• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫化物在鉑電極上電氧化時空動力學(xué)的模型模擬和分析

    2014-09-17 06:59:50楊加平于輝耀何瑜庥解京選畢文彥高慶宇
    物理化學(xué)學(xué)報 2014年4期
    關(guān)鍵詞:中國礦業(yè)大學(xué)化工學(xué)院硫化物

    楊加平 于輝耀 何瑜庥 解京選 畢文彥 高慶宇

    (中國礦業(yè)大學(xué)化工學(xué)院,江蘇徐州221116)

    1 Introduction

    The electrochemical oxidation of sulfide has been frequently studied1-4in experiment on platinum electrode.Due to its complicated oxidation process,the electro-oxidation of sulfide possesses complex spatiotemporal dynamic behaviors.Oscillations in this electrochemical system were firstly investigated by Helms and coworkers in 1998.5It was found that both current and potential oscillated spontaneously with time.Later in 2006,Miller and Chen6expanded the study of electro-oxidation of sulfide on platinum,and the results showed that current oscillations and two distinct potential oscillations occurred.These two potential oscillations were classified as hidden N-shaped negative differential resistance(HN-NDR)oscillators.7,8Feng et al.9further detected this system and found that both N-shaped negative differential resistance(N-NDR)and HN-NDR types of oscillations exhibited in this system.In N-NDR oscillatory region abundant temporal dynamics including simple oscillations,complex oscillations,and bistable behaviors existed in the sulfide electro-oxidation process on platinum.Deposition and dissolution of sulfur layer on the platinum electrode surface were the general processes in the oscillatory regions.Motivated by the rich temporal dynamic behavior,Zhao et al.10investigated the spatiotemporal patterns and found synchronization of sulfur deposition/dissolution,pulses,and twinkling-eye patterns in N-NDR oscillatory region.In other potential regions patterns including fronts and labyrinths were also observed.When perturbed with some adsorbing anions,this system exhibited different dynamic behaviors.HN-NDR oscillations were investigated when appropriate amount of chloride were added into this system and in the N-NDR region the pulses morphology was changed greatly.11

    Abundant spatiotemporal patterns were obtained in the electrooxidation of sulfide in experiment.Nevertheless,mechanistic model and analysis for the sulfide electrochemical system have not been reported yet.In a series of works12-14mechanisms for homogeneous dynamics of sulfide electrochemical system have been discussed.The dominate sulfide species in solution was sulfide ion(S2-)at pH>13.15The experiments for spatiotemporal pattern formation in our previous works9-11were performed in 1.00 mol·L-1sodium sulfide whose pH value was 13.6.The detailed mechanism for the oscillatory region,especially for the N-NDR oscillations,was put forward to well understand the oscillations and pattern formation.The autocatalytic character of the double-layer potential as the positive feedback induced the formation of platinum hydroxide and platinum oxide(R1 and R2),respectively)on the electrode surface,which could catalyze the oxidation of the surface sulfide ion to generate elementary sulfur,(R3 and R4).The deposited sulfur further reacted with sulfide ion to produce soluble polysulfide(S22-)through R5 and as a result the unoccupied site of platinum was released again for electrocatalytic oxidation or direct electro-oxidation.Then the platinum hydroxide and platinum oxide could be reproduced,and the steps expressed above occurred repeatedly resulting in continuous oscillations and patterns.

    where ads and surface,as the subscripts,denote species adsorbing and locating at the electrode surface,respectively.And Sn2-stands for soluble polysulfide(n is the integer and n>1).

    It is known that N-NDR oscillations in electrochemistry mainly caused by the interaction of double-layer potential autocatalytic process and mass-transport limited negative feedback.16Consequently,the formation of platinic hydroxide and platinum oxide induced the NDR as the positive feedback.The mass-transport limited step of sulfide ion from the bulk solution to the interface of electrode/electrolyte for platinic hydroxide and platinum oxide reduction contributed a slow negative feedback to this system.Elemental sulfur(S)in R4 could strongly adsorb on the active sites of platinum and inhibit the growth of platinic hydroxide and platinum oxide.17Therefore,during the electrooxidation of sulfide on platinum electrode the negative feedbacks included the S2-limited mass-transport and elemental sulfur adsorption,which could both inhibit the formation of platinic hydroxide and platinum oxides.One positive feedback involved in electron-transfer process interacted with two negative feedbacks leads to complex dynamic behaviors.In this work we aim to simulate and explain the complex spatiotemporal dynamics with a simplified model according to reaction mechanism in electrochemical oxidation of sulfide.

    2 Model

    According to the detailed mechanism of sulfide electro-oxidation on platinum,we obtained a mechanistic model(M1-M3)as follows:

    Here bulk as a subscript denotes species in the electrolyte.M1 expresses the mass-transport limited step of sulfide ion from the bulk solution to the interface of electrode/electrolyte.M2 denotes the S2-electro-oxidation and sulfur deposition,resulting from R1+R3 or R1+R2+R4.M3 describes the dissolution of the poison(i.e.,deposited sulfur)and the rebirth of active sites on platinum.The experiment was operated in a conventional three-electrode cell.Working electrode(WE)was a platinum disk embedded in a Teflon insulator with a diameter of 2.0 mm.The counter electrode(CE)was a platinum ring placed at 1.5 cm below the WE.A saturated calomel electrode(SCE)was used as the reference electrode(RE)and was connected to the bulk electrolyte through a salt bridge.The experiments were conducted by a CHI-660A electrochemical workstation(CH Instruments Inc.,USA).A charge-coupled device(CCD)camera was utilized to investigate the pattern formation on the WE.The schematic diagram of the three-electrode system is shown in Fig.1.The model and simulation were performed based on this system.

