• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    中立型隨機(jī)延遲微分方程θ-方法的均方穩(wěn)定性*

    2014-09-05 09:23:58王文強(qiáng)
    關(guān)鍵詞:均方湘潭結(jié)論

    王文強(qiáng)

    (湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 湘潭 411105)

    中立型隨機(jī)延遲微分方程θ-方法的均方穩(wěn)定性*

    王文強(qiáng)

    (湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 湘潭 411105)

    討論θ-方法用于求解非線性中立型隨機(jī)延遲微分方程初值問題時(shí)數(shù)值解的穩(wěn)定性,給出了θ-方法均方穩(wěn)定的一個(gè)充分條件.

    中立型隨機(jī)延遲微分方程;θ-方法;均方穩(wěn)定

    隨機(jī)延遲微分方程數(shù)值方法的穩(wěn)定性研究是一件很有意義的工作,近年來(lái)已經(jīng)開始受到越來(lái)越多的學(xué)者關(guān)注,相關(guān)的研究成果逐漸多起來(lái).文獻(xiàn)[1]提出了隨機(jī)延遲微分方程Milstein方法.文獻(xiàn)[2]建立了數(shù)值方法的均方穩(wěn)定性(MS-穩(wěn)定性)概念,證明了當(dāng)線性標(biāo)量系統(tǒng)的真解是均方穩(wěn)定時(shí),Euler-Maruyama方法的數(shù)值解是MS-穩(wěn)定的.文獻(xiàn)[3]研究了帶有延遲項(xiàng)的隨機(jī)微分方程半隱式Milstein數(shù)值方法的穩(wěn)定性,通過對(duì)數(shù)值方法應(yīng)用到線性試驗(yàn)方程上得到的差分方程進(jìn)行討論,給出了半隱式Milstein方法MS-穩(wěn)定與GMS-穩(wěn)定的條件.文獻(xiàn)[4]運(yùn)用Halanay-type理論,對(duì)常系數(shù)線性隨機(jī)延遲微分方程給出了Euler-Maruyama方法均方穩(wěn)定的判別準(zhǔn)則.文獻(xiàn)[5]研究了一類帶有延遲項(xiàng)的線性隨機(jī)延遲微分方程Milstein數(shù)值方法的穩(wěn)定性,通過對(duì)數(shù)值方法應(yīng)用到線性試驗(yàn)方程上得到的差分方程進(jìn)行討論,給出了Milstein方法MS-穩(wěn)定的條件.文獻(xiàn)[6]研究了改進(jìn)的Milstein方法在有限區(qū)間上對(duì)隨機(jī)延遲微分方程的分片近似的相關(guān)結(jié)論.文獻(xiàn)[7-12]研究了隨機(jī)延遲微分方程不同數(shù)值方法的均方穩(wěn)定性與收斂性.文獻(xiàn)[13]研究了中立型非線性隨機(jī)延遲微分方程單步方法的均方收斂性.文獻(xiàn)[14]進(jìn)一步研究了中立型非線性隨機(jī)延遲微分方程半隱式Euler方法的均方穩(wěn)定性.

    筆者主要討論非線性中立型隨機(jī)延遲微分方程初值問題,給出了θ-方法均方穩(wěn)定的一個(gè)充分條件.

    1 中立型隨機(jī)延遲微分方程

    設(shè)(Ω,F,{Ft}t≥0,P)是完備的概率空間,濾子{Ft}t≥0滿足通常條件,即它們是右連續(xù)的且每一個(gè)Ft都包含所有的零概率集.考慮下列中立型隨機(jī)延遲微分方程初值問題:

    其中:實(shí)常數(shù)τ>0;W(t)是一維標(biāo)準(zhǔn)Wiener過程;初始函數(shù)φ是H?lder連續(xù)的,即存在常數(shù)γ>0,L>0,使當(dāng)t,s∈[-τ,0]時(shí),有E(|φ(t)-φ(s)|p)≤L|t-s|pγ,p=1,2;映射f:[0,+∞)×R×R→R和g:[0,+∞)×R×R→R充分光滑且滿足

    (2)

    其中L,K1,K2均為常數(shù),x∨y=max(x,y),且存在常數(shù)λ∈(0,1),對(duì)任意x,y1,y2∈R,有|N(y1)-N(y2)|≤λ|y1-y2|,

    |N(x)|≤λ|x|.

