• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consensus problem of multi-agent systems under arbitrary topology

    2014-08-08 11:23:05DONGLijing董立靜CHAISenchun柴森春ZHANGBaihai張百海

    DONG Li-jing(董立靜), CHAI Sen-chun(柴森春), ZHANG Bai-hai(張百海)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Consensus problem of multi-agent systems under arbitrary topology

    DONG Li-jing(董立靜), CHAI Sen-chun(柴森春), ZHANG Bai-hai(張百海)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Consensus problem of second-order leader-following multi-agent systems under arbitrary topology is investigated in this paper. Arbitrary topology means the variable topology shifts continuously rather than switches among several different structures. For ensuring the consensus of leader-following multi-agent systems, some sufficient conditions and controller design principles are deduced both for a double-integrator case and a nonlinear case. Certainly, numerical simulations are carried out to prove the feasibility and effectiveness of theory derivation, which vividly illustrates that the following agents can successfully track the leader agent.

    nonlinear multi-agent system; consensus; arbitrary topology

    Since consensus of multi-agent systems (MAS) is a fundamental problem in the MAS research area, it has attracted increasing attention of researchers from various disciplines of engineering, biology and science. In multi-agent systems, consensus means to reach an agreement regarding a certain quantity of interest that depends on the states of all agents. A consensus algorithm is an interaction rule that specifies the information exchange between an agent and all of its neighbors in the network. Such problems have been formulated as consensus of leaderless problems or leader-following problems[1-3]. For a cooperative multi-agent system, leaderless consensus means that each agent updates its state based on local information of its neighbors such that all agents eventually reach an agreement on a common value, while leader-following consensus means that there exists a virtual leader which specifies an objective for all agents to follow.

    In the past few years, the multi-agent systems with integer dynamics[4-6]or invariant topology[1,4-5]have been widely studied by many researchers due to its simple construction and convenience to analyze. Certainly, there are some researchers spending effort on multi-agent system with nonlinear dynamics[1, 7]or switching topologies[2, 6, 8], and there have been some outcomes. In Ref.[1] a pinning control algorithm was proposed to achieve leader-following consensus in a network of agents with nonlinear second-order dynamics. Ref.[7] proposed an adaptive distributed controller with a disturbance estimator to solve the consensus problem under a fixed topology. By using a common Lyapunov function, Ref.[2] extended leader-following consensus control for multi-agent systems, which ensured strong mean square consensus, to the switching topology case. In Ref.[6], the sampled control protocols were induced from continuous-time linear consensus protocol by using periodic sampling technology and zero-order hold circuit. Nevertheless, since consensus problem of multi-agent systems associated with both nonlinear dynamics and variable topology, it is extremely difficult and complicated, people hardly discuss about it.

    However, considering the fact that almost all the physical plants contain nonlinearity and the communication topology may change from time to time, therefore, the velocity of each agent is time-varying and the communication radius is finite, consensus problem of multi-agent systems with nonlinear dynamics and variable topology is of vital necessity. However only a few researchers have paid attention on the consensus problem of multi-agent systems under arbitrary topology. In Ref.[9], H. Kim addresses the problem of consensus of multi-agent systems, consisting of a set of identical MIMO LTI systems, under a time-varying network that has a well-defined average (with uniform convergence to the average). A. Popov[10]proposed a sufficient scaled l1 stability condition for arbitrary topology. By employing some knowledge of complex dynamical network, the author has discussed the consensus problem of first-order leader-following multi-agent system under arbitrary topology in Ref.[11]. This paper will discuss the second-order multi-agent consensus problem under arbitrary topology situation. Based on the author’s work in Ref.[11], some sufficient conditions and controller design principles are given to ensure consensus of the second-order nonlinear multi-agent system under arbitrary topology.

    The paper is organized as follows. Some preliminaries of graph theory are briefly reviewed in section 1. Main results are presented in section 2. To illustrate the proposed theoretical results, numerical simulations are provided in section 3. And finally, conclusions are drawn in section 4.

    1 Problem description and preliminaries

    In this section, we describe the second-order multi-agent system model on which the consensus problemwas brought about. In addition, a brief summary of the relevant results in graph theory and control stability, by merging which we are able to analyze the consensus, is provided. Finally, the relevant notations are presented.

    1.1 Problem description

    The system to be considered in this paper is a leader-following multi-agent system. The second-order multi-agent system is composed of one virtual leader agent andNnonlinear coupled following agents, labeled from 1 toN. The virtual leader agent is described with the following dynamic:

    (1a)

    wherexr∈Rmandvr∈Rmare position and velocity states of the virtual leader respectively.f(t,xr,vr)∈misanonlinearcontinuousfunctiontodescribetheself-dynamicsoftheleaderagent.Thisisanactiveleaderwhenf(t,xr,vr)≠0, which means the velocity of leader is time-varying.Whenf(t,xr,vr)=0, the leader posses a constant velocity.