    The spatiotemporal dynamics of double-layer potential can be derived according to the current balance of the circuit.Since electrolyte solution is electroneutral,the uncompensated resistance of the electrolyte is related to the distance between WE and RE.18Therefore the set of dynamic equation of double-layer potential19is given by

    where U1is the applied potential;?DLdenotes the double-layer potential;CDLis the double-layer capacitance per unit area;l1describes the distance between WE and RE;A stands for the area of the WE;κ presents the conductivity of the electrolyte;and t0is the time.The left side of equation(E1)describes the double-layer capacitive charging current.The first term on right side of the equation denotes the migration current induced by the electric field and iF(?DL)presents the Faradaic current.Generally iF(?DL)can be formulated as20

    where n is the number of electrons in the charge-transfer process;csdenotes the concentration of active substance S2-at electrode/electrolyte interface;and F is the Faradaic constant.k(φDL)is the rate constant.Therefore,as the electrochemical reaction occurs,the concentration of active substance at the interface will decrease.The replenishment of the substances includes diffusion from bulk electrolyte and migration process.Thus the net concentration evolution rate21at the electrode/electrolyte interface can be described as

    Fig.1 Schematic diagram of the three-electrode system

    where D is the diffusion constant;cbulkdenotes the bulk concentration of S2-;μdescribes the mobility of the S2-,andδpresents the diffusion layer thickness,which is assumed independent with time and space.The first term on the right side of equation(E3)indicates the diffusion of S2-from the bulk solution towards the electrode.The second term on the right side of the equation means that the S2-is driven by migration to the electrode,and the last term shows the reaction occurring at the electrode.As is mentioned that adsorbed poison can reduce the real active area of the electrode,here the poison is adsorbed elemental sulfur inhibiting the electrochemical oxidation of sulfide.Thus the coverage of elemental sulfur on the electrode surface,θ,is introduced to modify the effective area.The time evolution rate of θ involves two main processes.One is the potential-dependent adsorption process and the other is potentialindependent desorption process.As a consequence,the set of time evolution rate of θ is given by

    where kais the adsorption rate constant;Padenotes the fugacity of the adsorbate,and kdpresents the desorption rate constant.The electrochemical oxidation of sulfide can only occur at the site that is not blocked by the poison.Therefore the Faradaic current and the net concentration evolution rate are modified as

    The three-variable model comprising equations(E1)and(E4)-(E6)is the homogeneous model which can be used to simulate the sulfide electro-oxidation system.For the homogeneous calculation we employ Euler method to solve the dynamic equations.In order to simplify the calculation and make the model more general,we used a dimensionless form by converting the time,double-layer potential,applied potential,concentration of active substance,and the distance between WE and RE into dimensionless quantities using the following terms:

    3 Results and discussion

    3.1 Homogeneous dynamic behavior

    Fig.2 Simulated current response for a potential sweep

    Fig.2 shows the simulated current response for a potential sweep.Current oscillations are seen in the NDR region along the N-shaped curve.In this region,the NDR is caused by the early formation of platinic hydroxide and platinum oxides.The current density undergoes an increasing process as a result the concentration of S2-at the electrode/electrolyte interface is reduced abruptly.The diffusion of S2-from the bulk to the interface is thus the limited step in this system.Therefore,one negative feedback is caused by the S2-diffusion limited step.Meanwhile,PtSadscan also affect the dynamic behaviors of this system.Adsorbed S as a poison in the fuel cell adsorbs strongly on the active site of the metal electrode.22,23The strong adsorption of elemental S can inhibit the formation of platinic hydroxide and platinum oxides and consequently introduces another negative feedback into the system.With one electron-transfer involved positive feedback and two negative feedbacks,the three-variable model is simulated to possess an N-NDR oscillatory behavior in the negative slop branch of the dynamic curve(Fig.2).

    In the N-NDR oscillatory region,simulated time-series of current densities are investigated under potentiostatic control.It is shown in Fig.3 that oscillation mode varies with applied potential.In the oscillatory region,it starts with simple oscillations,shown in Fig.3a.Then when potential is kept at 7.25 the current density oscillates in a complex way,namely 11oscillation modes,c.f.,Fig.3b.Further increasing the applied potential results in more complex spontaneous current oscillations,including 12and complex ones(Fig.3c and Fig.3d).As the potential is increased to 7.56,the current oscillates again in a simple mode,seen in Fig.3e.At U=7.60,oscillations are not stable anymore.

