• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of heat pulse signals determination for sediment-water interface fluxes

    2014-09-06 10:49:43ZhuTengyiRajendraPrasadSinghFuDafang
    關鍵詞:溫升沉積物頂點

    Zhu Tengyi Rajendra Prasad Singh Fu Dafang

    (School of Civil Engineering, Southeast University, Nanjing 210096, China)

    ?

    Analysis of heat pulse signals determination for sediment-water interface fluxes

    Zhu Tengyi Rajendra Prasad Singh Fu Dafang

    (School of Civil Engineering, Southeast University, Nanjing 210096, China)

    The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxesJ. Only three parametersx0,λand (pc)lare needed to calculateJby the heat pulse data for this analysis method. The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes; and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source. The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.

    sediment-water interface flux; seepage meter; heat pulse; peak arrival time

    Direct measurements of water flux across the sediment-water interface can be realized by seepage meters[1-4]. Many environmental scientists are interested in understanding the magnitude and direction of sediment-water interface fluxJat a particular location. This interest arises from the major role ofJin processes such as infiltration, runoff and subsurface chemical transport.Jcan be varied widely in time and space depending on the sediment and environmental conditions. This variability makes the modeling ofJdifficult. In some cases, measuringJdirectly would be a more attractive option than modelingJ. However, only a few practical techniques are available for the measuring ofJin in-situ conditions.

    Byrne et al.[5-6]introduced the idea of using heat as a tracer to measureJ. They measured distortion of the steady state thermal field around point and heat sources. Based on the work of Byrne et al.[5-6]and Melville et al.[7], an improved heat pulse technique was developed by Ren et al.[8]to measureJ. The probe used by Ren et al.[8]consisted of three stainless steel needles embedded in a waterproof epoxy body. The center needle contained a resistance heater, and the outer two needles contained thermocouples. This experimental setup is shown in Fig.1. Heat transfer away from the central needle occurred via conduction and convection. The resulting temperature increase at the thermocouples in the two outer needles was measured and recorded by an external datalogger. The convection of heat by the flowing water resulted in a larger temperature increase downstream from the heat source than upstream from the heat source.Tu,TdandHare the upstream sensor, the downstream sensor and the heater, respectively.

    Fig.1 Conceptual drawing of the flow sensor

    Ren et al.[8-9]developed an analytical solution for the appropriate heat transfer equation, and explained that this solution could be used to calculateJfrom the difference between the measured temperature increasing at the downstream and upstream needles if the thermal properties of the soil or sediment are known. The main disadvantage of this solution is that it contains an integral that requires the numerical integration. Kluitenberg and Warrick[10]improved the evaluation procedure by converting the equations into the well function for leaky aquifers and by using an infinite series to approximate the well function. Although the improved method eliminates the need for numerical integration, it is still inconvenient to analyze the relationships among variables and to estimateJbecause the infinite series is quite complicated.

    Hence, in this paper we analyzed the heat pulse signal in a new way with the goals of clarifying the relationships between the variables in this heat transfer problem and simplifying the procedure for calculatingJfrom heat pulse measurements.

    1 Theory

    1.1 General solution for heat transfer equation

    The theory of heat flow has been a subject of investigation for centuries. Numerous papers and books have been written on this subject. Probably the most comprehensive book on the subject within the last century was “Conduction of heat in solids” by Carslaw and Jaeger[11]. When the developed theories are applied to physical problem, it is often necessary to approximate either the initial or boundary conditions. For a simple solution that can describe the thermograph, one would either want an instantaneous pulse of heat, a step of heat, or a square wave pulse. None of the normally assumed initial conditions are reasonable explanation of the heat input produced by the heater. As a result, the shape of the thermograph observed in the physical system is inconsistent with the shape produced by the common mathematical developments. To overcome this problem, Taniguchi et al.[12]proposed using the time when the peak temperature is detected at the thermistors to determine the velocity of the heat. They took the derivative of an analytical solution with ideal boundary conditions. The peak temperature occurs when the derivative equals zero. Their development yields the following equation whentmax> 0 andU>0:

    (1)

    whereUis the velocity;tmaxis the peak temperature arrival time measured by the thermistor at distancexfrom the heat source; andκis the thermal conductivity of water divided by the specific heat and density.