    The following agents are assumed to have the second-order dynamics as

    i∈{1,2,…,N},

    (1b)

    wherexi∈Rmandvi∈Rmare position and velocity states of agentirespectively,f(t,xi,vi)∈Rmis a nonlinear continuous function to describe the self-dynamics of agenti,ui∈Rmare control input of agenti. Whenf(t,xi,vi)=0, the dynamics of multi-agent system will turn into double-integrator dynamics with a constant reference velocity.

    The objective of this paper is to design a control protocol which ensures the following agents effectively pursue the leader agent under arbitrary topology.

    1.2 Preliminaries

    To analyze the consensus problem of second-order leader-following multi-agent systems, some relevant theories in graph theory and control stability are recalled.

    A weighted graph denoted byG={v,ε,A} with a node setv={1,2,…,N},an edge setε?v×vand a weighted adjacency matrixA=(aij)N×Nwith nonnegative elements[12]. We consider that (i,j)∈εif and only if vertex (node)ican send its information to vertexj. If (i,i)∈ε, we say that vertexihas the self-loop. In this paper, it is assumed that no self-loop exists. The set of neighbors of vertexiis denoted byNi={j|j∈v,(j,i)∈ε}, whenj?Ni, which means there is no information flow from vertexjto vertexi, thenaij=0, otherwiseaij>0. The in-degree and out-degree of nodeiare, respectively, defined as[13]

    DenoteDdiag{degin(1),degin(2),…,degin(N)},thentheLaplacianmatrixLofthegraphGisdefinedasLD-A.

    Fromthegraphtheorypointofview,everyagentcanbetreatedasavertex.Thenthemulti-agentsystemcanbetreatedasadynamicgraphGwhenitisanalyzedintheory.

    Inthispaper, aij,theweightedvalueofagentjtoagenti,isconscioustime-varying,anditisdenotedasaij(t),whichmeansthetopologyofmulti-agentsystemisarbitraryalongwithtime.

    Definition 1 The leader-following multi-agent system (1) is said to achieve second-order consensus when following equation is satisfied.

    (2)

    Lemma 1[14]Let Abearealsymmetricn×n-matrixandλmax(A)≥λi(A)≥λmin(A)(i=1,2,…,n), then the following inequality equation on inner product is established.

    λmax(A)〈X,X〉≥〈AX,X〉≥λmin(A)〈X,X〉.

    1.3 Notations

    Some mathematical notations are used throughout this paper. DenoteIN∈RN×Nas anN-dimensional identity matrix, 1N=[1,1,…,1]T∈RNas a vector of all ones. LetATandA-1be the transpose and the inverse of matrix Arespectively.λmax(A) denotes the maximal eigenvalue of matrixAandλmin(A) denotes the minimal eigenvalue of matrixA. ‖·‖ denotes Euclidean norm.

    2 Main results

    This section presents control protocol design principle and the consensus proof of second-order leader-following multi- agent systems under arbitrary topology under two cases:

    Case Ⅰ:f=0 (double integrator dynamics)

    Case Ⅱ:f≠0 (nonlinear dynamics)

    In the two cases, the control protocol is adopted in the following format for each agent:

    (3)

    whereγ>0 andk>0 are parameters to be designed.bi(t) indicates the accessibility of the leader agent by the following agentiat timet.bi(t)>0 indicates the case that agentican get the position and velocity value of the leader at timet, andbi(t)=0 indicates the case that the information of leader agent is not accessible by the following agenti.

    (4)

    2.1 Consensus with double integrator dynamics

    In case off=0, the second-order multi-agent system is reduced into the following double-integrator system (5) with control protocol (3).

    (5)

    Andtheleaderagentisdescribedby

    (6)

    Combining the following agents (5) and the leader agent (6), disagreement equation can be deduced as

    (7)

    In this case, the following result about consensus problem of multi-agent system under arbitrary topology is established.

    Theorem 1 The second-order leader-following consensus of multi-agent system (5) under arbitrary topology is achieved if the following conditions are satisfied.

    (i)λmin((L(t)+B(t))?Im)>0

    (ii) The derivation d((L(t)+B(t))?Im)/dtexists andλmax(d((L(t)+B(t))?Im)/dt)<0.

