• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimating runoff coefficient for quantity assessment of roof rainwater harvesting system

    2014-09-06 10:49:43ZhangWeiLiSiminTangFengbing
    關(guān)鍵詞:徑流系數(shù)場次邯鄲市

    Zhang Wei Li Simin Tang Fengbing

    (School of Urban Construction, Hebei University of Engineering, Handan 056038, China)

    ?

    Estimating runoff coefficient for quantity assessment of roof rainwater harvesting system

    Zhang Wei Li Simin Tang Fengbing

    (School of Urban Construction, Hebei University of Engineering, Handan 056038, China)

    In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system(RRHS), great differences in the value of event runoff coefficient (ψERC) were observed by field monitoring under different roof types (roof slope and material) and diverse rainfall distributions (rainfall depth and intensity) in three years (2010 to 2012) in Handan, Hebei, China. The results indicate that the distribution ofψERCis more highly correlated with the event rainfall depth than other factors. The relationship betweenψERCand the rainfall depth can be well represented by the piecewise linear function. Further, based on the daily rainfall data over the period from 1960 to 2008, the value of the annual runoff coefficient (ψARC) is calculated. Although the total rainfall depth in each year is different,ψARCin Handan can be considered as a constant (0.62) approximately. The results can be used for the quantity assessment and performance analysis of the RRHS.

    roof rainwater harvesting system; event runoff coefficient; annual runoff coefficient; rainfall depth

    In recent years, roof rainwater harvesting systems (RRHS) have been widely applied as an alternative way to cope with the worsening urban water crisis in many countries. Taking into consideration the uneven spatial and temporal distribution of natural rainfall, many studies focused on the optimum methods of rainwater tank design for improving the cost effectiveness of the RRHS[1-3]. Whatever method was used, available runoff depth (or volume) was an indispensable parameter. Some researchers identified available runoff depth from roof catchments with rainfall depth approximately because roof catchments were the impervious surface[4-5]. However, there were hydrological losses of rainfall runoff caused by evaporation and minor infiltration in roof catchments[6]. For this reason, the runoff coefficient was introduced to calculate the value of available runoff depth on either an event or an annual basis[7].

    The event runoff coefficient (ERC) is regarded as the ratio of runoff depth to rainfall depth, which reflects the influence of rainfall types on available runoff depth in different rainfall events. The value of ERC (ψERC) was usually selected as one constant but might not be the same numeric value in previous literature[8-11]. Actually,ψERCvaries greatly, influenced by catchments characteristics and rainfall distributions[12]. The results on the impact of roofing types and materials on ERC indicated thatψERCon sloping concrete/asphalt roofs, sloping metal roofs and flat gravel roofs were 0.9, 0.95 and 0.8 to 0.85, respectively[13]. Furthermore, little information was available onψERCunder different rainfall conditions. The annual runoff coefficient (ARC) was determined using the ratio of total runoff to total precipitation based on the annual rainfall data, which was adopted to assess the rainwater harvesting potential[14]. Catchment characteristics were the decisive factors for the value of ARC (ψARC) in the developing watersheds of Orlando, Florida[15]. By contrast, the work in Sicilian basins indicated that average annual rainfall depth and average annual temperature were the main climate parameters ofψARC[16].

    The purpose of this study focuses on analyzing the influence factors ofψERCon roof catchments and developing a simple empirical method for estimatingψERC. Besides,ψARCbased on daily rainfall data is also discussed.

    1 Materials and Methods

    1.1 Study sites

    Four different roof catchments are selected in Handan city, which is located in the south portion of Hebei province, China. In the study region, the mean annual rainfall and temperature are 558.5 mm and 13.5 ℃, respectively. The main characteristics of selected roofs are shown in Tab.1. The roof materials include asphalt, concrete and tile and the slopes are from 2.5% to 100%, where the selected roof types are commonly used in Handan. BecauseψERCis little correlated with the catchments area[8], the influence of the area is ignored in this study.

    1.2 Data collection

    Tab.1 Main characteristics of selected roof catchments

    SiteMaterialSlope/%Area/m2Site1Asphalt2 552Site2Asphalt5076Site3Concrete360Site4Tile10088

    The daily rainfall data (1960 to 2008) were obtained from the Meteorological Department of Handan. A telemetry rain gauge (SL1, China) was placed near all the study sites, by which the rainfall data were monitored from 116 rainfall events (2010 to 2012). The general information of monitored rainfall events is shown in Tab.2. Since the runoff losses are caused by infiltration and interception occur mainly at the initial rainfall, and first flush control is widely used in the RRHS for improving the rainwater quality[17-18], it is difficult to collect rainwater runoff during the initial rainfall or small rainfall (the depth is smaller than 5mm).