    The water velocity is proportional but not equal to the thermal velocity. If one can assume that there is no thermal gradient in the radial direction (instantaneous heat transfer in the radial direction) and there is no heat loss from the pipe, then the thermal velocity will be slower and directionally proportional to the water velocity. The technique proposed by Taniguchi and Fukuo[12]is suitable for measuring the higher flow rates when the advective process dominates. It uses the difference in peak arrival times between thermistors to estimate flow rates.

    Ren et al.[8]proposed a solution using heat transfer equation analysis to determine the heat pulse:

    (2)

    whereTis the temperature increase, ℃;tis the time,s;αis the thermal diffusivity of water,m2/s-1; andxandyare the space coordinates (distance between the thermistor and the heat source); andVis the velocity, m/s.

    Ren et al.[8]presented a solution for Eq.(2) corresponding to a heat pulse produced by an infinite line source in an infinite, homogenous, porous media through which water is flowing uniformly,

    0

    (3)

    t>t0

    (4)

    whereqis the heating power,W/m;t0is the heat pulse duration, s;Vis the heat pulse velocity;λ=αρcis the thermal conductivity,W/(m·℃)-1;s=t-t′. This solution is based on the assumption that the conductive heat transfer dominates over the convective heat transfer.

    The temperature increase at a distanceχddirectly downstream from the line source is

    (5)

    (6)

    The temperature increase at a distanceχddirectly upstream from the line source is

    (7)

    (8)

    The flux meter typical temperature increase vs. time curves generated using Eqs.(5) to (8) is shown in Fig.2.

    Fig.2 Typical temperature increase vs. time curves (V=5×10-5m/s,α=1.4×10-7m2/s,λ=0.58 W/(m·K)-1,χ0=0.005 m, q=40 W/m for heating of 6 s, q=20 W/m for heating of 3 s)

    1.2 Difference of downstream and upstream temper-ature increases

    Ren’s method is not exactly suitable for determining seepage flux meter due to the large heat losses transferred to the air and water. It is also hard to determine how much energy will be lost in the system. But it is useful to analyze temperature distribution, so we focus on the analysis of dimensionless temperature difference (DTD). This solution is as follows:

    (9)

    Eq.(9) indicates that the dimensionless temperature difference is a function ofV,t0,qand the thermal properties of the water. Fig.3 shows the heat pulse signal converted to the DTD. The maximum value of the DTD (MDTD) is given by

    MDTD=

    (10)

    wheretmis the time at which DTD reaches a maximum. By evaluating Eq.(10) forVon the order of 10-5m/s, we found a close linear relationship betweenVand MDTD.

    Graphical evaluation of Eq.(10) reveals a close unique relationship between MDTD andV(see Fig.4). This result is in consistent with the results of Ren et al[8]. This relationship suggests that measurement of MDTD can provide a useful means of estimatingV.

    Fig.3 Heat pulse signal converted to DTD

    1.3 Ratio of downstream and upstream temperature increases

    By dividing Eq.(6) with Eq.(8) for a heating period, we can get the ratio of downstream and upstream temperature increases whenxd=xu=x0.

    (11)

    Fig.4 Relationship between MDTD and V

    Eq.(11) demonstrates that whenxd=xu=x0, the ratio of the downstream temperature increase to the upstream temperature increase (Td/Tu) is independent of time[13]. Whenxd=xu=x0,Td/Tuis only a function ofx0,Vandα, unlike MDTD, independent oft0,λandq. Fig.5 shows the heat pulse signal converted toTd/Tuand reveals that there is no significant difference between 3 and 6 s heating condition.

    Fig.5 Heat pulse signal converted to Td/Tu

    2 Discussion

    The main objective of this new analysis is to clarify the relationships between the key variable in the heat pulse technique for measuringJ. Three interesting relationships were revealed by this new analysis and some implications of the relationships were also studied. First, Eq.(11) reveals thatTd/Tuis a function of a single dimensionless number,Vχ0/α. Fig.4 shows MDTD and ln(Td/Tu) as functions ofVχ0/α. The slope of the MDTD vs.Vχ0/αrelationship depends on the values ofχ0,α,t0,qandλ, but the slope of ln(Td/Tu) vs.Vχ0/αshould always be equal to the one as long as conduction is the dominant mechanism of the heat transfer.

    The second interesting fact about the heat pulse technique revealed by this new mathematical analysis is that wheneverxd=xu, the maximum temperature increases at the upstream and downstream positions occur simultaneously regardless of the magnitude ofV. The heat pulse signal travels upstream just as rapidly as it does downstream. The magnitude of the signal is decreased in the upstream direction.