    3.2 Spatiotemporal dynamics

    In electrochemical system,the diffusion and migration of electroactive species strongly influence the inherent spatiotemporal dynamic behavior.With the disk platinum electrode,diffusion and migration occur not only in the vertical direction of the electrode but also in the parallel direction due to concentration and potential differences at different local sites.Therefore the transport in both parallel and vertical directions against the electrode surface can affect the spatiotemporal dynamics of the electrochemical system.Thus the model above should be modified to calculate the spatiotemporal patterns forming in the electrode surface.Diffusion and migration of moving species on electrode surface are considered in mass balance equation.In spatiotemporal dynamical system,the ordinary differential equations are changed into partial differential ones on account of the dynamic interaction of different sites on the electrode surface.The diffusion and migration in the parallel direction are considered and described as the second order partial derivatives in space.Here,it is assumed that the electrolyte resistance between WE and RE is proportional to the distance of WE and RE.Linear gradient in electric field perpendicular to the WE surface is approximated,and then calculation of Laplace equation for distribution of electric field in bulk electrolyte is eliminated.The same dimensionless terms are introduced into the differential equations as a result the dimensionless equations of surface variables(?,c,and θ)are written as:

    Other parameters have the same meaning and expression as the homogeneous model.The last two terms in the concentration evolution equation describe the parallel diffusion and migration transportation,respectively.Therefore,the homogeneous dynamics interaction with spatial couplings results in complex spatiotemporal patterns.Here we adopt the five-point difference method to simulate the spatiotemporal patterns.

    Fig.4 illustrates twinkling-eye waves and time series of current densities during the numerical simulation.This result is performed on a 0.2×0.2 space lattice.It is observed in Fig.4b that the total current density oscillates chaotically with time due to the spatial coupling,which results in the spatial heterogeneity.However,the oscillations of current density in homogeneous condition are simple oscillations.As a result the transportation of electroactive species in the parallel direction has a great effect on the dynamics of the system.The spatial coupling of different local sites induces non-uniform distribution of current on the whole electrode surface.General dynamics interaction with spatial couplings induced by the concentration gradient and electric field in both parallel and vertical directions results in complex spatiotemporal dynamics.Thus the patterns formed under this condition are non-uniform twinklingeye waves as shown in Fig.4a(movie in Supporting Information).

    Fig.3 Simulated time-series of current densities under potentiostatic control

    Fig.4 Twinkling-eye waves(a)and time-series of current densities(b)in the numerical simulation

    Fig.5 Snapshots of traveling waves in simulation(a,b)and in experiment(c,d)

    In the sulfide electro-oxidation experiment traveling waves of sulfur are generally observed,shown in Fig.5(c,d).The waves are randomly triggered at the sites of the electrode and propagate on the surface.Generally,if the excitation site is not at the edge of the electrode,the traveling waves commonly propagate as the spiral and target waves.One wave will annihilate either with the other wave or with the edge of the electrode.This phenomenon is reproduced by the model simulation with appropriate parameters.Fig.5(a,b)shows the simulated traveling waves in a 0.2×0.2 space lattice.From the mechanism point of view,elemental sulfur adsorption on one hand can block the active sites of the electrode and thus inhibit the electrochemical reaction,and on the other hand can induce the non-uniform distribution of both concentration and potential through the whole electrode surface,which as a result introduces the spatial coupling to the system.It was known that the range and strength of spatial coupling in the electrochemical system are greatly related to the distance between WE and RE and the conductivity of electrolyte,respectively.24-26The range and strength of spatial coupling have great effects on the spatiotemporal patterns.With appropriate value of parameters,the positive and negative electrochemical feedbacks,interacting with spatial coupling,induce interesting traveling waves in the model simulation,shown in Fig.5(a,b).Spiral waves are stimulated at a defect site in space and propagate outspread the lattice.The tip of the spiral wave grows in an internal rotation way and the wave arm colliding with each other or with the space border also results in annihilation.Model simulation is consistent with experiment about pattern morphology and wave evolution.

    In homogeneous system,it has been observed that the sulfide electro-oxidation system can spontaneously generate complex oscillations with appropriate parameters.It is suggested that complicated patterns may exist in this system.Therefore,we perform the simulation with spatiotemporal dynamical model to investigate the complex patterns.The result shows that two-arm spiral waves of double-layer potential are present with some certain parameters in a 0.8×0.8 space lattice,seen in Fig.6(a-d).Two singular points are generated in space and move around each other as a result two spiral waves are triggered.It also can be seen that the two tips of spiral waves move alternately close and apart and collide together at some specific time as shown in Fig.6b(movie in Supporting Information).The spatiotemporal evolution at the black line in Fig.6a is analyzed and it can be clearly observed in Fig.6e that the two tips of spiral waves move close and apart.

    Fig.6 Two-armed spiral waves and space-time diagram

    4 Conclusions

    The spatiotemporal dynamics during the electro-oxidation of sulfide on platinum is further understood in the work.In this paper we presented a detailed model for the homogeneous and transportation-coupled spatiotemporal dynamics of sulfide electro-oxidation.It was found that simple and complex current oscillations exist in homogeneous system.Poison(adsorbed elemental sulfur)that blocks the active sites of electrode and inhibits the formation of platinic hydroxide and platinum oxides plays an important role in the dynamics of this system.The coupling between one positive feedback,involved in an electron-transfer process,and two negative feedbacks,which consists of mass-transport limited step and poison-adsorption process,results in complex dynamic behaviors.