    ProofIntheviewofLemma1,itisclearthat

    (8)

    By employing the Lyapunov function (4) and the above inequality (8), it follows that

    (9)

    Fork>0 andλmin((L(t)+B(t))?Im)>0, it is clear that the Lyapunov function defined in Eq.(4) is positive definite in this case.

    The derivation of Lyapunov function (4) along the disagreement system (7) is deduced as

    (10)

    Itisclearthat

    (11)

    Substitute Eq.(11) into Lyapunov function’s derivation (10), consequently, Eq.(10) can obtained as

    (12)

    InviewofLemma1,itisclearthat

    (13)

    Accordingtotheaboveillustrations,wecanconcludethatconditions(i)and(ii)inTheorem1ensurethestabilityofthedisagreementsystem(7).FromDefinition1,thecontrolprotocol(3)solvestheconsensusproblemofsecond-ordermulti-agentsystem,inwhichthefollowingagents’dynamicmodelisEq.(5)andtheleaderagent’sdynamicmodelisEq.(6),underarbitrarytopologywithoutanyspecialrequestforcontrolparameterγandk. This completes the proof.

    2.2 Consensus with second-order nonlinear dynamics

    In the case off≠0, the second-order following agents’ dynamics Eq.(1b) become system (14) with control protocol (3). The leader, in this case, is an active agent described by Eq.(1a).

    (14)

    Assumption 1 For the nonlinear functionf, there exists a constantl>0 such that ‖f(t,xi(t),vi(t))-f(t,xr(t),vr(t))‖≤l(‖xi(t)-xr(t)‖+‖vi(t)-vr(t)‖) which indicates

    (15)

    Combining system (14) and the virtual leader (1a), the disagreement multi-agent system can be deduced.

    B(t))??).

    (16)

    In this case, the following consensus theorem of second-order leader-following system with nonlinear self-dynamic is established.

    Theorem 2 The second-order leader-following consensus of multi-agent system (14) is achieved if all the conditions in Theorem 1 hold and the control parametersγ,ksatisfy the following conditions.

    (i)k>-l/λmax(d(L(t)+B(t))?Im/dt)

    (ii)γk>3l/2λmin((L(t)+B(t))?Im).

    Proof Under the conditions in Theorem 2 and consider the proof of Theorem 1, it can be easily seen that

    (17)

    (18)

    3 Numericalexamples

    Inthissection,asecond-ordermulti-agentsystemwhichconsistsof1leaderagentand3followingagentsisemployedtoverifythefeasibilityandeffectivenessofthiswork.TwoapplicationsofTheorem1andTheorem2arecarriedout.Theleaderandfollowingagentsaredescribedas

    (19)

    1.5cos(2.5t)+ui(t),i∈{1,2,3},

    (20)

    wherex∈R3andv∈R3are position and velocity states of the agents in 3-dimensional respectively. The nonlinear continuous functionf(t,x,v) is embodied by

    -sin(x(t))-0.25v(t)+1.5cos(2.5t).

    As the topology of multi-agent system is arbitrary, Laplacian matrix of topology graph at timetis described by a time-varying matrix (L(t)+B(t))?I3.AndL(t)+B(t)isembodiedas

    (21)

    wherea11=(e2-1)th(t)+earctan(t),a12=(1-e)th(t)-2earctan(t),a13=earctan(t),a22=th(t)-2e2arctan(t),a23=2th(t)+e2arctan(t),a33=3(e-e2)th(t)+arctan(t).

    The leader’s initial position and velocity in 3-dimensional are

    xr(0)=[0 0 0],

    vr(0)=[0.03 0.02 -0.04].

    The position and velocity in 3-dimensional of the 3 following agents are initialized as

    x1(0)=[0.05 -0.04 0.01],

    x2(0)=[-0.05 0.03 -0.07],

    x3(0)=[0.03 -0.06 0.08],

    v1(0)=[0.05 -0.01 0.01],

    v2(0)=[-0.04 0.05 0.03],

    v3(0)=[-0.05 0.08 -0.01].

    3.1 Multi-agent system with double-integrator dynamics

    In this case, the nonlinear function in Eqs.(19) (20) is replaced by 0. Arbitrary topology and the above mentioned initial conditions are employed in this simulation. Fig.1 and Fig.2 present the position and velocity disagreement vectors of the leader and 3 following agents with double-integrator dynamics.

    -sin(x(t))-0.25v(t)+1.5cos(2.5t)

    Fig.1 Position errors of the multi-agent system with double-integrator dynamics

    Fig.2 Velocity errors of the multi-agent system with double-integrator dynamics

    From Fig.1 and Fig.2, it is obvious that the following agents can track the leader effectively in 150 steps under arbitrary topology. This is a good explanation of the theoretical derivation in section 2.1.