    To estimate the roof runoff volume, a plastic tank with a capacity of 2 m3is used to store the roof rainwater. Two series-wound tanks are, respectively, connected with the vertical drain pipes of each selected roof, which may store at least 45 mm-depth rainfall in a single event. When the runoff volume exceeds the storage capacity of the plastic tank, the data of rainfall events are also excluded.

    Tab.2 General information of rainfall events monitored in this study

    YearAnnualrainfalldepth/mmNumberofmonitoredrainfallevents0to5mm5to15mm15to25mm25to35mm35to45mm>45mm2010516 7111464202011441 713843212012486 67146501Total1445.03136161242

    2 Results and Discussion

    2.1 Influence factors analysis ofψERC

    For different rainfall events,ψERCcannot be determined as one constant, which is mentioned above. The major factors ofψERCdiscussed include the roof slope and material, the rainfall depth, and the intensity.

    ψERCcan be calculated by the rational method, i.e.,

    (1)

    whereψERCis the value of ERC;Vis the volume of runoff,m3;V0is the volume of rainfall,m3;His the rainfall depth, mm;Ais the area of roof catchments, m2.

    Fig.1 Comparison of ERC in different roof catchments

    It is evident from Fig.1 thatψERCin different roof catchments is performed closely at the same rainfall event, so the linear correlations of the ERC of site 1 with that of other sites are analyzed and Pearson’s coefficient (r) is used for ranking the correlation. There is a strong correlation forψERCbetween different roof catchments. Pearson’s coefficient of site 1 vs. site 2, site 1 vs. site 3, and site 1 vs. site 4 is 0.932, 0.919, and 0.935, respectively. All the three fitting curves coincide with the diagonal.ψERCis less affected by roof slope and material. In other words,ψERCof different roof catchments can be regarded nearly as the same value in a certain event.

    The relationship between ERC and event rainfall depth is shown in Fig. 2. In the most monitoring data of rainfall events,ψERCranges from 0.50 to 0.75, which strictly depends on the event rainfall depth. The rainfall events are classified by rainfall depth as shown in Tab. 2. At the class of 5 to 15 mm rainfall depth,ψERCgenerally increases with an increase in the event rainfall depth. It is because infiltration and interception losses for certain roof catchments in the initial stage of many rainfall events may have little difference. The lower the rainfall depth, the higher the proportion of infiltration and interception losses to rainfall. However, in other classes of rainfall events where rainfall depth exceeds 15 mm,ψERCfluctuates slightly on a small scale in each class. And with the increasing event rainfall depth,ψERCis presented as a stair-stepping decline in different classes. For the events of high rainfall depth, evaporation losses may be increased due to long rainfall duration. In comparison,ψERCin the events of 15 to 25 mm rainfall depth is much higher than that in other classes.

    Fig.2 Relationship between ERC and event rainfall depth

    Besides, the rainfall intensity is an important parameter for the runoff coefficient. The temporal variability of the rainfall intensity is almost random during a single event, by which the value of the runoff coefficient will fluctuate commonly[19]. However, the runoff coefficient affected by the rainfall intensity is an instantaneous flow runoff coefficient, while the ERC for RRHS is a volumetric runoff coefficient in a single event[20], soψERCis less influenced by the temporal variability of the rainfall intensity. The monitoring data of three events with almost the same rainfall depths and different mean rainfall intensities are shown in Tab.3. Because of high mean rainfall intensity,ψERCin event 2 is larger than those in event 1 and event 3. Though the mean rainfall intensities in event 1 and event 3 are different,ψERCis nearly equal. Based on the monitoring data, event 2 is a small probability rainfall event, which cannot be regarded as a general phenomenon to all the rainfall events. Therefore, the influence of the rainfall intensity on ERC can be ignored. The results are also verified by the data of other events in this study.

    Tab.3 Influence of rainfall intensity on ERC

    EventRainfalldepth/mmMeanrainfallintensity/(mm·h-1)ψERCEvent19 33 320 57Event29 424 500 89Event39 58 640 58

    2.2 Determination ofψERC

    According to the above results, the rainfall depth is a decisive factor for ERC, that is,ψERCcan be determined by the rainfall depth. In order to simplify the quantity assessment of RRHS,ψERCis empirically estimated by the piecewise linear function as follows:

    (2)

    As shown in Fig.2,ψERCis not the same in different rainfall classes. When the rainfall depth of an event is 5 to 15 mm,ψERCcan be calculated by a linear equation. For other classes (Rainfall depth is 15 to 25 mm, 25 to 35 mm, 35 to 45 mm or above 45 mm),ψERCis 0.68, 0.64,0.60 and 0.58, respectively.