    The third noteworthy finding of this mathematical analysis is a new insight into the relationship between MDTD andJ. Ren et al.[8]found a close linear relationship between MDTD andV, but they were unable to explicitly state the form of the relationship due to the complexity of their solution equation (Eq.(10)). To consider the relationship betweenJandTd/Tu, if we combine Eq.(11) andV=J(pc)l/pc(whereρcis the volumetric heat capacity of the multiphase system,J/(m3·C)-1; (pc)lis the volumetric heat capacity of the liquid), we can obtain the following equation:

    (12)

    The explicit form of Eq.(12) can make it very useful for designing an implement calibration procedure. In this case, only three parametersx0,λand (pc)lare required when we use Eq.(12) to calculateJfrom heat pulse data compared with the procedures of Ren et al[8].

    Another objective of this study is to simplify the procedure for calculatingJfrom the heat pulse in cases where the soil thermal properties are known. In this case, to calculateJfrom heat pulse measurements using the Ren’s equations requires a numerical integration routine coupled with a nonlinear regression routine. With these two routines one can obtainJ. These are all simple, explicit equations that can be easily evaluated using a simple calculator or a data logger.λis the soil thermal property used to calculateJ(Eq.(12)). In the case, the soil thermal properties are not knownapriori, and it is not clear whether it is possible to calculateJusing Ren’s equations (Eq.(2)). However, the results of our analyses show that we can obtain some information from the heat pulse data even withoutaprioriknowledge of the soil thermal properties.Vcan be calculated from Eq.(11) and Eq.(12). OnceVis known, only an estimate ofρcis needed to calculateJ.

    3 Conclusion

    Using Eq.(12), only three parametersx0,λand (pc)lare needed to calculate the water flux densityJfrom heat pulse data. Ren’s method has some disadvantages. The first is that the calculation requires numerical integration, which is not trivial and may induce some error. The second disadvantage is that they used only a single data point, the MDTD. The measurement accuracy of that single point will directly affect the calculatedJ. The new analysis presented in this paper enables an average value ofTd/Tuover an appropriate time interval to be used with Eq.(11) to calculateV, which can be converted toJ. This averaging can reduce the influence of measurement error in a single data point. The previous methods do not provide any method to calculateVifαis unknown; however, this new analysis still needs to be improved upon.

    [1]Lien B K. Development and demonstration of a bidirectional advective flux meter for sediment-water interface[R]. Cincinnati, OH, USA: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency,2006:12-40.

    [2]Smith A J, Herne D E, Turner J V. Wave effects on submarine groundwater seepage measurement[J].AdvancesinWaterResources, 2009, 32(6): 820-833.

    [3]Mwashote B, Burnett W, Chanton J, et al. Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements[J].Estuarine,CoastalandShelfScience, 2010, 87(1): 1-10.

    [4]Swarzenski P W, Izbicki J A. Coastal groundwater dynamics off Santa Barbara, California: combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity[J].Estuarine,CoastalandShelfScience, 2009, 83(1): 77-89.

    [5]Byrne G, Drummond J, Rose C. A sensor for water flux in soil.“Point source” instrument[J].WaterResourcesResearch, 1967, 3(4): 1073-1078.

    [6]Byrne G, Drummond J, Rose C. A sensor for water flux in soil. 2. “Line source” instrument[J].WaterResourcesResearch, 1968, 4(3): 607-611.

    [7]Melville J G, Molz F J, Güven O. Laboratory investigation and analysis of a ground-water flowmeter[J].GroundWater, 1985, 23(4): 486-495.

    [8]Ren T, Kluitenberg G, Horton R. Determining soil water flux and pore water velocity by a heat pulse technique[J].SoilScienceSocietyofAmericaJournal, 2000, 64(2): 552-560.

    [9]Wang Q, Ochsner T E, Horton R. Mathematical analysis of heat pulse signals for soil water flux determination[J].WaterResourcesResearch, 2002, 38(6): 27-1-27-7.

    [10]Kluitenberg G, Warrick A. Improved evaluation procedure for heat-pulse soil water flux density method[J].SoilScienceSocietyofAmericaJournal, 2001, 65(2): 320-323.

    [11]Carslaw H S, Jaeger J C.Conductionofheatinsolids[M]. 2nd ed. Oxford: Clarendon Press, 1959.

    [12]Taniguchi M, Fukuo Y. Continuous measurements of groundwater seepage using an automatic seepage meter[J].GroundWater, 1993, 31(4): 675-679.