    We took the spatial coupling into account to investigate the spatiotemporal patterns.The spatially extended model was modified based on the homogeneous model.We considered the transportation of electroactive species on both parallel and vertical directions to the electrode.Thus the model agreed better with the real situation.The model simulations obtained complicated patterns including twinkling-eye patterns and traveling waves,which was compared to the experiment results and found to possess the same evolution principles.In some certain parameters more complex patterns were obtained,e.g.,two-arm spiral waves spontaneously formed and propagated in a steady way.This opens an interesting perspective of explaining and predicting the pattern formation in electrochemical systems.Moreover,investigation and control of the complex patterns will have the potential value to promote the applications of functional devices.

    Supporting Information: Movies for Fig.4 and Fig.6 are available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)O′Brien,J.A.;Hinkley,J.T.;Donne,S.W.Electrochim.Acta 2011,56,4224.doi:10.1016/j.electacta.2011.01.092

    (2) Dutta,P.K.;Rabaey,K.;Yuan,Z.;Keller,J.Water Res.2008,42,4965.doi:10.1016/j.watres.2008.09.007

    (3) Cai,J.;Zheng,P.Bioresource Technol.2013,128,760.doi:10.1016/j.biortech.2012.08.046

    (4) Haner,J.;Bejan,D.;Bunce,N.J.J.Appl.Electrochem.2009,39,1733.doi:10.1007/s10800-009-9873-7

    (5) Helms,H.;Schl?mer,E.;Jansen,W.Monatsh.Chem.1998,129,617.

    (6) Miller,B.;Chen,A.J.Electroanal.Chem.2006,588,314.doi:10.1016/j.jelechem.2006.01.006

    (7) Strasser,P.;Eiswirth,M.;Koper,M.T.M.J.Electroanal.Chem.1999,478,50.doi:10.1016/S0022-0728(99)00412-X

    (8) Kiss,I.Z.;Sitta,E.;Varela,H.J.Phys.Chem.C 2012,116,9561.

    (9) Feng,J.;Gao,Q.;Xu,L.;Wang,J.Electrochem.Commun.2005,7,1471.doi:10.1016/j.elecom.2005.10.004

    (10)Zhao,Y.;Wang,S.;Varela,H.;Gao,Q.;Hu,X.;Yang,J.;Epstein,I.R.J.Phys.Chem.C 2011,115,12965.doi:10.1021/jp202881h

    (11) Yang,J.;Song,Y.;Varela,H.;Epstein,I.R.;Bi,W.;Yu,H.;Zhao,Y.;Gao,Q.Electrochim.Acta 2013,98,116.doi:10.1016/j.electacta.2013.03.042

    (12) Waterston,K.;Bejan,D.;Bunce,N.J.Appl.Electrochem.2007,37,367.doi:10.1007/s10800-006-9267-z

    (13)Parker,G.K.;Watling,K.M.;Hope,G.A.;Woods,R.Colloid.Surf.A:Physicochem.Eng.Aspects 2008,318,151.doi:10.1016/j.colsurfa.2007.12.029

    (14) O′Brien,J.A.;Hinkley,J.T.;Donne,S.W.;Lindquist,S.E.Electrochim.Acta 2010,55,573.doi:10.1016/j.electacta.2009.09.067

    (15) Hamilton,I.C.;Woods,R.J.Appl.Electrochem.1983,13,783.doi:10.1007/BF00615828

    (16) Krischer,K.In Advance in Electrochemical Science and Engineering;Wielry-VCH:Weinheim,2003;Vol.8,pp 90-203.

    (17)Kapusta,S.;Viehbeck,A.;Wilhelm,S.M.;Hackerman,N.J.Electroanal.Chem.Interfacial Electrochem.1983,153,157.doi:10.1016/S0022-0728(83)80011-4

    (18) Krischer,K.;Varela,H.;B??rzu,A.;Plenge,F.;Bonnefont,A.Electrochim.Acta 2003,49,103.doi:10.1016/j.electacta.2003.04.006

    (19) Mazouz,N.;Krischer,K.J.Phys.Chem.B 2000,104,6081.doi:10.1021/jp000203+

    (20) Koper,M.T.M.Electrochim.Acta 1992,37,1771.doi:10.1016/0013-4686(92)85080-5

    (21) Fl?tgen,G.;Krischer,K.J.Chem.Phys.1995,103,5428.doi:10.1063/1.470578

    (22) Galea,N.M.;Kadantsev,E.S.;Ziegler,T.J.Phys.Chem.C 2007,111,14457.doi:10.1021/jp072450k

    (23) Fu,Y.;Zu,C.;Manthiram,A.J.Am.Chem.Soc.2013,135(48),18044-7.doi:10.1021/ja409705u

    (24) Fl?tgen,G.;Krischer,K.Phys.Rev.E 1995,51,3397.doi:10.1103/PhysRevB.51.3397

    (25) Mazouz,N.;Fl?tgen,G.;Krischer,K.Phys.Rev.E 1997,55,2260.doi:10.1103/PhysRevE.55.2260