    In order to validate the suitability of the empirical equation above, the results of the comparison between observed ERC (ERCobs) from site 1 and estimated ones (ERCest) by Eq.(2) are presented in Fig.3. The pairs (ERCobs, ERCest) are well distributed near the diagonal line of perfect agreement except for the data of individual rainfall events. Therefore, the empirical equation (Eq.(2)) can be used to accurately estimate the ERC.

    Fig.3 Comparison between ERCobs and ERCest

    2.3 Determination ofψARC

    To assess the annual available rainwater potential for the RRHS, ARC is determined by continuous simulations using daily rainfall data (1960 to 2008). Based on Eq.(2),ψERCfor each rainfall event can be determined using daily rainfall data. ARC of each year can also be obtained by continuous simulations according to the following equation:

    (3)

    whereψARCis the value of ARC;Hiis the rainfall depth of each event in a year,mm;ψERCiis the value of ERC atHidepth rainfall; ∑(HiψERCi) is the annual accumulative runoff depth, mm; ∑Hiis the annual accumulative rainfall depth, mm.

    When the rainfall depth in a single event is less than 5 mm, it is difficult to generate the effective runoff on roof catchments for the RRHS. Therefore, the data of daily rainfall depth which is less than 5 mm are left out, that is, the values ofHiin Eq.(3) are more than 5 mm. Furthermore, annual rainfall data, which can be easily obtained from the meteorological department, are used to determine the ARC instead of annual accumulative rainfall. So, Eq.(3) can be written as

    (4)

    whereHais the annual rainfall depth, mm.

    The relationship between ARC and annual rainfall is shown in Fig.4. Based on the daily rainfall data (1960 to 2008), the annual rainfall has a wide range. The highest annual rainfall depth was 1035.0 mm in 1963 and the lowest one was 313.9 mm in 1984. However, a dramatic result forψARCis presented in which a slight fluctuation near one constant (0.62) appeared, which was less influenced by the annual rainfall depth. 0.62 can be determined appreciatively asψARCin Handan. It can be widely used for the quantity assessment of the RRHS potential.

    Fig.4 Relationship between ARC and annual rainfall

    3 Conclusion

    This paper focuses on the determiningψERCandψARCfor the quantity assessment of the RRHS in Handan, China. The results show that event rainfall depth is the controllable factor for ERC. Other factors, including roof slope, material and rainfall intensity, can be ignored. Based on the relationship between ERC and event rainfall depth, a simple method is developed for the determination ofψERCfrom the piecewise linear function. The ARC is also estimated by continuous simulations.ψARCof roof catchments in Handan is a constant, 0.62. The results of this paper are beneficial to improve the accuracy and simplification for the quantity assessment of RRHS in Handan.

    [1]Guo Y, Baetz B W. Sizing of rainwater storage units for green building applications [J].JournalofHydrologicEngineering, 2007, 12(2): 197-205.

    [2]Imteaz M A, Shanableh A, Rahman A, et al. Optimisation of rainwater tank design from large roofs: a case study in Melbourne, Australia [J].Resources,ConservationandRecycling, 2011, 55(11): 1022-1029.

    [3]Campisano A, Modica C. Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily [J].Resources,ConservationandRecycling, 2012, 63: 9-16.

    [4]Ghisi E. Potential for potable water savings by using rainwater in the residential sector of Brazil [J].BuildingandEnvironment, 2006, 41(11): 1544-1550.

    [5]Su M, Lin C, Chang L, et al. A probabilistic approach to rainwater harvesting systems design and evaluation [J].Resources,ConservationandRecycling, 2009, 53(7): 393-399.

    [6]Farreny R, Morales-Pinzón T, Guisasola A, et al. Roof selection for rainwater harvesting: quantity and quality assessments in Spain [J].WaterResearch, 2011, 45(10): 3245-3254.

    [7]Blume T, Zehe E, Bronstert A. Rainfall-runoff response, event-based runoff coefficients and hydrograph separation [J].HydrologicalSciencesJournal, 2007, 52(5): 843-862.

    [8]Liaw C, Tsai Y. Optimum storage volume of rooftop rain water harvesting systems for domestic use [J].JournaloftheAmericanWaterResourcesAssociation, 2004, 40(4): 901-912.

    [9]Khastagir A, Jayasuriya N. Optimal sizing of rain water tanks for domestic water conservation [J].JournalofHydrology, 2010, 381(3/4): 181-188.

    [10]Aladenola O O, Omotayo B, Adeboye O B. Assessing the potential for rainwater harvesting [J].WaterResourcesManagement, 2010, 24(10): 2129-2137.

    [11]Mun J S, Han M Y. Design and operational parameters of a rooftop rainwater harvesting system: definition, sensitivity and verification [J].JournalofEnvironmentalManagement, 2012, 93(1): 147-153.