    [13]Kluitenberg G, Ochsner T, Horton R. Improved analysis of heat pulse signals for soil water flux determination[J].SoilScienceSocietyofAmericaJournal, 2007, 71(1): 53-55.

    沉積物-水界面通量測定中熱脈沖信號分析

    朱騰義 Rajendra Prasad Singh 傅大放

    (東南大學土木工程學院, 南京 210096)

    分析了熱脈沖傳感器脈沖信號與沉積物-水界面通量之間的傳熱問題,并通過優(yōu)化程序,提出了用熱脈沖測定計算界面通量J的新方法.此分析方法只需3個實驗參數,即x0,λ和(pc)l就可利用熱脈沖測定數據計算出沉積物-水界面通量J.數據分析結果表明:熱脈沖頂點溫度到達時間與水流速度呈曲線關系;沉積物-水界面通量和熱源上下游溫升比值的自然對數之間存在一種簡單的線性關系.這種簡單的線性關系,有利于熱脈沖型傳感器在土壤-水界面通量測定中的廣泛應用.

    沉積物-水界面通量; 滲流儀; 熱脈沖; 頂點溫度到達時間

    X830.3

    The Priority Academic Program Development of Jiangsu Higher Education Institutions.

    :Zhu Tengyi, Rajendra Prasad Singh, Fu Dafang.Analysis of heat pulse signals determination for sediment-water interface fluxes[J].Journal of Southeast University (English Edition),2014,30(2):192-196.

    10.3969/j.issn.1003-7985.2014.02.010

    10.3969/j.issn.1003-7985.2014.02.010

    Received 2013-10-18.

    Biographies:Zhu Tengyi (1984—), male, graduate; Fu Dafang (corresponding author), male, doctor, professor, fdf@seu.edu.cn.