    (26) Plenge,F.;Li,Y.J.;Krischer,K.J.Phys.Chem.B 2004,108,14255.doi:10.1021/jp037955z

    猜你喜歡
    中國礦業(yè)大學(xué)化工學(xué)院硫化物
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    《化工學(xué)報》贊助單位
    大洋多金屬硫化物自然氧化行為研究
    高校學(xué)生評教的問題與對策——以中國礦業(yè)大學(xué)為例
    連續(xù)流動法測定沉積物中的酸揮發(fā)性硫化物
    Li2S-P2S5及Li2S-SiS2基硫化物固體電解質(zhì)研究進(jìn)展
    鎢酸錳催化氧化脫除模擬油硫化物
    中國礦業(yè)大學(xué)教育培訓(xùn)工作簡介
    久久久久久久久久成人| 波野结衣二区三区在线| 老司机福利观看| 在线免费十八禁| 国模一区二区三区四区视频| 久久韩国三级中文字幕| 日韩欧美免费精品| 九色成人免费人妻av| 一区福利在线观看| 亚洲国产欧美人成| 少妇丰满av| 神马国产精品三级电影在线观看| 在线a可以看的网站| 午夜日韩欧美国产| 国产综合懂色| 亚洲欧美精品综合久久99| 日本黄色片子视频| 国产中年淑女户外野战色| 亚洲国产精品成人综合色| 亚洲av美国av| 无遮挡黄片免费观看| 国产爱豆传媒在线观看| 国产视频一区二区在线看| 少妇的逼水好多| 日本在线视频免费播放| 亚洲不卡免费看| 少妇猛男粗大的猛烈进出视频 | 免费大片18禁| 欧美zozozo另类| 卡戴珊不雅视频在线播放| 免费观看的影片在线观看| 欧美色欧美亚洲另类二区| 乱码一卡2卡4卡精品| 成人美女网站在线观看视频| 乱系列少妇在线播放| 国产精品久久久久久av不卡| 在线观看一区二区三区| 国产精品一区二区性色av| 国产免费男女视频| 精品国内亚洲2022精品成人| 国产精品久久电影中文字幕| 女人被狂操c到高潮| 中国美女看黄片| 国产淫片久久久久久久久| av女优亚洲男人天堂| 午夜福利视频1000在线观看| 黄色视频,在线免费观看| 亚洲精品日韩av片在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美日韩国产亚洲二区| 久久人妻av系列| a级毛色黄片| videossex国产| 综合色av麻豆| 九九久久精品国产亚洲av麻豆| 日产精品乱码卡一卡2卡三| 国产精品综合久久久久久久免费| 精品人妻偷拍中文字幕| 色综合色国产| 欧美潮喷喷水| 精品人妻一区二区三区麻豆 | 夜夜夜夜夜久久久久| 美女内射精品一级片tv| 在线观看美女被高潮喷水网站| 亚洲一级一片aⅴ在线观看| 亚洲精品一区av在线观看| 成年女人看的毛片在线观看| 日韩在线高清观看一区二区三区| 色av中文字幕| 简卡轻食公司| 国产精品久久视频播放| 丰满乱子伦码专区| 香蕉av资源在线| 国产三级中文精品| 插逼视频在线观看| 欧美日韩国产亚洲二区| 亚洲国产精品国产精品| 秋霞在线观看毛片| 亚洲欧美日韩高清专用| 国产成人a∨麻豆精品| 搡老妇女老女人老熟妇| 99久久中文字幕三级久久日本| 亚洲精品一区av在线观看| 免费观看在线日韩| 久久久久国产精品人妻aⅴ院| 赤兔流量卡办理| 久久久久久久亚洲中文字幕| 高清毛片免费看| 韩国av在线不卡| 别揉我奶头~嗯~啊~动态视频| 六月丁香七月| 日韩成人av中文字幕在线观看 | 麻豆精品久久久久久蜜桃| 亚洲va在线va天堂va国产| 日日干狠狠操夜夜爽| 激情 狠狠 欧美| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 最近最新中文字幕大全电影3| 亚洲人成网站在线播| 色视频www国产| 国产黄色视频一区二区在线观看 | 亚洲av二区三区四区| 欧美高清成人免费视频www| 免费一级毛片在线播放高清视频| 欧美高清性xxxxhd video| 极品教师在线视频| 亚洲美女搞黄在线观看 | 日本-黄色视频高清免费观看| 午夜福利在线观看免费完整高清在 | 午夜福利在线观看吧| 好男人在线观看高清免费视频| 国产精华一区二区三区| 日韩av在线大香蕉| videossex国产| 18禁在线无遮挡免费观看视频 | 国产视频一区二区在线看| 国产成人精品久久久久久| 成人av一区二区三区在线看| 国产乱人视频| 欧美日本亚洲视频在线播放| 精品久久久久久久久亚洲| 久久久久久伊人网av| 国产高清视频在线观看网站| 在线观看美女被高潮喷水网站| 性插视频无遮挡在线免费观看| 国产精华一区二区三区| 午夜激情福利司机影院| 久久草成人影院| 亚洲av不卡在线观看| 久久久久久久亚洲中文字幕| 真人做人爱边吃奶动态| 少妇高潮的动态图| av天堂中文字幕网| 日本免费一区二区三区高清不卡| 色在线成人网| 2021天堂中文幕一二区在线观| 美女大奶头视频| 亚洲欧美成人综合另类久久久 | 亚洲一区高清亚洲精品| 91精品国产九色| 别揉我奶头 嗯啊视频| 一卡2卡三卡四卡精品乱码亚洲| 色视频www国产| 又爽又黄无遮挡网站| 亚洲欧美日韩高清在线视频| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕 | 亚洲激情五月婷婷啪啪| 午夜福利在线在线| www.