    (3)

    此時(shí)方程(1)存在唯一強(qiáng)解X(t).

    2 θ-方法的均方穩(wěn)定性

    將θ-方法用于數(shù)值求解初值問題(1),得到

    Xk+1-N(Xk+1-m)=Xk-N(Xk-m)+(θf(wàn)(tk+1,Xk+1,Xk+1-m)+(1-θ)f(tk,Xk,Xk-m))h+

    g(tk,Xk,Xk-m)ΔWk2∈k=0,1,2,....

    (4)

    引理1 用θ-方法求解初值問題(1)所得的數(shù)值解{Xk}滿足下列不等式:

    證明由Yk=Xk-N(Xk-m)和(3)式,可得

    |Xk|=|Yk+N(Xk-m)|≤|Yk|+|N(Xk-m)|≤|Yk|+λ|Xk-m|.

    (5)

    同理可得

    (6)

    將(6)式代入(5)式,有

    |Xk|≤|Yk|+λ|Yk-m|+λ2|Yk-2m|+...+λc(k)|Yk-c(k)m|+λc(k)+1|Xk-c(k)m-m|.

    (7)

    (7)式兩邊平方,利用Cauchy不等式得

    (8)

    (8)式兩邊取數(shù)學(xué)期望,并注意到當(dāng)l≤0時(shí),有Xl=φ(lh),則引理1的結(jié)論得證.

    作為一種特殊情形,根據(jù)文獻(xiàn)[15]中推論6.8容易得到下面的結(jié)論:

    定理1 如果方程(1a)滿足下列條件:

    (ⅰ) 存在2個(gè)正數(shù)λ1,λ2,使得對(duì)任意的x,y∈R,有

    2(x-N(y))f(t,x,y)+g2(t,x,y)≤-λ1|x-N(y)|2+λ2y2;

    那么方程(1)的零解是均方漸近穩(wěn)定的.

    將定理1稍加修改,可以得到下面的結(jié)論:

    引理2 如果方程(1a)滿足下列條件:

    (ⅰ) 存在2個(gè)常數(shù)μ1>0,μ2≥0,使得對(duì)任意的x,y∈R,有

    2(x-N(y))f(t,x,y)≤-μ1|x-N(y)|2+μ2y2;

    (9)

    (ⅱ)

    (10)

    那么方程(1)的零解是均方漸近穩(wěn)定的.

    證明根據(jù)三角不等式知|x|2=|x-N(y)+N(y)|2≤(|x-N(y)|+|N(y)|)2≤(|x-N(y)|+λ|y|)2.根據(jù)Cauchy不等式知

    |x|2≤(|x-N(y)|+λ|y|)2≤(1+λ2)(|x-N(y)|2+|y|2).

    (11)

    因此聯(lián)立(2),(9),(11)式可得

    2(x-N(y))f(t,x,y)+g2(t,x,y)≤ -(μ1-(1+λ2)K2)|x-N(y)|2+

    (μ2+(1+λ2)K2)y2.

    (12)

    根據(jù)定理1聯(lián)立(10)和(12)式即知結(jié)論成立.