    猜你喜歡
    溫升沉積物頂點
    電機溫升試驗分析及無人值守電機溫升試驗優(yōu)化
    防爆電機(2022年5期)2022-11-18 07:40:48
    電機溫升計算公式的推導和應用
    防爆電機(2022年4期)2022-08-17 05:59:50
    晚更新世以來南黃海陸架沉積物源分析
    海洋通報(2022年2期)2022-06-30 06:07:04
    過非等腰銳角三角形頂點和垂心的圓的性質及應用(下)
    中等數學(2021年9期)2021-11-22 08:06:58
    渤海油田某FPSO污水艙沉積物的分散處理
    海洋石油(2021年3期)2021-11-05 07:43:12
    水體表層沉積物對磷的吸收及釋放研究進展
    關于頂點染色的一個猜想
    山東科學(2018年6期)2018-12-20 11:08:58
    LED照明光源的溫升與散熱分析
    電子制作(2018年2期)2018-04-18 07:13:36
    討論用ICP-AES測定土壤和沉積物時鈦對鈷的干擾
    降低GIS局部溫升的研究
    河南科技(2014年14期)2014-02-27 14:11:56
    亚洲经典国产精华液单| videossex国产| 狂野欧美白嫩少妇大欣赏| av在线app专区| 国产在线免费精品| 欧美精品一区二区免费开放| 精品一区在线观看国产| 少妇人妻精品综合一区二区| 欧美97在线视频| 亚洲经典国产精华液单| 99热国产这里只有精品6| 欧美一区二区亚洲| 狂野欧美激情性bbbbbb| av视频免费观看在线观看| 国产成人精品久久久久久| 视频区图区小说| 黄色怎么调成土黄色| 亚洲精品第二区| 国产 一区 欧美 日韩| 一个人看的www免费观看视频| 精品久久久久久久久亚洲| 亚洲av电影在线观看一区二区三区| 亚洲国产精品成人久久小说| 美女中出高潮动态图| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 黄色怎么调成土黄色| 啦啦啦啦在线视频资源| 99国产精品免费福利视频| 亚洲精品日韩在线中文字幕| 国产亚洲最大av| 简卡轻食公司| 亚洲人成网站在线观看播放| 午夜日本视频在线| 亚洲国产精品一区三区| 国产视频内射| 久久亚洲国产成人精品v| 日韩人妻高清精品专区| 国产亚洲最大av| 久久久久国产精品人妻一区二区| 午夜视频国产福利| 免费高清在线观看视频在线观看| 丰满迷人的少妇在线观看| 少妇 在线观看| 一级毛片aaaaaa免费看小| 国产女主播在线喷水免费视频网站| 一本色道久久久久久精品综合| 一区二区三区免费毛片| 一个人免费看片子| 午夜福利网站1000一区二区三区| 欧美精品国产亚洲| 亚洲人与动物交配视频| 亚洲欧美成人精品一区二区| 自拍偷自拍亚洲精品老妇| 久久ye,这里只有精品| 51国产日韩欧美| 99久久精品一区二区三区| 我的老师免费观看完整版| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 又爽又黄a免费视频| 一个人看的www免费观看视频| 日韩不卡一区二区三区视频在线| 王馨瑶露胸无遮挡在线观看| 国产亚洲av片在线观看秒播厂| 一个人看的www免费观看视频| 国产极品天堂在线| 2022亚洲国产成人精品| 国产乱人偷精品视频| 中文字幕亚洲精品专区| 国产精品久久久久久久久免| 国产深夜福利视频在线观看| 在线天堂最新版资源| 一级毛片 在线播放| 午夜老司机福利剧场| 精品亚洲乱码少妇综合久久| 国产成人精品久久久久久| av又黄又爽大尺度在线免费看| 毛片女人毛片| 少妇精品久久久久久久| 永久免费av网站大全| 久久久国产一区二区| 久久久久网色| 日韩在线高清观看一区二区三区| 观看av在线不卡| 一区二区三区四区激情视频| 中文字幕制服av| 国产精品一区二区三区四区免费观看| 亚洲av.av天堂| 午夜福利影视在线免费观看| 日韩电影二区| 婷婷色麻豆天堂久久| 男女边吃奶边做爰视频| 建设人人有责人人尽责人人享有的 | 97在线人人人人妻| av网站免费在线观看视频| 国产精品三级大全| 99热这里只有是精品在线观看| 91精品一卡2卡3卡4卡| 亚洲真实伦在线观看| 校园人妻丝袜中文字幕| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 大码成人一级视频| 精品人妻熟女av久视频| 99国产精品免费福利视频| 视频区图区小说| 六月丁香七月| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 美女xxoo啪啪120秒动态图| 亚洲精品中文字幕在线视频 | 久久久久久久久久人人人人人人| 七月丁香在线播放| 欧美精品亚洲一区二区| 精品酒店卫生间| av免费在线看不卡| 日韩 亚洲 欧美在线| 