    [12]Norbiato D, Borga M, Merz R, et al. Controls on event runoff coefficients in the eastern Italian Alps [J].JournalofHydrology, 2009, 375(3/4): 312-325.

    [13]Lancaster B.Rainwaterharvestingfordrylandsandbeyond,Vol. 1:guidingprinciplestowelcomerainintoyourlifeandlandscape[M]. Tucson: Rainsource Press, 2006: 42-44.

    [14]van Dijk A, Bruijnzeel L A, Vertessy R A, et al. Runoff and sediment generation on bench-terraced hillsides: measurements and up-scaling of a field-based model [J].HydrologicalProcesses, 2005, 19(8): 1667-1685.

    [15]Pandit A, Gopalakrishnan G. Estimation of annual storm runoff coefficients by continuous simulation [J].JournalofIrrigationDrainageEngineering, 1996, 122(4): 211-220.

    [16]Baiamonte G, D’Asaro F, Grillone G. Empirical methods to determine average annual runoff coefficient in Sicilian basins [C/OL]//InternationalConferenceofAgriculturalEngineering. Valencia, Spain, 2012. http://m.cigr.ageng2012.org/images/fotosg/tabla-137-C1250.pdf.

    [17]Zhang M, Chen H, Wang J, et al. Rainwater utilization and storm pollution control based on urban runoff characterization [J].JournalofEnvironmentalSciences, 2010, 22(1): 40-46.

    [18]Gikas G D, Tsihrintzis V A. Assessment of water quality of first-flush roof runoff and harvested rainwater [J].JournalofHydrology, 2012, 466-467: 115-126.

    [19]Wainwright J, Parsons A J. The effect of temporal variations in rainfall on scale dependency in runoff coefficients [J].WaterResourcesResearch, 2002, 38(12): 7-1-7-10.

    [20]Tang N Y, Che W, Pan G Q. Runoff coefficient analysis for urban stormwater and flood control and utilization [J].ChinaWaterandWastewater, 2009, 25(22): 4-8. (in Chinese)

    屋面雨水利用系統(tǒng)量化評估中徑流系數(shù)的取值

    張 煒 李思敏 唐鋒兵

    (河北工程大學城市建設(shè)學院, 邯鄲 056038)

    為了實現(xiàn)屋面雨水利用系統(tǒng)量化評估中徑流系數(shù)的精確取值,通過連續(xù)3年(2010—2012年)對河北省邯鄲市不同屋面類型(屋面坡度和材料)及降雨特征(降雨深度和強度)的屋面徑流進行實地監(jiān)測,得到了各場實際降雨屋面徑流系數(shù)的不同取值.研究結(jié)果表明,屋面徑流系數(shù)的取值分布與各降雨事件的降雨深度相關(guān)性較強,其他影響因素對其影響較?。畧龃螐搅飨禂?shù)的取值與降雨深度呈顯著的分段線性關(guān)系.根據(jù)1960—2008年的日降雨數(shù)據(jù)資料,計算得出邯鄲市年均屋面徑流系數(shù)可近似按照0.62這一常數(shù)進行取值.該研究成果可用于屋面雨水利用系統(tǒng)的量化評估及運行分析.

    屋面雨水利用系統(tǒng);場次徑流系數(shù);年均徑流系數(shù);降雨深度

    TV121

    s:The National Science and Technology Major Project of China (No.2012ZX07203-003), the Major Basic Research Program of Hebei Province (No.12966738D), the Natural Science Foundation of Hebei Province (No.E2014402101).

    :Zhang Wei, Li Simin, Tang Fengbing.Estimating runoff coefficient for quantity assessment of roof rainwater harvesting system[J].Journal of Southeast University (English Edition),2014,30(2):220-224.

    10.3969/j.issn.1003-7985.2014.02.015

    10.3969/j.issn.1003-7985.2014.02.015

    Received 2013-10-22.

    Biography:Zhang Wei (1981—), male, master, lecturer, zhangwei1981@hebeu.edu.cn.