    (13)

    (14)

    -7x2(1+x)+4x4(2x-1)<0,

    (15)

    下面給出關(guān)于數(shù)值方法穩(wěn)定性分析的結(jié)論.首先記

    證明由格式(4)得

    Yk+1-θf(wàn)(tk+1,Xk+1,Xk+1-m)h=Yk+(1-θ)f(tk,Xk,Xk-m)h+g(tk,Xk,Xk-m)ΔWk,

    (16)

    (16)式兩邊同時(shí)平方,移項(xiàng)整理得

    (1-θ)2f2(tk,Xk,Xk-m)h2+g2(tk,Xk,Xk-m)(ΔWk)2+

    2(1-θ)Ykf(tk,Xk,Xk-m)h+2Ykg(tk,Xk,Xk-m)ΔWk+

    2(1-θ)hf(tk,Xk,Xk-m)g(tk,Xk,Xk-m)ΔWk.

    因此

    2(1-θ)hf(tk,Xk,Xk-m)g(tk,Xk,Xk-m)ΔWk.

    (17)

    注意到E(ΔWk)=0,E[(ΔWk)2]=h,而且Xk,Xk-m都是Ftk可測(cè)的,因此容易得到

    (18)

    又根據(jù)已知條件(9)得

    (19)

    根據(jù)數(shù)學(xué)期望的性質(zhì)和(2)式知

    (20)

    將(18),(19)和(20)式代入(15)式取數(shù)學(xué)期望得

    (21)

    根據(jù)引理1的結(jié)論整理(21)式可得

    +(1+λ2)μ2θhλ2c(k+1-m)S,

    (22)

    (23)

    其中σ1(h;θ,λ,μ2,K1,K2,S)=(1+λ2)S(2(1-θ)2K1h+μ2+2K2).

    (24)

    記M=max(ρ,λ)<1,則由(24)式進(jìn)一步可得

    定理3 當(dāng)步長(zhǎng)h

    證明由Xk=Yk+N(Xk-m)和Cauchy不等式,可得

    (25)

    (25)式兩邊取數(shù)學(xué)期望有

    (26)

    又根據(jù)定理2的結(jié)論,對(duì)(26)式兩邊同時(shí)取極限得

    [1] HU Yaozhong,SALAH-ELDIN A MOHAMMED,YAN Feng.Discrete-Time Approximations of Stochastic Delay Equations:The Milstein Scheme[J].The Annals of Probability,2004,32(1A):265-314.

    [2] CAO Wanrong,LIU Mingzhu,FAN Zhencheng.MS-Stability of the Euler-Maruyama Method for Stochastic Differential Delay Equations[J].Applied Mathematics and Computation,2004,159:127-135.

    [3] CAO Wanrong.The Convergence and Stability of Some Numerical Methods for Stochastic Differential Delay Equation[D].Harbin:Harbin Institute of Technology,2004.

    [4] CHRISTOPHER T H BAKER,EVELYN BUCKWAR.Exponential Stability inp-th Mean of Solutions,and of Convergent Euler-Type Solutions,of Stochastic Delay Differential Equations[J].Journal of Computational and Applied Mathematics,2005,184:404-427.

    [5] WANG Zhiyong,ZHANG Chengjian.An Analysis of Stability of Milstein Method for Stochastic Differential Equations with Delay[J].Computers and Mathematics with Applications,2006,51:1 445-1 452.

    [6] NORBERT HOFMANN,THOMAS MüLLER-GRONBACH.A Modified Milstein Scheme for Approximation of Stochastic Delay Differential Equations with Constant Time Lag[J].Journal of Computational and Applied Mathematics,2006,197:89-121.

    [7] WANG Wenqiang,HUANG Shan,LI Shoufu.Mean-Square Stability of Euler-Maruyama Methods for Nonlinear Stochastic Delay Differential Equations[J].Mathematica Numerica SINICA,2007,29(2):217-224.

    [8] WANG Wenqiang,LI Shoufu,HUANG Shan.Convergence of Semi-Implicit Euler Methods for Nonlinear Stochastic Delay Differential Equations[J].Journal of Yunnan University:Natural Sciences Edition,2008,30(1):11-15.

