• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigating fatigue behavior of gear components with the acoustic emission technique

    2014-08-08 11:23:41SHIPengfei石鵬飛HUANGJie黃杰
    關(guān)鍵詞:鵬飛

    SHI Peng-fei(石鵬飛), HUANG Jie(黃杰)

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2.The Second Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China)

    Investigating fatigue behavior of gear components with the acoustic emission technique

    SHI Peng-fei(石鵬飛)1,2, HUANG Jie(黃杰)

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2.The Second Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China)

    A novel method is presented to evaluate the complicated fatigue behavior of gears made of 20Cr2Ni4A. Fatigue tests are conducted in a high-frequency push-pull fatigue tester, and acoustic emission (AE) technique is used to acquire metal fatigue signals. After analyzing large number of AE frequency spectrum, we find that: the crack extension can be expressed as the energy of specific frequency band, which is abbreviated as F-energy. To further validate the fatigue behavior, some correlation analysis is applied between F-energy and some AE parameters. Experimental results show that there is significant correlation among the F-energy, root mean square (RMS), relative energy, and hits. The findings can be used to validate the effectiveness of the F-energy in predicting fatigue crack propagation and remaining life for parts in-service. F-energy, as a new AE parameter, is first put forward in the area of fatigue crack growth.

    acoustic emission; fatigue crack growth; multiple cracks; life prediction; damage accumulation

    Metal parts are subjected to fatigue in their service lives. The application of alternate loading, environmental factor and the ageing of structure may all cause fatigue cracks. Fatigue problems in mechanical, aerospace, civil construction and other industries will bring huge damages if without any prior warning. Hence, the critical issue is how to assess fatigue crack extension of the parts effectively.

    In the past five decades, acoustic emission (AE) has been widely used as an effective non-destructive technique to monitor fatigue cracks of metal components in structures such as aircraft[1-2], steel bridges[3-4], pipelines and pressure vessels[5]. AE are essentially elastic stress waves, generated by a rapid release of energy from a localized source within a stressed material[6-7].

    Research findings of metal fatigue crack extension are mainly in two aspects at present. First, describe the fatigue damage process of varieties of parts using hits rate, counts rate, and relative energy rate. Crack closure of LY12CZ aluminum alloy during fatigue process and correlation between AE and crack growth in landing gears using AE parameters were investigated[8-9]. Second, calculate the crack growth rate of certain specimen using empirical equation, which is similar to Paris-Erdogan equation[10]. Researchers have developed different theoretical models to simulate crack growth rate for fatigue life prediction. Jianguo Yu and Paul Ziehl argued AE relative energy rate may be more reasonable than AE counts rate[4]. Moreover, Refahi Oskouei and Zucchelli used cumulative AE event energy, too[11].

    However, relative energy or other AE parameters are too subjective and these parameters are affected by the value of threshold[12-13]. Moreover, the previous studies performed fatigue experiments using standard specimens with pre-crack and actual parts were used barely[14-15]. Almost nobody takes actual parts to perform fatigue test because it is difficult to measure micro and macro cracks. While significant work has been directed at standard specimens to describe the fatigue cracks propagation, significantly less effort has been placed on method for actual parts. In this study a new fatigue damage evaluation methodology for actual gears is applied to describe its complicated fatigue behavior. The next section presents the AE energy formula on specific frequency range, which is abbreviated as F-energy. Then, the bending fatigue test and AE monitoring procedures are described in section 2. The trends of the F-energy in comparison to RMS, relative energy and hits together with the correlation analysis demonstrate that it can describe the fatigue behavior of testing gears effectively.