    3.2 Multi-agent system with nonlinear dynamics

    Fig.3 Position errors of the multi-agent system with nonlinear dynamics

    In this case, the multi-agent system is described exactly the same as Eqs.(19) (20) under the arbitrary topology and the above mentioned initial conditions. Fig.3 and Fig.4 present the position and velocity disagreement vectors of 3 following agents relative to the leader with nonlinear dynamics.

    Fig.4 Velocity errors of the multi-agent system with nonlinear dynamics

    From Fig.3 and Fig.4, we can see that the position disagreement and velocity disagreement of the following agents with leader converge to zero in 250 steps, which indicates that the following agents can track the active leader in finite time nicely. This is a good explanation to theoretical derivation in section 2.2.

    By comparing the results in section 3.1 and section 3.2, the disagreement vectors of the multi-agent system with double-integrator dynamics converge faster than that with nonlinear dynamics.

    4 Conclusion

    This paper discusses the consensus problem of second-order multi-agent systems under arbitrary topology. Some sufficient conditions are obtained with the proposed control protocol and numerical simulations are employed to verify them. The multi-agent systems can reach consensus in both double-integrator case and nonlinear case. The response time of multi-agent system with double integrator dynamics is shorter. It is obvious that nonlinearity impedes the convergence rate, which tantalizingly hints that it is needed to design a more advanced controller in the future work.

    [1] Song Q, Cao J D, Yu W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[J]. Systems & Control Letters,2010, 59: 553-562.

    [2] Ni W, Cheng D. Leader-following consensus of multi-agent systems under fixed and switching topologies[J]. Systems & Control Letters, 2010,59(3C4): 209C217.

    [3] Ren W. Consensus tracking under directed interaction topologies: algorithms and experiments[J]. IEEE Trans Control Syst Technology, 2010,18(1) :230 -237.

    [4] Li S H, Dua H B, Lin X Z. Finite-time consensus algorithm for multiagent systems with double-integrator Dynamics[J]. Automatica,2011, 47:1706-1712.

    [5] Hua J P, Feng G. Distributed tracking control of leader-follower multiagent systems under noisy measurement[J]. Automatica,2010, 46: 1382-1387.

    [6] Xie G M, Liu H Y, Wang L, et al. Consensus in networked multi-agent systems via sampled control: switching topology case[C]∥2009 American Control Conference, 2009:4525-4530.

    [7] Sumizaki K, Liu L, Hara S. Adaptive consensus on a class of nonlinear multi-agent dynamical systems[C]∥SICE Annual Conference 2010 August 18-21,2010: 1141-1145.

    [8] Münz U, Papachristodoulou A, Allg?wer F. Consensus in multi-agent systems with coupling delays and switching topology[J]. IEEE Trans Automat Control,2011,56(12):2976-2982.

    [9] Kim H, Shim H, Back J, et al. Consensus of output-coupled linear multi-agent systems under fast switching network: averaging approach[J].Automatica, 2013, 49: 267-272.

    [10] Popov A, Werner H. Robust stability of a multi-agent system under arbitrary and time-varying communication topologies and communication delays[J]. IEEE Trans Automat Control, 2012,57(9): 2343-2347.

    [11] Dong L J, Chai S C, Zhang B H. Necessary and sufficient conditions for consensus of multi-agent systems with nonlinear dynamics and variable topology[C]∥2012 UKACC International Conference on Control, 2012:1052-1056.

    [12] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans Automat Control,2004, 49 (9) : 1520-1533.

    [13] Song Q, Cao J. On pinning synchronization of directed and undirected complex dynamical networks[J]. IEEE Trans Circuits Syst,2010, I57 (3) : 672-680.

    [14] Mirsky L. An introduction to linear algebra[M]. New York: Dover Publications, Inc.,1990.

    (Edited by Wang Yuxia)

    2013- 03- 01

    Supported by Scientific Research and Postgraduate Training Joint-Build Project (20120639002); the National Natural Science Foundation of Youth Science Fund (61104086)