亚洲av中文字字幕乱码综合| 国产极品天堂在线| 97热精品久久久久久| 国产高清三级在线| 久久久久久九九精品二区国产| 国产精品三级大全| 亚洲人成网站在线播| 精品国产露脸久久av麻豆| xxx大片免费视频| 免费黄色在线免费观看| 黄色日韩在线| av一本久久久久| 干丝袜人妻中文字幕| 国产探花极品一区二区| 中国三级夫妇交换| 国产中年淑女户外野战色| 人人妻人人爽人人添夜夜欢视频 | 国产精品久久久久久久久免| 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 婷婷色综合www| 国产淫语在线视频| 观看av在线不卡| 一级毛片我不卡| 国产色婷婷99| 最黄视频免费看| 亚洲欧美清纯卡通| 国产精品人妻久久久久久| 中文欧美无线码| 日日摸夜夜添夜夜爱| 高清毛片免费看| 免费观看在线日韩| 一级毛片久久久久久久久女| 亚洲不卡免费看| av在线蜜桃| 国产精品一区二区在线不卡| 丝瓜视频免费看黄片| 免费观看在线日韩| 黄色怎么调成土黄色| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 国产深夜福利视频在线观看| 午夜福利高清视频| 91在线精品国自产拍蜜月| av线在线观看网站| 亚洲精品日韩在线中文字幕| 天天躁日日操中文字幕| 免费少妇av软件| 91午夜精品亚洲一区二区三区| 人人妻人人添人人爽欧美一区卜 | 黄片wwwwww| 美女内射精品一级片tv| 国产精品国产av在线观看| 观看av在线不卡| 一本久久精品| 日日摸夜夜添夜夜添av毛片| 99久久精品热视频| 麻豆乱淫一区二区| av天堂中文字幕网| 亚洲精品国产成人久久av| 国产爽快片一区二区三区| 人体艺术视频欧美日本| 久久综合国产亚洲精品| 亚洲av成人精品一区久久| freevideosex欧美| 日本欧美国产在线视频| 久久鲁丝午夜福利片| 亚洲综合色惰| 免费看av在线观看网站| 国产有黄有色有爽视频| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满| 男女免费视频国产| 嫩草影院入口| 99久久精品一区二区三区| 精品久久久久久久久亚洲| 在现免费观看毛片| 性高湖久久久久久久久免费观看| 免费av中文字幕在线| 狠狠精品人妻久久久久久综合| 国产精品一区二区性色av| 校园人妻丝袜中文字幕| 成人一区二区视频在线观看| 欧美日韩在线观看h| 国语对白做爰xxxⅹ性视频网站| 国产又色又爽无遮挡免| 97超视频在线观看视频| 亚洲av不卡在线观看| 欧美三级亚洲精品| 美女xxoo啪啪120秒动态图| 精品亚洲成国产av| 欧美日韩视频精品一区| 丝袜脚勾引网站| 看十八女毛片水多多多| 久久久久人妻精品一区果冻| videos熟女内射| freevideosex欧美| 在线免费十八禁| 人妻制服诱惑在线中文字幕| 亚洲精品国产色婷婷电影| 高清毛片免费看| 亚洲精品亚洲一区二区| 五月天丁香电影| 91狼人影院| 亚洲国产欧美在线一区| av线在线观看网站| 美女主播在线视频| 99热全是精品| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 久久av网站| 一本—道久久a久久精品蜜桃钙片| 三级国产精品片| 欧美三级亚洲精品| 久久6这里有精品| 久久婷婷青草| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品古装| 精品国产露脸久久av麻豆| 视频中文字幕在线观看| 免费看不卡的av| 一本色道久久久久久精品综合| 超碰97精品在线观看| 1000部很黄的大片| 能在线免费看毛片的网站| 人人妻人人爽人人添夜夜欢视频 | 人人妻人人添人人爽欧美一区卜 | 99热网站在线观看| a级毛色黄片| 亚洲电影在线观看av| av在线播放精品| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 一级av片app| 边亲边吃奶的免费视频| 亚洲精品国产av成人精品| 内射极品少妇av片p| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| 国产淫片久久久久久久久| 免费av不卡在线播放| 青春草亚洲视频在线观看| tube8黄色片| 久久国产乱子免费精品| 日韩 亚洲 欧美在线| 全区人妻精品视频| 欧美成人a在线观看| 另类亚洲欧美激情| 少妇的逼好多水| 国产乱人偷精品视频| 亚洲天堂av无毛| 久久久色成人| 国产有黄有色有爽视频| 一级毛片久久久久久久久女| 伊人久久国产一区二区| 亚洲天堂av无毛| av不卡在线播放| 免费少妇av软件| 黄片wwwwww| 国产精品一二三区在线看| 大话2 男鬼变身卡| 99久国产av精品国产电影| 精品酒店卫生间| 超碰av人人做人人爽久久| h视频一区二区三区| 久久久久久久久大av| 