    猜你喜歡
    徑流系數(shù)場次邯鄲市
    降雨特征對半透水道路徑流系數(shù)的影響
    水資源保護(2022年3期)2022-05-31 03:06:36
    長江上游高洪水期泥沙輸移特性
    中國人民銀行邯鄲市中心支行
    邯鄲市
    中國人民銀行邯鄲市中心支行
    邯鄲市
    基于運行場次用時誤差的載人設(shè)備故障預警可視化研究
    排考場次分配方法及其SQL實現(xiàn)
    無資料山丘小流域徑流系數(shù)的計算研究
    基于物理模型的城市綜合徑流系數(shù)特性研究
    中文字幕免费在线视频6| 中文资源天堂在线| 天堂av国产一区二区熟女人妻| 成人亚洲精品av一区二区| 国模一区二区三区四区视频| 观看美女的网站| 久久97久久精品| 午夜亚洲福利在线播放| 欧美一区二区亚洲| 女人十人毛片免费观看3o分钟| 天美传媒精品一区二区| 日日干狠狠操夜夜爽| 日本av手机在线免费观看| 少妇裸体淫交视频免费看高清| 搡老妇女老女人老熟妇| 国产成人a∨麻豆精品| 色播亚洲综合网| 男女视频在线观看网站免费| 大香蕉97超碰在线| 久久人人爽人人片av| 秋霞在线观看毛片| 国产精品国产三级国产av玫瑰| 哪个播放器可以免费观看大片| 五月伊人婷婷丁香| 久久久久精品久久久久真实原创| 亚洲av日韩在线播放| 大陆偷拍与自拍| av.在线天堂| 亚洲精品aⅴ在线观看| 精品人妻偷拍中文字幕| 久久热精品热| 97人妻精品一区二区三区麻豆| 少妇丰满av| 91aial.com中文字幕在线观看| 欧美日韩精品成人综合77777| 搡女人真爽免费视频火全软件| 日韩不卡一区二区三区视频在线| av又黄又爽大尺度在线免费看| 一个人免费在线观看电影| 国产精品国产三级国产专区5o| 日韩电影二区| 日产精品乱码卡一卡2卡三| 高清av免费在线| 国产老妇伦熟女老妇高清| 男女那种视频在线观看| 男的添女的下面高潮视频| 亚洲av成人av| 日韩一区二区三区影片| 不卡视频在线观看欧美| 婷婷色综合大香蕉| videossex国产| 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 国产一区二区在线观看日韩| 国产精品久久视频播放| 亚洲人成网站高清观看| 日韩一本色道免费dvd| 国产成人福利小说| 婷婷色综合www| 韩国av在线不卡| 午夜福利在线观看吧| 91久久精品国产一区二区成人| 天美传媒精品一区二区| 日本爱情动作片www.在线观看| 性插视频无遮挡在线免费观看| 男人和女人高潮做爰伦理| 非洲黑人性xxxx精品又粗又长| 亚洲精品456在线播放app| 国产色爽女视频免费观看| 国产激情偷乱视频一区二区| 亚洲最大成人中文| 永久网站在线| 国产一区二区三区av在线| 亚州av有码| 淫秽高清视频在线观看| 18禁在线播放成人免费| 好男人视频免费观看在线| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜 | 亚洲av一区综合| 欧美3d第一页| 伦理电影大哥的女人| 男女下面进入的视频免费午夜| 在线观看免费高清a一片| 国产午夜精品论理片| 国产极品天堂在线| 一级二级三级毛片免费看| 午夜激情福利司机影院| 九草在线视频观看| 国产欧美另类精品又又久久亚洲欧美| 最近的中文字幕免费完整| 欧美变态另类bdsm刘玥| 久久久久精品久久久久真实原创| 久久久色成人| 欧美+日韩+精品| 美女大奶头视频| 成人午夜高清在线视频| 久久久久久久国产电影| 亚洲欧美一区二区三区黑人 | 国产探花极品一区二区| 99久久精品热视频| 欧美xxxx性猛交bbbb| 18+在线观看网站| 久久久午夜欧美精品| 18禁在线播放成人免费| 日韩欧美国产在线观看| 永久免费av网站大全| 亚洲国产欧美人成| 晚上一个人看的免费电影| 搞女人的毛片| 亚洲国产欧美在线一区| 色视频www国产| 国产成人freesex在线| 国产不卡一卡二| 亚洲婷婷狠狠爱综合网| a级一级毛片免费在线观看| 2021天堂中文幕一二区在线观| 午夜亚洲福利在线播放| 成人美女网站在线观看视频| 少妇人妻一区二区三区视频| 91久久精品国产一区二区成人| 国产精品久久久久久久久免| 中文字幕亚洲精品专区| 美女xxoo啪啪120秒动态图| 久久综合国产亚洲精品| 五月天丁香电影| 亚洲在线自拍视频| 亚洲欧美一区二区三区黑人 | 婷婷色综合大香蕉| 国产av在哪里看| 最近最新中文字幕免费大全7| 少妇的逼好多水| 亚洲精品国产成人久久av| 久久久久精品久久久久真实原创| 国产淫语在线视频| 岛国毛片在线播放| 亚洲第一区二区三区不卡| 日韩中字成人| 日韩强制内射视频| 好男人在线观看高清免费视频| 高清毛片免费看| a级一级毛片免费在线观看| 日韩,欧美,国产一区二区三区| 国产成人精品福利久久| 