    TP 202.1 Document code: A Article ID: 1004- 0579(2014)02- 0210- 08

    E-mail: chaisc97@bit.edu.cn

    成人永久免费在线观看视频 | 久久中文字幕人妻熟女| 精品熟女少妇八av免费久了| 在线播放国产精品三级| 欧美激情久久久久久爽电影 | 午夜久久久在线观看| 日韩免费高清中文字幕av| 18禁观看日本| 亚洲精品美女久久久久99蜜臀| 免费观看人在逋| 国产麻豆69| 国产99久久九九免费精品| 亚洲专区国产一区二区| 午夜福利乱码中文字幕| 最近最新免费中文字幕在线| 午夜激情久久久久久久| 美女国产高潮福利片在线看| tube8黄色片| 色94色欧美一区二区| 免费看十八禁软件| 国产日韩一区二区三区精品不卡| 日韩中文字幕欧美一区二区| 午夜福利,免费看| 中亚洲国语对白在线视频| 精品欧美一区二区三区在线| 亚洲一区中文字幕在线| 在线观看免费视频网站a站| 18禁美女被吸乳视频| 女人精品久久久久毛片| www日本在线高清视频| 国产亚洲精品第一综合不卡| 久久人妻福利社区极品人妻图片| 日本撒尿小便嘘嘘汇集6| 久久 成人 亚洲| 老汉色∧v一级毛片| 欧美老熟妇乱子伦牲交| 老鸭窝网址在线观看| 精品久久蜜臀av无| 黄色视频在线播放观看不卡| 80岁老熟妇乱子伦牲交| 99riav亚洲国产免费| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 成年动漫av网址| 亚洲欧美一区二区三区黑人| 免费久久久久久久精品成人欧美视频| 97人妻天天添夜夜摸| 国产又色又爽无遮挡免费看| 亚洲一区二区三区欧美精品| 伦理电影免费视频| 国产精品久久久久久精品古装| 两个人免费观看高清视频| 99在线人妻在线中文字幕 | 国产精品国产av在线观看| 欧美老熟妇乱子伦牲交| 国产一区二区三区综合在线观看| 亚洲av电影在线进入| 狠狠狠狠99中文字幕| 一边摸一边抽搐一进一小说 | 99热网站在线观看| 国产成人啪精品午夜网站| 最新美女视频免费是黄的| 丁香六月欧美| 国产老妇伦熟女老妇高清| 国产视频一区二区在线看| 18禁观看日本| 日韩欧美一区二区三区在线观看 | 亚洲性夜色夜夜综合| 最黄视频免费看| 日日夜夜操网爽| 日韩免费av在线播放| 国产亚洲欧美在线一区二区| 国产精品.久久久| tocl精华| 久久精品国产综合久久久| 日本五十路高清| 精品国产一区二区三区久久久樱花| 老司机午夜十八禁免费视频| 久久精品亚洲熟妇少妇任你| 少妇被粗大的猛进出69影院| 国产色视频综合| 午夜免费鲁丝| 97在线人人人人妻| 免费观看人在逋| 一级片'在线观看视频| 下体分泌物呈黄色| 国产精品国产av在线观看| 欧美亚洲 丝袜 人妻 在线| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 国产精品久久久久成人av| 国产一区有黄有色的免费视频| 满18在线观看网站| 国产一区二区 视频在线| 黄色 视频免费看| 在线天堂中文资源库| 视频区图区小说| 女人爽到高潮嗷嗷叫在线视频| 国产精品麻豆人妻色哟哟久久| 男女下面插进去视频免费观看| 午夜久久久在线观看| 女同久久另类99精品国产91| 国产午夜精品久久久久久| 三级毛片av免费| 亚洲欧美一区二区三区久久| av欧美777| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| 日韩欧美国产一区二区入口| 交换朋友夫妻互换小说| 国精品久久久久久国模美| www.自偷自拍.com| cao死你这个sao货| 久久99热这里只频精品6学生| 18禁观看日本| 亚洲黑人精品在线| 久久99热这里只频精品6学生| 亚洲 国产 在线| 免费观看人在逋| www.精华液| 日本黄色视频三级网站网址 | 女警被强在线播放| 下体分泌物呈黄色| 亚洲精品国产精品久久久不卡| 日本wwww免费看| 日韩免费高清中文字幕av| 一区福利在线观看| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 捣出白浆h1v1| 成人三级做爰电影| 国产精品久久久久久精品古装| 91成年电影在线观看| 狂野欧美激情性xxxx| 9热在线视频观看99| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| www日本在线高清视频| 蜜桃在线观看..