中文字幕制服av| 国产精品福利在线免费观看| 欧美精品亚洲一区二区| 欧美精品人与动牲交sv欧美| 在线免费十八禁| 国产精品久久久久久久电影| 看非洲黑人一级黄片| 久久久久国产精品人妻一区二区| 国产乱人视频| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区黑人 | 一个人免费看片子| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 26uuu在线亚洲综合色| 日韩一区二区三区影片| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 毛片女人毛片| 国产高清不卡午夜福利| 能在线免费看毛片的网站| 伦理电影大哥的女人| 久久久久人妻精品一区果冻| 91精品一卡2卡3卡4卡| 多毛熟女@视频| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av| 国产欧美日韩一区二区三区在线 | 午夜福利网站1000一区二区三区| 亚洲精品日本国产第一区| 你懂的网址亚洲精品在线观看| 久久国产亚洲av麻豆专区| 日韩国内少妇激情av| 丰满迷人的少妇在线观看| 赤兔流量卡办理| 中文精品一卡2卡3卡4更新| 高清在线视频一区二区三区| 日本vs欧美在线观看视频 | 久久女婷五月综合色啪小说| 18禁在线无遮挡免费观看视频| 国产在线免费精品| 久久韩国三级中文字幕| 女人久久www免费人成看片| 久久综合国产亚洲精品| 久久精品国产亚洲av涩爱| 激情 狠狠 欧美| 赤兔流量卡办理| 国产精品欧美亚洲77777| 成人美女网站在线观看视频| 亚洲av男天堂| 少妇精品久久久久久久| 在线观看三级黄色| 欧美一级a爱片免费观看看| 一本色道久久久久久精品综合| 精品亚洲乱码少妇综合久久| 最近最新中文字幕免费大全7| 国产久久久一区二区三区| 婷婷色综合大香蕉| 在线亚洲精品国产二区图片欧美 | 亚洲av国产av综合av卡| 少妇 在线观看| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 最近的中文字幕免费完整| 交换朋友夫妻互换小说| 少妇 在线观看| 寂寞人妻少妇视频99o| 亚洲va在线va天堂va国产| 黄色配什么色好看| 亚洲,一卡二卡三卡| 99re6热这里在线精品视频| 国产综合精华液| 少妇精品久久久久久久| 一边亲一边摸免费视频| 国产午夜精品一二区理论片| 噜噜噜噜噜久久久久久91| 97超碰精品成人国产| 一级毛片电影观看| 人妻一区二区av| 亚洲国产精品一区三区| 国产毛片在线视频| 国国产精品蜜臀av免费| 国产极品天堂在线| 国产精品一区二区在线观看99| 精品久久久噜噜| 乱系列少妇在线播放| 国产 一区 欧美 日韩| 水蜜桃什么品种好| 边亲边吃奶的免费视频| 在线免费观看不下载黄p国产| 国产永久视频网站| 亚洲av成人精品一二三区| 国产av精品麻豆| 中文字幕久久专区| 美女视频免费永久观看网站| 精品久久久精品久久久| 久久久精品94久久精品| 自拍偷自拍亚洲精品老妇| 女性生殖器流出的白浆| 男女无遮挡免费网站观看| 亚洲中文av在线| 观看免费一级毛片| 最近最新中文字幕免费大全7| 亚洲国产毛片av蜜桃av| 亚洲国产欧美人成| 少妇丰满av| 男女免费视频国产| 亚洲在久久综合| 国产欧美日韩一区二区三区在线 | 日本av手机在线免费观看| 日本vs欧美在线观看视频 | 两个人的视频大全免费| 麻豆成人av视频| 一级毛片电影观看| 在线精品无人区一区二区三 | 狠狠精品人妻久久久久久综合| 夜夜骑夜夜射夜夜干| a级毛片免费高清观看在线播放| 3wmmmm亚洲av在线观看| 国产成人精品久久久久久| 国产精品99久久久久久久久| 日本欧美视频一区| 亚洲美女搞黄在线观看| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| 久久久久久久大尺度免费视频| 麻豆成人午夜福利视频| 日本av手机在线免费观看| 一级a做视频免费观看| 国产精品偷伦视频观看了| 99精国产麻豆久久婷婷| 人妻 亚洲 视频| 亚洲国产成人一精品久久久| 少妇高潮的动态图| 国产黄片视频在线免费观看| 亚洲经典国产精华液单| 一本一本综合久久| 国产黄片视频在线免费观看| 久久久国产一区二区| 欧美日韩精品成人综合77777| 日日摸夜夜添夜夜爱| 日韩三级伦理在线观看| 日本与韩国留学比较| 国产av精品麻豆| 亚洲人成网站高清观看| 久久精品国产亚洲网站| 国产精品成人在线| 亚洲人成网站在线播| a级毛色黄片| 亚洲精品国产av成人精品| 黄色怎么调成土黄色| 国产国拍精品亚洲av在线观看| 欧美bdsm另类| 久久久亚洲精品成人影院| 国产欧美亚洲国产| 成人午夜精彩视频在线观看| 伊人久久国产一区二区| 一级av片app| 亚洲精品日本国产第一区| 亚洲欧美日韩卡通动漫| 欧美少妇被猛烈插入视频| 一级黄片播放器| 日韩免费高清中文字幕av| 观看美女的网站| 亚洲自偷自拍三级| 欧美亚洲 丝袜 人妻 在线| av.