免费av不卡在线播放| 国产永久视频网站| 免费观看a级毛片全部| 亚洲欧洲日产国产| 欧美成人一区二区免费高清观看| 免费黄色在线免费观看| 色尼玛亚洲综合影院| 亚洲精华国产精华液的使用体验| 大陆偷拍与自拍| 国产一区二区在线观看日韩| 黑人高潮一二区| 成人午夜高清在线视频| 国产美女午夜福利| 中文字幕亚洲精品专区| 久久鲁丝午夜福利片| 久久久久久久久大av| av女优亚洲男人天堂| 色5月婷婷丁香| av免费观看日本| 国产在视频线精品| 国产伦一二天堂av在线观看| 亚洲熟妇中文字幕五十中出| 女的被弄到高潮叫床怎么办| 午夜福利高清视频| 18禁在线无遮挡免费观看视频| 精品一区二区三卡| 久久国产乱子免费精品| 麻豆成人午夜福利视频| .国产精品久久| 2018国产大陆天天弄谢| 亚洲av电影不卡..在线观看| 22中文网久久字幕| 免费观看性生交大片5| videos熟女内射| 日韩一本色道免费dvd| 丝袜美腿在线中文| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| 大香蕉97超碰在线| 国产精品.久久久| 亚洲av福利一区| 成人二区视频| 精品人妻偷拍中文字幕| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 精品人妻熟女av久视频| 老司机影院毛片| 成人性生交大片免费视频hd| 最近最新中文字幕大全电影3| 免费观看精品视频网站| 肉色欧美久久久久久久蜜桃 | 日韩av不卡免费在线播放| 久久久成人免费电影| 两个人视频免费观看高清| 三级国产精品片| 夜夜爽夜夜爽视频| av福利片在线观看| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 国产精品一二三区在线看| 人妻一区二区av| 美女大奶头视频| 春色校园在线视频观看| 99re6热这里在线精品视频| 一级毛片 在线播放| 色视频www国产| av.在线天堂| 少妇裸体淫交视频免费看高清| av在线老鸭窝| 深夜a级毛片| 亚洲精品日本国产第一区| 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 亚洲国产精品国产精品| 亚洲自拍偷在线| 国产精品熟女久久久久浪| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品电影| 乱系列少妇在线播放| 精品酒店卫生间| 有码 亚洲区| 久久精品国产亚洲av天美| 天天躁夜夜躁狠狠久久av| 在线观看免费高清a一片| 午夜视频国产福利| 日韩大片免费观看网站| 久久久久久久国产电影| 日韩欧美精品v在线| 午夜福利视频1000在线观看| 大香蕉久久网| 一级a做视频免费观看| 午夜精品国产一区二区电影 | 在线观看一区二区三区| 天堂俺去俺来也www色官网 | 在现免费观看毛片| 人体艺术视频欧美日本| 一夜夜www| 又黄又爽又刺激的免费视频.| 精品人妻视频免费看| 插阴视频在线观看视频| 美女被艹到高潮喷水动态| 婷婷色麻豆天堂久久| 床上黄色一级片| 少妇人妻精品综合一区二区| 欧美变态另类bdsm刘玥| 亚洲自拍偷在线| 国精品久久久久久国模美| 如何舔出高潮| 欧美不卡视频在线免费观看| 国产三级在线视频| av在线天堂中文字幕| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 亚洲在线观看片| 亚洲欧洲国产日韩| 成人二区视频| 亚洲乱码一区二区免费版| 在线 av 中文字幕| 国产有黄有色有爽视频| 性插视频无遮挡在线免费观看| av在线亚洲专区| 亚洲熟妇中文字幕五十中出| 真实男女啪啪啪动态图| 七月丁香在线播放| 国产在线一区二区三区精| 人人妻人人澡欧美一区二区| 能在线免费观看的黄片| 国产一级毛片七仙女欲春2| 在线观看美女被高潮喷水网站| 精品国内亚洲2022精品成人| 在线免费观看的www视频| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 一本一本综合久久| 免费av不卡在线播放| 一个人免费在线观看电影| 亚洲丝袜综合中文字幕| 天堂√8在线中文| 又爽又黄a免费视频| 精品人妻视频免费看| 午夜激情欧美在线| 国产精品一区二区性色av| 国模一区二区三区四区视频| 国产精品.久久久| 偷拍熟女少妇极品色| 成人欧美大片| 亚州av有码| 国产在线一区二区三区精| av国产免费在线观看| 免费黄色在线免费观看| 亚洲精品乱码久久久久久按摩| 久久国内精品自在自线图片| av.