色视频.com| 少妇的逼好多水| or卡值多少钱| 欧美xxxx黑人xx丫x性爽| 最近在线观看免费完整版| 免费在线观看成人毛片| 午夜爱爱视频在线播放| 久久久久性生活片| 亚洲成a人片在线一区二区| 麻豆av噜噜一区二区三区| 一级黄片播放器| 热99re8久久精品国产| 久久久国产成人精品二区| av黄色大香蕉| 成人综合一区亚洲| 成人永久免费在线观看视频| 国产白丝娇喘喷水9色精品| 日本成人三级电影网站| 永久网站在线| 2021天堂中文幕一二区在线观| 精品国产三级普通话版| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩卡通动漫| 亚洲高清免费不卡视频| 欧美成人一区二区免费高清观看| 国产成人a∨麻豆精品| 老司机影院成人| 精品午夜福利视频在线观看一区| 欧美另类亚洲清纯唯美| 亚洲一区高清亚洲精品| 亚洲图色成人| 中文字幕免费在线视频6| 国产精品伦人一区二区| 啦啦啦啦在线视频资源| 久久久久精品国产欧美久久久| 精品久久久噜噜| 伦精品一区二区三区| 国产毛片a区久久久久| 高清午夜精品一区二区三区 | 91av网一区二区| 亚洲自偷自拍三级| 99久久无色码亚洲精品果冻| 亚洲一级一片aⅴ在线观看| 99在线人妻在线中文字幕| a级毛片a级免费在线| 黄色视频,在线免费观看| 嫩草影院精品99| 一夜夜www| 91在线精品国自产拍蜜月| 日本爱情动作片www.在线观看 | 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕一区二区三区有码在线看| av在线蜜桃| 99国产极品粉嫩在线观看| 一a级毛片在线观看| 国产私拍福利视频在线观看| 波多野结衣高清作品| a级毛片a级免费在线| 狠狠狠狠99中文字幕| 欧美在线一区亚洲| 18禁裸乳无遮挡免费网站照片| 老司机影院成人| 最近的中文字幕免费完整| 老司机午夜福利在线观看视频| 国产在线精品亚洲第一网站| 亚洲av中文字字幕乱码综合| 伦精品一区二区三区| 免费av不卡在线播放| 亚洲国产高清在线一区二区三| 我的老师免费观看完整版| 国产av在哪里看| 国产一区二区在线观看日韩| 国产成人91sexporn| АⅤ资源中文在线天堂| av在线天堂中文字幕| 狠狠狠狠99中文字幕| 99riav亚洲国产免费| 51国产日韩欧美| 久久久久久久久久久丰满| 97超碰精品成人国产| 亚洲欧美成人精品一区二区| 久久久欧美国产精品| 免费观看精品视频网站| 日韩在线高清观看一区二区三区| 久久热精品热| 日韩精品有码人妻一区| 亚洲熟妇中文字幕五十中出| 亚洲av一区综合| 国产真实乱freesex| 老女人水多毛片| 久久精品国产亚洲av涩爱 | 亚洲性久久影院| 日本-黄色视频高清免费观看| 亚洲成人中文字幕在线播放| 丰满人妻一区二区三区视频av| 国产精品女同一区二区软件| 国产精品一区www在线观看| 免费观看精品视频网站| 亚洲一区二区三区色噜噜| 国产av不卡久久| 免费人成视频x8x8入口观看| 久久九九热精品免费| 色av中文字幕| 亚洲丝袜综合中文字幕| .国产精品久久| av国产免费在线观看| 免费观看人在逋| 精品人妻熟女av久视频| 国产综合懂色| 一个人看视频在线观看www免费| 精品熟女少妇av免费看| 少妇人妻一区二区三区视频| 亚洲精品色激情综合| 欧美成人a在线观看| 亚洲国产色片| 99热全是精品| 精品一区二区三区av网在线观看| 国产高清三级在线| 久久鲁丝午夜福利片| 一进一出抽搐gif免费好疼| avwww免费| 亚洲国产欧美人成| 午夜福利在线观看吧| 亚洲欧美中文字幕日韩二区| 免费观看精品视频网站| 国产免费一级a男人的天堂| 精品国产三级普通话版| 有码 亚洲区| videossex国产| 国产色爽女视频免费观看| 欧美人与善性xxx| 久久久午夜欧美精品| 亚洲自偷自拍三级| 亚洲欧美日韩卡通动漫| 亚洲欧美中文字幕日韩二区| 国产91av在线免费观看| 国产欧美日韩精品一区二区| 国语自产精品视频在线第100页| 久久人人精品亚洲av| 天堂动漫精品| 成人无遮挡网站| 久久久久精品国产欧美久久久| 欧美三级亚洲精品| 日韩中字成人| 国产一区二区在线av高清观看| 男女之事视频高清在线观看| 亚洲国产精品成人综合色| 少妇熟女欧美另类| 国产精品一区二区免费欧美| 