在线天堂| 欧美+日韩+精品| 国产大屁股一区二区在线视频| 亚洲精品第二区| 好男人视频免费观看在线| 舔av片在线| 在线观看三级黄色| 日本vs欧美在线观看视频 | 国产成人精品一,二区| 精品熟女少妇av免费看| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 黑人高潮一二区| 久久这里有精品视频免费| 少妇裸体淫交视频免费看高清| 黄色日韩在线| 乱系列少妇在线播放| 国产 一区精品| 国产久久久一区二区三区| 亚洲国产欧美在线一区| 国产成人一区二区在线| 美女内射精品一级片tv| 男的添女的下面高潮视频| 男人狂女人下面高潮的视频| 色婷婷av一区二区三区视频| 80岁老熟妇乱子伦牲交| 久久青草综合色| 全区人妻精品视频| 久久久久性生活片| 精品国产三级普通话版| 成人一区二区视频在线观看| 日本av手机在线免费观看| 欧美最新免费一区二区三区| 下体分泌物呈黄色| 色5月婷婷丁香| 高清不卡的av网站| 高清黄色对白视频在线免费看 | 国产av一区二区精品久久 | 午夜免费观看性视频| 久久综合国产亚洲精品| 国产熟女欧美一区二区| 麻豆精品久久久久久蜜桃| 亚洲熟女精品中文字幕| 99热这里只有是精品50| 超碰av人人做人人爽久久| 最近中文字幕2019免费版| 亚洲国产精品成人久久小说| 自拍偷自拍亚洲精品老妇| 精品亚洲乱码少妇综合久久| 激情五月婷婷亚洲| 亚洲成色77777| 国产淫片久久久久久久久| 亚洲熟女精品中文字幕| 成人美女网站在线观看视频| 搡老乐熟女国产| 国产白丝娇喘喷水9色精品| 国产精品嫩草影院av在线观看| 免费高清在线观看视频在线观看| 新久久久久国产一级毛片| 久久ye,这里只有精品| 波野结衣二区三区在线| 水蜜桃什么品种好| 精品国产三级普通话版| 日韩欧美一区视频在线观看 | 午夜精品国产一区二区电影| 自拍欧美九色日韩亚洲蝌蚪91 | 久久99蜜桃精品久久| 中文在线观看免费www的网站| 成人影院久久| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区国产| 日本wwww免费看| 国产欧美日韩精品一区二区| 美女福利国产在线 | 免费观看的影片在线观看| 亚洲欧美精品专区久久| 亚洲av成人精品一区久久| 综合色丁香网| 久久人妻熟女aⅴ| 男人狂女人下面高潮的视频| 国产成人精品婷婷| 色综合色国产| 丝袜脚勾引网站| 成人国产麻豆网| 午夜视频国产福利| av国产久精品久网站免费入址| 日日啪夜夜撸| 久久久a久久爽久久v久久| 亚洲国产精品一区三区| 欧美日韩一区二区视频在线观看视频在线| 色视频www国产| 成人国产av品久久久| 免费黄网站久久成人精品| 午夜激情久久久久久久| 国产精品一区二区三区四区免费观看| 国产精品99久久99久久久不卡 | 亚洲天堂av无毛| 精品一区二区三卡| 卡戴珊不雅视频在线播放| 男女边摸边吃奶| 亚洲图色成人| 国产视频首页在线观看| h日本视频在线播放| 少妇熟女欧美另类| 99热网站在线观看| 亚洲,欧美,日韩| 在线 av 中文字幕| 亚洲欧美成人综合另类久久久| 另类亚洲欧美激情| 亚洲欧美清纯卡通| av国产免费在线观看| h视频一区二区三区| av卡一久久| 日产精品乱码卡一卡2卡三| 久久久a久久爽久久v久久| 亚洲精品久久午夜乱码| 久久久久久九九精品二区国产| 亚洲av在线观看美女高潮| 亚洲国产精品一区三区| 男女免费视频国产| 亚洲美女搞黄在线观看| 一级二级三级毛片免费看| 肉色欧美久久久久久久蜜桃| 国产精品伦人一区二区| 国产亚洲午夜精品一区二区久久| 久久久久久久久久人人人人人人| 国产69精品久久久久777片| 久久人人爽人人爽人人片va| 人人妻人人澡人人爽人人夜夜| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 国产成人一区二区在线| 美女内射精品一级片tv| 国产女主播在线喷水免费视频网站| 亚洲国产成人一精品久久久| av一本久久久久| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 街头女战士在线观看网站| 国产精品麻豆人妻色哟哟久久| 久久99热这里只频精品6学生| 天天躁夜夜躁狠狠久久av| 涩涩av久久男人的天堂| 国产综合精华液| 午夜福利高清视频| 精品亚洲成国产av| 亚洲欧美日韩卡通动漫| 2022亚洲国产成人精品| 国产免费又黄又爽又色| 六月丁香七月| 亚洲美女黄色视频免费看| av专区在线播放| 最近手机中文字幕大全| 日本午夜av视频| 国产成人午夜福利电影在线观看| 日本欧美国产在线视频| 国产伦精品一区二区三区视频9| 欧美人与善性xxx|