    1 Theoretical model

    1.1 Theoretical analysis

    Common practice suggests that defects exist in surface and internal area of metal materials, and stress highly centralizes at alternating load region. Consequently, elastic energy of crack extension is released dramatically in the form of acoustic wave. Previous studies argued that an AE wave is similar to a damped real sinusoid[16]. In fact, AE signals acquired are a superposition of multiple event sources, and can be expressed as

    (1)

    whereVis instantaneous voltage,Viis the peak of AE event, βiistheattenuationfactor,andωiistheAEeventfrequency.Eq.(1)showsthatAEsignalsofcrackgrowthhaveabundantanddifferentωi.Therefore,thecharacteristicparametertodescribefatiguebehaviormustbeafunctionoffrequencies.

    1.2F-energycomputationmethod

    EnergyofAEsignalwithonlyonesourcesatisfies:

    (2)

    wherefis time domain signals,Fis frequency domain signals after fast Fourier transform. If specific frequency for fatigue cracks extension ranges from ωdtoωu,theenergyis

    (3)

    TheF-energy,superposedbymultipleAEsources,canbecalculatedby

    (4)

    whereFestands for F-energy.

    For fatigue testin next section, frequencies from ωdtoωustandforthespecificfrequencyrangeoffatiguecracksextension.AfterprocessinghugeAEsignalsandstatisticalanalysis,thevaluesofωdandωuwillbeacquired.TheF-energyisequivalenttoenergyofAEsignalsaftertheband-passfilter.Previousfindingssupporttheviewpointthatrelativeenergycouldrepresentfatiguebehaviorofmetalpartsaswell.However,relativeenergy,comparedwiththeF-energy,mayincludemanynoises.Sothenewparameter,F-energy,maydescribefatiguebehaviorofactualpartstrulyandvalidly.

    2 Experimentaldetails

    2.1Bendingfatiguetestprocedures

    FatiguetestwasperformedonaLG-300CfatiguetestingmachinemadeinChinawithsinusoidalloadatstressratio, R,andfrequencyof100Hzinambientlaboratoryair(temperature: 20 ℃).Alltestinggearsweresuppliedinthestandardheattreatmentconditionandwiththesamechemicalcompositionsof20Cr2Ni4A.Thebiggestdifferencefrompreviousexperimentalconditionisthatalltestinggearsareactualcomponents.Andthetestinggearwassetatspecificfixture,whichislikethethreadedconnection.Wetooksevengearstoperformfatiguetestandallofthemhadbrokenteethattheendoftest.TheloadingparametersaregiveninTab.1,whereFaistheappliedalternantload,andFmistheappliedmeanload.

    Tab.1 Value ofFa,FmandR

    2.2 Acoustic emission monitoring

    The instrument designed by Physical Acoustic Corporation(USA) was employed to detect and record AE signals. A preamplifier with 40 dB gain and a band-pass filter were used to acquire AE signals associated with fatigue crack extension. The AE data was captured and displayed through a 2-channel AEWIN for PCI-2 system. Sample rate was set at 2 Msps. The threshold of each AE channel was 60 dB (hits below the specified amplitude are not recorded). In this condition, extraneous noise is minimized and genuine AE data still allow for collection.

    2.3 Noise analysis

    There are two kinds of background noise. One is mechanical noise, which is caused by impact or friction between objects. Another one is electromagnetic noise, which is due to electrostatic induction or electromagnetic induction. The AE signals, which are different from noise, are mainly in two aspects. The frequency band of AE signals for metal fatigue is between 110 kHz-550 kHz, but noise is below 100 Hz. And waves of the two have big different, too. Therefore, we can obtain specific frequency range for fatigue clearly.

    3 Discussion and results

    3.1 Acquiring specific frequency range

    In this section, specific frequency range will be acquired from analysis of theoretical mode in section 1 and experimental AE data in section 2. Fig.1 and Fig.2 show the AE time domain and frequency domain signals of typical fatigue crack propagation. The amplitude makes an instantaneous jump at about 420 μs, when the amplitude approaches to 0.02 V, as illustrated in Fig.1. From Fig.2, the amplitude centralizes mainly between 100 kHz and 400 kHz. So we may draw a preliminary conclusion: the specific frequency band of gear bending fatigue crack growth is about 100 kHz-400 kHz. Previous research also shows that AE signals of fatigue crack propagation or fracture of general metal materials are a kind of band-width signals.