    [9] WANG Wenqiang.Convergence and Stability of Several Numerical Methods for Nonlinear Stochastic Delay Differential Equations[D].Xiangtan:Xiangtan University,2007.

    [10] LUO Jiaowan.A Note on Exponential Stability inp-th Mean of Solutions of Stochastic Delay Differential Equations[J].Journal of Computational and Applied Mathematics,2007,198(1):143-148.

    [11] RATHINASAMY A,BALACHANDRAN K.Mean-Square Stability of Milstein Method for Linear Hybrid Stochastic Delay Integro-Differential Equations[J].Nonlinear Analysis:Hybrid Systems,2008,2(4):1 256-1 263.

    [12] ZHANG Haomin,GAN Siqing.Mean Square Convergence of One-Step Methods for Neutral Stochastic Differential Delay Equations[J].Applied Mathematics and Computation,2008,204(2):884-890.

    [13] ZHANG Haomin,GAN Siqing,HU Lin.The Split-Step Backward Euler Method for Linear Stochastic Delay Differential Equations[J].Journal of Computational and Applied Mathematics,2009,225(2):558-568.

    [14] WANG Wenqiang,CHEN Yanping.Mean-Square Stability of Semi-Implicit Euler Method for Nonlinear Neutral Stochastic Delay Differential Equations[J].Applied Numerical Mathematics,2011(61):696-701.

    [15] MAO Xuerong.Stochastic Differential Equations and their Applications[M].Horwood:Chichester,1997.

    (責(zé)任編輯 向陽(yáng)潔)

    Mean-SquareStabilityofθ-MethodsforNeutralNonlinearStochasticDelayDifferentialEquations

    WANG Wenqiang

    (School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,Hunan China)

    The mean-square stability of Euler method is investigated for nonlinear neutral stochastic delay differential equations.It is proved that the numerical method is mean-square stable(MS-stable) under a sufficient condition.

    neutral stochastic delay differential equations;θ-methods;mean-square stable

    1007-2985(2014)02-0010-05

    2013-11-20

    國(guó)家自然科學(xué)基金資助項(xiàng)目(11271311,11171352)

    王文強(qiáng)(1971-),男(苗族),湖南邵陽(yáng)人,湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院教授,博士后,主要從事常微分方程數(shù)值解研究.

    O175.13

    A

    10.3969/j.issn.1007-2985.2014.02.004

    猜你喜歡
    均方湘潭結(jié)論
    一類隨機(jī)積分微分方程的均方漸近概周期解
    由一個(gè)簡(jiǎn)單結(jié)論聯(lián)想到的數(shù)論題
    立體幾何中的一個(gè)有用結(jié)論
    Beidou, le système de navigation par satellite compatible et interopérable
    湘潭是個(gè)好地方
    湘潭紅色文化軟實(shí)力的提升研究
    活力(2019年21期)2019-04-01 12:16:10
    湘潭大學(xué)藝術(shù)學(xué)院作品選
    流行色(2017年12期)2017-10-26 03:08:22
    結(jié)論
    基于抗差最小均方估計(jì)的輸電線路參數(shù)辨識(shí)
    基于隨機(jī)牽制控制的復(fù)雜網(wǎng)絡(luò)均方簇同步
    鹤庆县| 扎赉特旗| 凭祥市| 张掖市| 棋牌| 海丰县| 贵南县| 孟津县| 石棉县| 上犹县| 永康市| 永顺县| 隆昌县| 天祝| 敖汉旗| 安仁县| 冷水江市| 固始县| 株洲市| 孝昌县| 宜良县| 温泉县| 大厂| 松江区| 绍兴县| 闽清县| 吉安市| 丹江口市| 肇州县| 翁牛特旗| 南陵县| 集安市| 盘锦市| 晋中市| 积石山| 宁都县| 丹江口市| 临泽县| 焉耆| 永胜县| 宁远县|