在线天堂| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱| 精品一区在线观看国产| 国产淫语在线视频| 亚洲精品色激情综合| 国产乱人偷精品视频| 欧美bdsm另类| 晚上一个人看的免费电影| 日本与韩国留学比较| 成人性生交大片免费视频hd| 国产精品综合久久久久久久免费| 亚洲综合精品二区| av天堂中文字幕网| 性插视频无遮挡在线免费观看| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 国产成人精品一,二区| 亚洲av男天堂| 老师上课跳d突然被开到最大视频| 欧美日韩精品成人综合77777| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 一本一本综合久久| 永久免费av网站大全| 久久国内精品自在自线图片| 欧美xxⅹ黑人| 成年人午夜在线观看视频 | 一区二区三区四区激情视频| 亚洲最大成人中文| 欧美zozozo另类| 高清视频免费观看一区二区 | 看十八女毛片水多多多| 美女xxoo啪啪120秒动态图| 国产在线男女| 舔av片在线| 国产在线男女| 色综合站精品国产| 小蜜桃在线观看免费完整版高清| 狂野欧美激情性xxxx在线观看| 国产伦精品一区二区三区四那| 一二三四中文在线观看免费高清| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 亚洲色图av天堂| 亚洲激情五月婷婷啪啪| 免费观看性生交大片5| 中文字幕免费在线视频6| 欧美最新免费一区二区三区| 亚洲怡红院男人天堂| 亚洲精品乱码久久久久久按摩| 免费看a级黄色片| av在线观看视频网站免费| 搡老乐熟女国产| 久久久久九九精品影院| 亚洲av电影不卡..在线观看| 最近中文字幕2019免费版| 亚洲18禁久久av| 99久国产av精品国产电影| 亚洲人成网站在线播| 99久国产av精品| 中文在线观看免费www的网站| 男女那种视频在线观看| 亚洲欧美日韩东京热| 国产精品福利在线免费观看| 少妇人妻精品综合一区二区| 午夜日本视频在线| 春色校园在线视频观看| 日韩国内少妇激情av| 免费不卡的大黄色大毛片视频在线观看 | 午夜精品国产一区二区电影 | 国产人妻一区二区三区在| 国产毛片a区久久久久| 亚洲熟妇中文字幕五十中出| 亚洲婷婷狠狠爱综合网| 成人性生交大片免费视频hd| 最近最新中文字幕大全电影3| 中国美白少妇内射xxxbb| 久久精品国产自在天天线| 天美传媒精品一区二区| 最近2019中文字幕mv第一页| 久久久久久久久久人人人人人人| 国产国拍精品亚洲av在线观看| 日本爱情动作片www.在线观看| 91精品伊人久久大香线蕉| 成年人午夜在线观看视频 | 日日啪夜夜爽| 日韩,欧美,国产一区二区三区| 神马国产精品三级电影在线观看| 国产黄片视频在线免费观看| 免费看日本二区| 国产在线男女| 日韩av在线免费看完整版不卡| www.色视频.com| 国产美女午夜福利| 中文字幕久久专区| 免费观看在线日韩| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 免费观看a级毛片全部| 国产综合精华液| 国产成人aa在线观看| 不卡视频在线观看欧美| 免费观看a级毛片全部| 男女视频在线观看网站免费| 欧美97在线视频| 久久精品久久久久久噜噜老黄| 国产精品一区www在线观看| 国产探花在线观看一区二区| 大陆偷拍与自拍| 国产成人免费观看mmmm| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 国产女主播在线喷水免费视频网站 | 久久久精品欧美日韩精品| 欧美xxxx黑人xx丫x性爽| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂 | 国产老妇女一区| 五月伊人婷婷丁香| 在线 av 中文字幕| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 中文字幕制服av| 99re6热这里在线精品视频| 亚洲精品视频女| 午夜亚洲福利在线播放| 51国产日韩欧美| 久久鲁丝午夜福利片| 99热网站在线观看| 一级黄片播放器| 亚洲丝袜综合中文字幕| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 午夜激情福利司机影院| 少妇熟女aⅴ在线视频| 精品午夜福利在线看| 如何舔出高潮| 日韩av不卡免费在线播放| 亚洲av免费高清在线观看| 国产午夜福利久久久久久| 女人十人毛片免费观看3o分钟| 日韩欧美一区视频在线观看 | 少妇的逼水好多| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 99久国产av精品| 欧美精品一区二区大全| 51国产日韩欧美| 深夜a级毛片| 亚洲精品乱码久久久v下载方式| 亚洲精品乱久久久久久| 色尼玛亚洲综合影院| 街头女战士在线观看网站| 久久精品综合一区二区三区| 麻豆精品久久久久久蜜桃| 免费看光身美女| 激情 狠狠 欧美| 日日啪夜夜爽| 