    Fig.1 Time domain wave of crack extension

    Fig.2 Frequency domain wave of crack extension

    To acquire the specific frequency range accurately, all AE hits (almost 9 000) of gear B are averaged up in the frequency domain, as illustrated in Fig.3. The blue line represents 2% of maximum power. From the viewpoint in vibration, the value less than 2% or 5% of peak vibration could be considered as zero. The area above the blue line accounts for around 79% of total. This zone includes most of energy and contains all fatigue information as well. So we know that the energy of frequency in this frequency range could be used to describe fatigue cracks growth of gears effectively. Points of intersection between the power spectrum curve and the blue line belongs to the specific frequency range. If we apply this method to other gears, more accurate specific frequency band, which ranges from 116 kHz to 356 kHz, will be obtained.

    Fig.3 Average power of gear B

    3.2 Description of fatigue crack propagation

    The most widely used AE signal parameters are hits, counts, amplitude, relative energy, RMS, duration and rising time[17]. And the characteristics of AE are useful for damage evaluation of in-service parts in previous research. The critical period which can indicate crack growth from the stage of stable propagation to the stage of unstable propagation may be easily obtained by the trend of AE parameters.

    Accumulated RMS, relative energy, hits and F-energy are displayed in Figs.4-5 for gear A, and in Figs.6-7 for gear B. The F-energy follows extremely similar trends to RMS, relative energy and hits as the load time increase both for gear A and B. Note that the accumulated F-energy, RMS, relative energy and hits determine the same critical period of crack propagation. For gear A, the critical period is from 1 714 s to 1 767 s. Before 1 714 s, the four parameters increase steady and after 1 767 s, the four increase rather dramatically. For gear B, the critical period is from 1 585 s to 2 332 s. Before 1 585 s, the four characteristic values increase steady and after 2 332 s, the four grow rather dramatically. The trends of the four parameters for gears C, D, E, F and G are not given because the situations are exactly alike.

    Fig.4 Two parameters of AE signals for gear A

    Fig.5 Another two parameters of AE signals for gear A

    Fig.6 Two parameters of AE signals for gear B

    Fig.7 Another two parameters of AE signals for gear B

    In the next section, the correlations and linear regression analysis between the F-energy and another three parameters will be used for further exploring.

    3.3 Correlation coefficient analysis

    The linear regression and correlation analysis are performed to determine the degree of linear association between two different variables. We actually call itrhere, andris calculated by the Pearson method. Generally, two variables have significant correlation ifr>0.95, high correlation if 0.95>r>0.8, moderate correlation if 0.8>r>0.5, and low correlation or uncorrelated ifr<0.5.

    Tab.2 shows the correlation coefficient,r, among the accumulated F-energy, RMS, relative energy, and hits of seven AE datasets from all testing gears. From Tab.2, almost all thervalues are greater than 0.8, showing that the F-energy is in good linear correlativity with other three parameters. In particular, correlation coefficient between the F-energy and relative energy is more than 0.99, which indicate significant correlation from the view of energy. Because of threshold and low noise level of experimental environment, the values between the F-energy and relative energy are approximate, as illustrated in Fig.4, Fig.5, Fig.6, and Fig.7.

    Tab.2 Correlation coefficientramong AE

    4 Conclusions

    This paper presented and verified a new fatigue damage evaluation method based on AE signals in frequency domain. The specific frequency range of bending fatigue cracks propagation was acquired through frequency domain analysis and the fruit was validated subsequently. The value of the F-energy was obtained by integrating the power spectrum in this frequency band. The growth trends of the F-energy in comparison to RMS, relative energy and hits together with the correlation analysis demonstrated that the method can describe the fatigue behavior of testing gears effectively. Based on this study, the following conclusions can be drawn:

    ①There is significant correlation between the accumulated F-energy curve and the accumulated relative energy, hits, RMS curves. Moreover, the time which distinguished the fatigue growth stage from stable propagation to unstable propagation of the four parameters is going to be identical. Therefore, the F-energy can describe fatigue crack extension as well. However, RMS, relative energy and hits are restricted subjectively by setting threshold, and relative energy will include some noises inevitably. Consequently, the F-energy is found to be more suitable to the fatigue state monitoring of metal components.