| 午夜精品久久久久久毛片777| 99九九在线精品视频| 国产淫语在线视频| 亚洲五月婷婷丁香| 我要看黄色一级片免费的| 两个人免费观看高清视频| 国产av又大| 成人精品一区二区免费| 久久亚洲精品不卡| 国产国语露脸激情在线看| 无限看片的www在线观看| 国产精品久久久人人做人人爽| 久久九九热精品免费| 亚洲 欧美一区二区三区| 久久精品国产a三级三级三级| 最近最新中文字幕大全免费视频| 国产高清videossex| 飞空精品影院首页| 男女下面插进去视频免费观看| 国产一区二区 视频在线| 嫩草影视91久久| 国产免费福利视频在线观看| 高潮久久久久久久久久久不卡| 日韩欧美国产一区二区入口| 亚洲av国产av综合av卡| 欧美乱码精品一区二区三区| 黄片小视频在线播放| 18禁黄网站禁片午夜丰满| 亚洲va日本ⅴa欧美va伊人久久| 18禁国产床啪视频网站| 欧美黄色淫秽网站| 婷婷成人精品国产| 亚洲一码二码三码区别大吗| 亚洲精品av麻豆狂野| 波多野结衣av一区二区av| 亚洲精华国产精华精| 精品国产乱子伦一区二区三区| 精品人妻1区二区| 纵有疾风起免费观看全集完整版| 啦啦啦视频在线资源免费观看| 国产精品麻豆人妻色哟哟久久| 超色免费av| 亚洲国产欧美网| 日韩精品免费视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 手机成人av网站| 99在线人妻在线中文字幕 | 日本撒尿小便嘘嘘汇集6| 黄色怎么调成土黄色| 在线十欧美十亚洲十日本专区| 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 久久99一区二区三区| 亚洲精品乱久久久久久| 午夜日韩欧美国产| av天堂在线播放| 亚洲精品美女久久av网站| 在线观看免费日韩欧美大片| 欧美大码av| 亚洲色图av天堂| 日韩精品免费视频一区二区三区| 香蕉丝袜av| 视频区图区小说| 男男h啪啪无遮挡| 久久人人97超碰香蕉20202| 亚洲精品粉嫩美女一区| 极品人妻少妇av视频| 亚洲av片天天在线观看| 高清视频免费观看一区二区| 午夜久久久在线观看| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影 | 成年人午夜在线观看视频| www.999成人在线观看| 在线av久久热| 精品一区二区三区视频在线观看免费 | 高清欧美精品videossex| 午夜福利,免费看| 久久精品国产99精品国产亚洲性色 | 国产91精品成人一区二区三区 | 在线永久观看黄色视频| 成人国产av品久久久| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 亚洲性夜色夜夜综合| 久久影院123| 涩涩av久久男人的天堂| 99热国产这里只有精品6| 国产精品久久久久久精品电影小说| 欧美日本中文国产一区发布| 国产高清国产精品国产三级| 亚洲欧美色中文字幕在线| 两性夫妻黄色片| 高清欧美精品videossex| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| 十八禁高潮呻吟视频| 中文欧美无线码| 国产精品久久久久成人av| 亚洲熟妇熟女久久| 亚洲欧洲日产国产| 亚洲第一av免费看| 桃花免费在线播放| 久久人人97超碰香蕉20202| 久久精品成人免费网站| 一边摸一边抽搐一进一出视频| 国产精品九九99| 成人18禁在线播放| 一个人免费看片子| 国产极品粉嫩免费观看在线| 建设人人有责人人尽责人人享有的| 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| 久久久欧美国产精品| 两人在一起打扑克的视频| 超碰97精品在线观看| 69av精品久久久久久 | 日韩人妻精品一区2区三区| 亚洲成人手机| 岛国毛片在线播放| 日本av手机在线免费观看| 久久精品aⅴ一区二区三区四区| 国产麻豆69| 999久久久精品免费观看国产| 国产成人精品无人区| 国产成人精品久久二区二区免费| 亚洲精品粉嫩美女一区| 日本av手机在线免费观看| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx| 午夜精品国产一区二区电影| 国产色视频综合| 下体分泌物呈黄色| 久久99一区二区三区| 99久久99久久久精品蜜桃| 欧美黑人欧美精品刺激| 搡老乐熟女国产| 啦啦啦免费观看视频1| 日本wwww免费看| 国产一区二区三区视频了| 一级片免费观看大全| 女人爽到高潮嗷嗷叫在线视频| 国产在线视频一区二区| 欧美大码av| 男女无遮挡免费网站观看| 色婷婷av一区二区三区视频| 男人舔女人的私密视频| 久9热在线精品视频| 在线观看66精品国产| 性色av乱码一区二区三区2| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 亚洲国产中文字幕在线视频| 午夜福利欧美成人| 日韩大片免费观看网站| 新久久久久国产一级毛片| 99精品久久久久人妻精品| 黄网站色视频无遮挡免费观看| 天天操日日干夜夜撸| 在线观看舔阴道视频| 国产午夜精品久久久久久| 丰满迷人的少妇在线观看| h视频一区二区三区| 欧美黄色淫秽网站| 丝袜喷水一区| 一本—道久久a久久精品蜜桃钙片| 中文字幕制服av| 国产黄频视频在线观看| 黄色成人免费大全| 久久精品91无色码中文字幕| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 成人永久免费在线观看视频 | 下体分泌物呈黄色| 国产精品久久久久久人妻精品电影 | 99国产精品免费福利视频| 久久久久精品国产欧美久久久| 国产在线观看jvid| 国产精品亚洲av一区麻豆| 国产深夜福利视频在线观看| 在线观看免费午夜福利视频| 女人被躁到高潮嗷嗷叫费观| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 一边摸一边抽搐一进一出视频| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 国产精品.