亚洲国产精品合色在线| 大型黄色视频在线免费观看| 久久婷婷人人爽人人干人人爱| 亚洲最大成人av| 免费大片18禁| 精品人妻熟女av久视频| 亚洲人成网站高清观看| 国产亚洲精品久久久久久毛片| 精品人妻视频免费看| 久久久精品94久久精品| 国产精品美女特级片免费视频播放器| 天堂网av新在线| 你懂的网址亚洲精品在线观看 | 久久久国产成人免费| 成年女人毛片免费观看观看9| 中国美白少妇内射xxxbb| 一区二区三区高清视频在线| av免费在线看不卡| 日本欧美国产在线视频| 亚洲欧美精品综合久久99| 一级毛片aaaaaa免费看小| 黄色一级大片看看| 色在线成人网| 天天躁夜夜躁狠狠久久av| 99热网站在线观看| 99久久无色码亚洲精品果冻| 干丝袜人妻中文字幕| 亚洲成av人片在线播放无| 91午夜精品亚洲一区二区三区| 免费高清视频大片| 少妇人妻精品综合一区二区 | 一级毛片久久久久久久久女| 最近在线观看免费完整版| 别揉我奶头 嗯啊视频| 欧美激情国产日韩精品一区| 久久热精品热| 天堂动漫精品| 在线观看午夜福利视频| 精品日产1卡2卡| 久久久久免费精品人妻一区二区| 国产高潮美女av| 深夜精品福利| 91在线精品国自产拍蜜月| 一个人观看的视频www高清免费观看| 非洲黑人性xxxx精品又粗又长| 免费人成在线观看视频色| 日本成人三级电影网站| 久久亚洲精品不卡| 免费大片18禁| 夜夜夜夜夜久久久久| 看黄色毛片网站| 一区二区三区高清视频在线| 亚洲av美国av| 99riav亚洲国产免费| 老司机福利观看| 波多野结衣巨乳人妻| 一区二区三区高清视频在线| 国产精品一区二区三区四区久久| 欧美xxxx黑人xx丫x性爽| 午夜福利成人在线免费观看| 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区 | 村上凉子中文字幕在线| 一级毛片久久久久久久久女| 又爽又黄无遮挡网站| 色综合色国产| 久久精品影院6| 日韩 亚洲 欧美在线| 日韩在线高清观看一区二区三区| 日本五十路高清| 99国产精品一区二区蜜桃av| 亚洲第一电影网av| 变态另类成人亚洲欧美熟女| 亚洲av美国av| 国产黄色视频一区二区在线观看 | 亚洲欧美清纯卡通| 国产色婷婷99| 久久久国产成人免费| 午夜精品国产一区二区电影 | 深夜精品福利| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 搡老妇女老女人老熟妇| 欧美成人精品欧美一级黄| 国产毛片a区久久久久| 国产蜜桃级精品一区二区三区| 在线观看午夜福利视频| 美女被艹到高潮喷水动态| 精华霜和精华液先用哪个| 国产精华一区二区三区| 成人综合一区亚洲| 日日啪夜夜撸| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 精品一区二区三区视频在线观看免费| 日韩欧美免费精品| 麻豆乱淫一区二区| 欧美日韩国产亚洲二区| 一a级毛片在线观看| 好男人在线观看高清免费视频| 少妇的逼水好多| 日韩人妻高清精品专区| 嫩草影院精品99| 性欧美人与动物交配| 国产白丝娇喘喷水9色精品| 亚洲无线在线观看| 精品日产1卡2卡| 精品一区二区三区视频在线观看免费| 中国国产av一级| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 国产精品爽爽va在线观看网站| 校园春色视频在线观看| 国产成人精品久久久久久| 丰满乱子伦码专区| 特大巨黑吊av在线直播| 一级黄色大片毛片| 亚洲内射少妇av| 国产精品一二三区在线看| 国产亚洲精品久久久久久毛片| 亚洲性夜色夜夜综合| 又爽又黄a免费视频| 久久久午夜欧美精品| 我要搜黄色片| 国产在视频线在精品| av天堂在线播放| 精品久久久久久久末码| 国产精品亚洲美女久久久| 国产成人91sexporn| 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 亚洲国产欧洲综合997久久,| 别揉我奶头~嗯~啊~动态视频| 久久鲁丝午夜福利片| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 久久精品综合一区二区三区| 极品教师在线视频| 国产极品精品免费视频能看的| 亚洲七黄色美女视频| 国产亚洲精品综合一区在线观看| 国产高清激情床上av| 熟女人妻精品中文字幕| 伦精品一区二区三区| 丰满的人妻完整版| 欧美xxxx性猛交bbbb| 日韩精品中文字幕看吧| 国产精品人妻久久久影院| 亚洲人与动物交配视频| 亚洲色图av天堂| 久久久久久国产a免费观看| 91精品国产九色| 成年女人看的毛片在线观看| 国产精品精品国产色婷婷| 内地一区二区视频在线| 人人妻,人人澡人人爽秒播| 久久国内精品自在自线图片| 欧美激情国产日韩精品一区| 