洲成人手机| 精品少妇黑人巨大在线播放| 精品国产一区二区久久| 丝袜在线中文字幕| 亚洲精品视频女| 热99国产精品久久久久久7| 老司机影院毛片| 国精品久久久久久国模美| 中国美白少妇内射xxxbb| 亚洲国产精品专区欧美| 少妇熟女欧美另类| 欧美日韩一区二区视频在线观看视频在线| 国产成人精品一,二区| 久久综合国产亚洲精品| 成年动漫av网址| 菩萨蛮人人尽说江南好唐韦庄| 香蕉精品网在线| 免费高清在线观看视频在线观看| www日本在线高清视频| 黑丝袜美女国产一区| 久久 成人 亚洲| 久久久久精品人妻al黑| 久久ye,这里只有精品| 久久狼人影院| 一级毛片 在线播放| 成年av动漫网址| freevideosex欧美| 黄色视频在线播放观看不卡| 精品人妻偷拍中文字幕| 久久午夜综合久久蜜桃| 日韩精品免费视频一区二区三区 | 男女边吃奶边做爰视频| 精品亚洲成国产av| 国产欧美日韩综合在线一区二区| 国产69精品久久久久777片| 亚洲精品乱码久久久久久按摩| 又黄又粗又硬又大视频| 国产高清不卡午夜福利| 午夜免费鲁丝| 免费看不卡的av| 国产高清国产精品国产三级| 人妻 亚洲 视频| 欧美精品国产亚洲| 十八禁高潮呻吟视频| 午夜av观看不卡| 亚洲四区av| 国产毛片在线视频| 菩萨蛮人人尽说江南好唐韦庄| 五月天丁香电影| 免费看不卡的av| 免费播放大片免费观看视频在线观看| 春色校园在线视频观看| 18+在线观看网站| 欧美bdsm另类| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 一区在线观看完整版| 成人无遮挡网站| 国产成人精品一,二区| 超色免费av| 午夜91福利影院| 国产成人午夜福利电影在线观看| 亚洲天堂av无毛| 欧美人与性动交α欧美软件 | 国产国语露脸激情在线看| 在现免费观看毛片| 九草在线视频观看| 亚洲综合色网址| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人 | 欧美bdsm另类| 夜夜骑夜夜射夜夜干| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| videosex国产| 国产亚洲午夜精品一区二区久久| 夜夜爽夜夜爽视频| 大片电影免费在线观看免费| 亚洲三级黄色毛片| 一级片'在线观看视频| 国产淫语在线视频| 日韩av免费高清视频| 午夜影院在线不卡| 亚洲av福利一区| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| 18禁观看日本| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 亚洲av成人精品一二三区| 亚洲国产欧美日韩在线播放| 中文字幕人妻熟女乱码| 熟妇人妻不卡中文字幕| 精品久久久久久电影网| 久久精品国产a三级三级三级| 视频区图区小说| 18禁观看日本| 日本wwww免费看| 精品亚洲成国产av| 各种免费的搞黄视频| 国产一区有黄有色的免费视频| 黑人高潮一二区| 欧美97在线视频| 九色成人免费人妻av| 成年动漫av网址| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 亚洲内射少妇av| 人妻 亚洲 视频| 男女国产视频网站| 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| 九草在线视频观看| 黄色毛片三级朝国网站| 日韩熟女老妇一区二区性免费视频| 国产成人免费无遮挡视频| 欧美最新免费一区二区三区| 国产在视频线精品| 男女免费视频国产| 午夜激情av网站| 最新的欧美精品一区二区| 啦啦啦啦在线视频资源| 男人操女人黄网站| 亚洲国产成人一精品久久久| 草草在线视频免费看| 新久久久久国产一级毛片| 在线观看三级黄色| 亚洲精品久久成人aⅴ小说| 国产男女内射视频| 亚洲精品一二三| 精品第一国产精品| 亚洲精品美女久久久久99蜜臀 | 女性被躁到高潮视频| 纵有疾风起免费观看全集完整版| 国产精品一区www在线观看| 18在线观看网站| 亚洲精品456在线播放app| av福利片在线| 亚洲少妇的诱惑av| 国产欧美另类精品又又久久亚洲欧美| 日韩大片免费观看网站| 伊人久久国产一区二区| 国产男人的电影天堂91| 久热这里只有精品99| www.熟女人妻精品国产 | 中国国产av一级| 大香蕉久久网| 午夜91福利影院| 午夜福利在线观看免费完整高清在| 久久久久精品性色| 国产精品成人在线| 精品99又大又爽又粗少妇毛片| 日韩大片免费观看网站| 久热这里只有精品99| 观看美女的网站|