男人舔奶头视频| 久久久精品欧美日韩精品| 亚洲av在线观看美女高潮| 久久99精品国语久久久| 插阴视频在线观看视频| 久久精品国产亚洲av涩爱| 看十八女毛片水多多多| 欧美日本视频| 在线观看一区二区三区| 能在线免费观看的黄片| 熟女电影av网| 在线观看免费高清a一片| 国产午夜精品一二区理论片| 中文精品一卡2卡3卡4更新| 国产91av在线免费观看| 1000部很黄的大片| 成人午夜高清在线视频| 日韩欧美一区视频在线观看 | 天天躁夜夜躁狠狠久久av| 插阴视频在线观看视频| 欧美最新免费一区二区三区| 国产高清有码在线观看视频| 少妇的逼水好多| 最近最新中文字幕免费大全7| 国产麻豆成人av免费视频| 白带黄色成豆腐渣| 国产成人精品婷婷| 亚洲精品国产av蜜桃| 2022亚洲国产成人精品| 五月天丁香电影| 女人久久www免费人成看片| 免费看美女性在线毛片视频| 午夜免费观看性视频| 免费电影在线观看免费观看| 欧美丝袜亚洲另类| 免费大片黄手机在线观看| 亚洲av福利一区| 别揉我奶头 嗯啊视频| 男人舔奶头视频| 在线免费十八禁| 国产av码专区亚洲av| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区| 国产高清国产精品国产三级 | 免费电影在线观看免费观看| 欧美成人午夜免费资源| 久久精品久久久久久噜噜老黄| 国产精品伦人一区二区| 久久久亚洲精品成人影院| 亚洲成人久久爱视频| 亚洲精品aⅴ在线观看| 男女视频在线观看网站免费| 国产伦在线观看视频一区| 精品一区在线观看国产| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 久久热精品热| 精品一区二区三区视频在线| av在线蜜桃| 春色校园在线视频观看| 精品不卡国产一区二区三区| 日韩强制内射视频| 国产精品麻豆人妻色哟哟久久 | 最近手机中文字幕大全| 内射极品少妇av片p| 欧美性猛交╳xxx乱大交人| 秋霞伦理黄片| 在线免费观看的www视频| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 久久久久久久国产电影| 97人妻精品一区二区三区麻豆| 99热这里只有是精品在线观看| 日本免费在线观看一区| 一夜夜www| 免费观看精品视频网站| 久久久久久久久久黄片| 国产91av在线免费观看| av播播在线观看一区| 秋霞在线观看毛片| 男人舔奶头视频| 能在线免费观看的黄片| 国产精品综合久久久久久久免费| 国产淫片久久久久久久久| 日韩人妻高清精品专区| 国产中年淑女户外野战色| 汤姆久久久久久久影院中文字幕 | 男人狂女人下面高潮的视频| 亚洲精品乱码久久久久久按摩| 国产精品嫩草影院av在线观看| 99久久九九国产精品国产免费| 亚洲av一区综合| 免费av观看视频| 乱人视频在线观看| 久久亚洲国产成人精品v| 九色成人免费人妻av| 99久久精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 亚洲激情五月婷婷啪啪| 国产乱人偷精品视频| 亚洲最大成人av| 国产有黄有色有爽视频| 成年免费大片在线观看| 日韩大片免费观看网站| 色5月婷婷丁香| 99久国产av精品国产电影| 97人妻精品一区二区三区麻豆| 久久精品熟女亚洲av麻豆精品 | 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 国产一区二区在线观看日韩| 午夜视频国产福利| 亚洲va在线va天堂va国产| 精品人妻视频免费看| 午夜精品一区二区三区免费看| 搡老妇女老女人老熟妇| 天堂中文最新版在线下载 | 久久午夜福利片| 国产av码专区亚洲av| 国模一区二区三区四区视频| 老司机影院毛片| 能在线免费看毛片的网站| 亚洲经典国产精华液单| 一个人观看的视频www高清免费观看| 日韩,欧美,国产一区二区三区| 免费看美女性在线毛片视频| 国产探花极品一区二区| 国产免费视频播放在线视频 | 禁无遮挡网站| 日本色播在线视频| 日韩电影二区| 91精品伊人久久大香线蕉| 国产av在哪里看| 黄色欧美视频在线观看| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕| 国产一区有黄有色的免费视频 | 别揉我奶头 嗯啊视频| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 超碰av人人做人人爽久久| 国产白丝娇喘喷水9色精品| 美女内射精品一级片tv| 亚洲欧美精品自产自拍| 国产精品一二三区在线看| 亚洲国产av新网站| 中文字幕久久专区| 噜噜噜噜噜久久久久久91| 国产午夜精品一二区理论片| 少妇裸体淫交视频免费看高清| 国内精品一区二区在线观看| 日本免费a在线| 少妇高潮的动态图| 97热精品久久久久久| 永久免费av网站大全|