久久久| 国产精品电影一区二区三区 | 最黄视频免费看| 妹子高潮喷水视频| 制服诱惑二区| 欧美日韩亚洲高清精品| 香蕉国产在线看| 激情视频va一区二区三区| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽 | 久久影院123| 另类亚洲欧美激情| 久久久久精品国产欧美久久久| 欧美黑人精品巨大| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 一本一本久久a久久精品综合妖精| 成人手机av| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 窝窝影院91人妻| 国产欧美亚洲国产| 热re99久久国产66热| 女性生殖器流出的白浆| 99九九在线精品视频| 色94色欧美一区二区| 美女福利国产在线| 黑丝袜美女国产一区| 一区二区三区国产精品乱码| 国产成人精品在线电影| 香蕉久久夜色| 亚洲av第一区精品v没综合| 国产精品久久久久成人av| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 久久亚洲真实| 精品少妇一区二区三区视频日本电影| 黄片大片在线免费观看| 亚洲精品在线美女| 成人黄色视频免费在线看| 动漫黄色视频在线观看| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 美女主播在线视频| 韩国精品一区二区三区| 国产精品亚洲av一区麻豆| 久久久国产欧美日韩av| 高清av免费在线| 一区福利在线观看| 中文字幕最新亚洲高清| 国产精品二区激情视频| 国产成人免费无遮挡视频| 岛国毛片在线播放| 在线观看舔阴道视频| 精品国产乱码久久久久久男人| 咕卡用的链子| 国产人伦9x9x在线观看| 亚洲,欧美精品.| 青青草视频在线视频观看| 中文字幕人妻丝袜一区二区| 免费一级毛片在线播放高清视频 | 岛国在线观看网站| 久久亚洲真实| 天堂俺去俺来也www色官网| 欧美精品一区二区免费开放| 中文字幕制服av| 久久久精品国产亚洲av高清涩受| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 欧美精品高潮呻吟av久久| 成年女人毛片免费观看观看9 | 99精品欧美一区二区三区四区| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 汤姆久久久久久久影院中文字幕| 美女视频免费永久观看网站| 老司机午夜十八禁免费视频| 欧美在线黄色| 正在播放国产对白刺激| 国产精品二区激情视频| 亚洲成人手机| 在线看a的网站| 水蜜桃什么品种好| 久久午夜亚洲精品久久| 亚洲av成人不卡在线观看播放网| 亚洲国产av影院在线观看| 亚洲美女黄片视频| √禁漫天堂资源中文www| 宅男免费午夜| 久久国产亚洲av麻豆专区| 99精国产麻豆久久婷婷| 激情在线观看视频在线高清 | 国产aⅴ精品一区二区三区波| 欧美激情 高清一区二区三区| 高潮久久久久久久久久久不卡| 大香蕉久久网| 又黄又粗又硬又大视频| 午夜福利在线观看吧| 丰满饥渴人妻一区二区三| 久久久国产成人免费| 伊人久久大香线蕉亚洲五| 亚洲成a人片在线一区二区| 巨乳人妻的诱惑在线观看| 国产亚洲午夜精品一区二区久久| 欧美黑人欧美精品刺激| xxxhd国产人妻xxx| 亚洲av美国av| 人人妻人人澡人人看| 亚洲熟女毛片儿| 麻豆国产av国片精品| 欧美+亚洲+日韩+国产| 国产精品亚洲av一区麻豆| 成年动漫av网址| 最新美女视频免费是黄的| 黄色视频不卡| 一本久久精品| 母亲3免费完整高清在线观看| 国产亚洲一区二区精品| 一区二区av电影网| 天天影视国产精品| 91大片在线观看| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 最近最新免费中文字幕在线| 成人av一区二区三区在线看| 国产区一区二久久| 日韩欧美一区视频在线观看| 精品国内亚洲2022精品成人 | 夜夜爽天天搞| 丝袜在线中文字幕| 一本色道久久久久久精品综合| 日韩欧美一区视频在线观看| 啦啦啦中文免费视频观看日本| 极品教师在线免费播放| 一二三四在线观看免费中文在| 