    ②Previous researchers usually performed experiments using standard specimens with pre-crack. Very few of them conducted fatigue test using actual parts. The method may be effective for field conditions to monitor fatigue damage and evaluate remaining life for in-service parts.

    ③Usually, the fatigue crack growth of actual parts in-service is extremely complicated. Tiny cracks may appear inside or on the surface of parts and they could not be measured validly. This problem will be paid significant attention in the future.

    [1] Eaton M J, Pullin R, Hensman J J, et al. Principal component analysis of acoustic emission signals from landing gear components: an aid to fatigue fracture detection [J]. Strain, 2011, 47:588-594.

    [2] McBride S L, Hong Y, Pollard M. Enhanced fatigue crack detection in ageing aircraft using continuous acoustic emission [J]. Review Progress Quanty Nondestructive Evaluation, 1993, 12:2191-2197.

    [3] Gong Z, Nyborg E O, Oommen G. Acoustic emission monitoring of steel railroad bridges [J]. Materials Evaluation, 1992,50(7):883-887.

    [4] Yu J G, Ziehl P, Zarate B, et al. Prediction of fatigue crack growth in steel in bridge components using acoustic emission [J]. Journal of Constructional Steel Research, 2011,67(8):1254-1260.

    [5] Fowler T J. Chemical industry application of acoustic emission [J]. Materials Evaluation, 1992,50:875-882.

    [6] Milos J, Robert K, Patrik D, et al. Mechanisms of plastic deformation in AZ31 magnesium alloy investigated by acoustic emission and transmission electron microscopy [J]. Materials Science Engineering A, 2007,462(1-2):311-315.

    [7] Han Z Y, Luo H Y, Wang H W. Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds [J]. Materials Science Engineering A, 2001,528(25-26):4372-4380.

    [8] Chang H, Han E H, Wang J Q, et al. Acoustic emission study of fatigue crack closure of physical short and long cracks for aluminum alloy LY12CZ [J]. International Journal of Fatigue, 2009,31(3):403-407.

    [9] Pullin R, Eaton M J, Hensman J J, et al. Validation of acoustic emission (AE) crack detection in aerospace grade steel using digital image correlation [J]. Applied Mechanics and Materials, 2010, 24-25:221-226.

    [10] Kohn D H, Ducheyne P, Awerbuch J. Acoustic emission during fatigue of TI-6AL-4V incipient fatigue crack detection limits and generalized data analysis methodology [J]. Journal of Materials Science, 1992,27(12):3133-3142.

    [11] Refahi O A, Zucchelli A, Ahmadi M, et al. An integrated approach based on acoustic emission and mechanical information to evaluate the delamination fracture toughness at mode I in composite laminate [J]. Materials and Design, 2011, 32(3):1444-1455.

    [12] Bassim M N, Lawrence S S, Liu C D. Detection of the onset of fatigue crack growth in rail steels using acoustic emission [J]. Engineering Fracture Mechanics, 1994,47(2):207-214.

    [13] Berkovits A, Fang D. Study of fatigue crack characteristics by acoustic emission [J]. Engineering Fracture Mechanics, 1995,51(3):401-416.

    [14] Oh K H, Jung C K, Yang Y C, et al. Acoustic emission behavior during fatigue crack propagation in 304 stainless steel [J]. Key Engineering Materials, 2004, 261-263:1325-1330.

    [15] Chen H L, Choi J H. Acoustic emission study of fatigue cracks in materials used for AVLB [J]. Journal of Nondestructive Evaluation, 2004,23(4):133-151.