亚洲自偷自拍三级| 秋霞在线观看毛片| 日韩精品中文字幕看吧| 国产男人的电影天堂91| 性欧美人与动物交配| 寂寞人妻少妇视频99o| 少妇的逼好多水| 极品教师在线视频| 2021天堂中文幕一二区在线观| 天天躁日日操中文字幕| 亚洲专区国产一区二区| 天堂影院成人在线观看| 久久精品91蜜桃| 一夜夜www| 别揉我奶头 嗯啊视频| 寂寞人妻少妇视频99o| 十八禁网站免费在线| 男女做爰动态图高潮gif福利片| 俺也久久电影网| 99精品在免费线老司机午夜| 美女免费视频网站| 免费人成视频x8x8入口观看| 国产久久久一区二区三区| 国产高潮美女av| 嫩草影院新地址| 在线国产一区二区在线| 午夜影院日韩av| 一进一出抽搐动态| 久久久久免费精品人妻一区二区| 久久欧美精品欧美久久欧美| 久久综合国产亚洲精品| 人妻久久中文字幕网| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产欧美人成| 国产淫片久久久久久久久| 人妻制服诱惑在线中文字幕| 搡老岳熟女国产| 乱系列少妇在线播放| 日韩成人伦理影院| 97超视频在线观看视频| 午夜精品在线福利| 99热精品在线国产| 久久精品国产自在天天线| 最近手机中文字幕大全| 日日摸夜夜添夜夜添小说| 一级黄色大片毛片| 波多野结衣高清作品| 色av中文字幕| 一级黄色大片毛片| 十八禁网站免费在线| 高清毛片免费看| 日本黄色视频三级网站网址| 夜夜爽天天搞| 十八禁国产超污无遮挡网站| 国产真实伦视频高清在线观看| 搡老妇女老女人老熟妇| 亚洲精品乱码久久久v下载方式| 少妇人妻一区二区三区视频| 夜夜爽天天搞| 国产精品亚洲美女久久久| 美女黄网站色视频| 麻豆av噜噜一区二区三区| 国产毛片a区久久久久| 久久精品国产亚洲av香蕉五月| 欧美色欧美亚洲另类二区| 国产伦一二天堂av在线观看| 久久精品影院6| 麻豆精品久久久久久蜜桃| 大香蕉久久网| 国产精品爽爽va在线观看网站| 久久精品夜色国产| 国产精品亚洲一级av第二区| 精品久久久久久久久av| 高清毛片免费看| 熟女电影av网| 天堂√8在线中文| 一本精品99久久精品77| 日韩一本色道免费dvd| 日本一二三区视频观看| 伦精品一区二区三区| 国产男人的电影天堂91| 嫩草影院入口| 欧美国产日韩亚洲一区| 成人三级黄色视频| 岛国在线免费视频观看| 国产精品久久久久久久久免| 两个人的视频大全免费| 亚洲七黄色美女视频| 久久亚洲国产成人精品v| 色吧在线观看| 欧美另类亚洲清纯唯美| 日本黄色视频三级网站网址| 国产一区二区亚洲精品在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲经典国产精华液单| 久久精品影院6| 国产麻豆成人av免费视频| 欧美+日韩+精品| 99热网站在线观看| 特大巨黑吊av在线直播| 三级国产精品欧美在线观看| 男人的好看免费观看在线视频| 久久久久久久久久成人| 波多野结衣高清作品| 国产精品伦人一区二区| 中文字幕免费在线视频6| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 精品人妻一区二区三区麻豆 | 日韩,欧美,国产一区二区三区 | 性插视频无遮挡在线免费观看| 中文在线观看免费www的网站| 熟女电影av网| 综合色av麻豆| 久久99热6这里只有精品| 精品一区二区三区人妻视频| 欧美日韩乱码在线| 日韩在线高清观看一区二区三区| 香蕉av资源在线| 亚洲不卡免费看| 中文字幕av成人在线电影| av在线播放精品| 91狼人影院| 国产精品国产三级国产av玫瑰| 特大巨黑吊av在线直播| 久久热精品热| 国产精品一区www在线观看| av福利片在线观看| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 亚洲内射少妇av| 成年女人毛片免费观看观看9| 精品不卡国产一区二区三区| 久久6这里有精品| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 日韩欧美国产在线观看| 一进一出好大好爽视频| 亚洲精品456在线播放app| 亚洲欧美日韩无卡精品| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 最后的刺客免费高清国语| 国产高清不卡午夜福利| 露出奶头的视频| 国产精品不卡视频一区二区| 哪里可以看免费的av片| 99精品在免费线老司机午夜| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 精华霜和精华液先用哪个| 99久国产av精品| 此物有八面人人有两片| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 久久国内精品自在自线图片|