成人手机av| 99久久人妻综合| 欧美成人免费av一区二区三区 | 亚洲av日韩精品久久久久久密| 无限看片的www在线观看| 色精品久久人妻99蜜桃| 纯流量卡能插随身wifi吗| 一本色道久久久久久精品综合| 欧美变态另类bdsm刘玥| 免费一级毛片在线播放高清视频 | 久久久精品区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 精品视频人人做人人爽| 91老司机精品| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费视频日本深夜| 视频区图区小说| 欧美在线黄色| 精品国产乱子伦一区二区三区| 99精国产麻豆久久婷婷| 亚洲欧美日韩另类电影网站| 午夜老司机福利片| avwww免费| 精品国产乱子伦一区二区三区| 精品国产一区二区三区久久久樱花| 欧美日韩精品网址| 免费在线观看黄色视频的| 国产一区有黄有色的免费视频| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸| 国产精品久久久久久精品电影小说| 久久午夜亚洲精品久久| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线不卡| 91成年电影在线观看| 9热在线视频观看99| 国产欧美日韩一区二区精品| 在线观看一区二区三区激情| 国产日韩一区二区三区精品不卡| 极品教师在线免费播放| 女同久久另类99精品国产91| 老司机午夜十八禁免费视频| 另类亚洲欧美激情| 99久久99久久久精品蜜桃| 亚洲国产欧美一区二区综合| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 国产欧美亚洲国产| 曰老女人黄片| 亚洲人成电影免费在线| 精品一品国产午夜福利视频| 久久 成人 亚洲| 国产成人精品无人区| 丝袜在线中文字幕| 午夜激情久久久久久久| 国产欧美亚洲国产| 久久久久网色| 日韩有码中文字幕| av欧美777| 啦啦啦视频在线资源免费观看| 99国产精品一区二区蜜桃av | 久久久国产精品麻豆| 一边摸一边抽搐一进一出视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产看品久久| 日日夜夜操网爽| 男女下面插进去视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 2018国产大陆天天弄谢| 女人久久www免费人成看片| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区| 999精品在线视频| 免费在线观看黄色视频的| 日韩制服丝袜自拍偷拍| 日本一区二区免费在线视频| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 精品视频人人做人人爽| 在线观看免费高清a一片| a级毛片在线看网站| 亚洲专区中文字幕在线| 免费av中文字幕在线| 午夜福利免费观看在线| 国产精品免费视频内射| 精品久久久久久电影网| 国产91精品成人一区二区三区 | 亚洲av国产av综合av卡| 亚洲美女黄片视频| 亚洲欧美日韩高清在线视频 | 婷婷成人精品国产| 高清av免费在线| 成人免费观看视频高清| 侵犯人妻中文字幕一二三四区| 99热网站在线观看| 亚洲第一青青草原| 免费在线观看视频国产中文字幕亚洲| 亚洲天堂av无毛| 成年动漫av网址| 大片免费播放器 马上看| 中国美女看黄片| 丁香六月天网| 黄片播放在线免费| 国产成人精品无人区| 伊人久久大香线蕉亚洲五| 中文字幕最新亚洲高清| 黄频高清免费视频| 国产欧美日韩一区二区三区在线| 免费av中文字幕在线| 久久中文字幕人妻熟女| 欧美亚洲日本最大视频资源| 午夜激情久久久久久久| 成人亚洲精品一区在线观看| 建设人人有责人人尽责人人享有的| 少妇的丰满在线观看| 精品人妻熟女毛片av久久网站| 欧美日韩av久久| 性少妇av在线| www.999成人在线观看| 9热在线视频观看99| 精品久久久久久电影网| 男女床上黄色一级片免费看| 欧美激情久久久久久爽电影 | 亚洲av第一区精品v没综合| 精品少妇一区二区三区视频日本电影| 成年人黄色毛片网站| 18禁观看日本| 夜夜夜夜夜久久久久| avwww免费| 天堂8中文在线网| 露出奶头的视频| 欧美激情久久久久久爽电影 | 中文字幕最新亚洲高清| 国产一区二区三区综合在线观看| 欧美日韩国产mv在线观看视频| 交换朋友夫妻互换小说| 欧美日韩黄片免| 国产区一区二久久| 国产免费av片在线观看野外av| 亚洲精品久久午夜乱码| 极品教师在线免费播放| 亚洲欧美精品综合一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久久国产欧美日韩av| av一本久久久久| 亚洲中文av在线| 亚洲va日本ⅴa欧美va伊人久久| 嫁个100分男人电影在线观看|