    [16] Kanji O. Fundamentals of acoustic emission [M]. Los Angeles: University of California Press, 1979.

    [17] Roberts T M, Talebzadeh M. Acoustic emission monitoring of fatigue crack Propagation [J]. Journal of Constructional Steel Research, 2003,59(6):695-712.

    (Edited by Cai Jianying)

    2013- 01- 31

    Supported by the National Natural Science Foundation of China (50975030)

    TH 17 Document code: A Article ID: 1004- 0579(2014)02- 0190- 06

    E-mail: bit_huangjie@bit.edu.cn

    猜你喜歡
    鵬飛
    樊應(yīng)舉
    漫畫(huà)
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    執(zhí)“迷”不悟
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    漫畫(huà)
    粗看“段”,細(xì)看“端”
    漫畫(huà)
    人人妻人人澡人人爽人人夜夜 | 国产成人精品福利久久| av在线天堂中文字幕| 亚洲av成人精品一二三区| 全区人妻精品视频| 国产视频内射| 在线播放无遮挡| 五月天丁香电影| 日韩欧美精品免费久久| 日韩伦理黄色片| 亚洲乱码一区二区免费版| 小蜜桃在线观看免费完整版高清| 久久韩国三级中文字幕| 深爱激情五月婷婷| 亚洲欧洲国产日韩| 国产精品国产三级专区第一集| 狠狠精品人妻久久久久久综合| 亚洲欧美清纯卡通| 我要看日韩黄色一级片| 久久99精品国语久久久| 亚洲av日韩在线播放| 在线播放无遮挡| 久久久欧美国产精品| 欧美变态另类bdsm刘玥| 亚洲国产成人一精品久久久| 亚洲精品日本国产第一区| 国产老妇伦熟女老妇高清| 国产精品一区www在线观看| a级毛色黄片| 亚洲成人一二三区av| 日韩一区二区三区影片| 国产精品一二三区在线看| 最后的刺客免费高清国语| 成人性生交大片免费视频hd| 蜜桃亚洲精品一区二区三区| 成年av动漫网址| 久久草成人影院| 免费少妇av软件| 国产成人一区二区在线| 国产老妇女一区| 在线观看av片永久免费下载| 国产成人精品福利久久| 亚洲天堂国产精品一区在线| 肉色欧美久久久久久久蜜桃 | 少妇人妻精品综合一区二区| 插逼视频在线观看| 亚洲在线观看片| 国产69精品久久久久777片| 亚洲欧美日韩东京热| 床上黄色一级片| 欧美成人午夜免费资源| 久久午夜福利片| 国产高清有码在线观看视频| 青春草亚洲视频在线观看| 一个人免费在线观看电影| 天美传媒精品一区二区| 一级a做视频免费观看| ponron亚洲| 国产人妻一区二区三区在| 我要看日韩黄色一级片| 亚洲av.av天堂| 干丝袜人妻中文字幕| 亚洲国产最新在线播放| 2021少妇久久久久久久久久久| 最近手机中文字幕大全| 久久久久九九精品影院| 一本久久精品| 嫩草影院新地址| 国语对白做爰xxxⅹ性视频网站| 91久久精品国产一区二区成人| 91午夜精品亚洲一区二区三区| 婷婷色综合www| 一个人免费在线观看电影| 听说在线观看完整版免费高清| 国产黄色免费在线视频| 免费av不卡在线播放| 一个人看的www免费观看视频| 三级经典国产精品| 国产单亲对白刺激| 国产黄色免费在线视频| 国产精品一区二区性色av| 免费黄频网站在线观看国产| 国产精品久久久久久av不卡| 国产亚洲最大av| 美女主播在线视频| 啦啦啦韩国在线观看视频| 91精品一卡2卡3卡4卡| 亚洲av不卡在线观看| 男人舔奶头视频| 亚洲三级黄色毛片| 亚洲丝袜综合中文字幕| 国产成人a区在线观看| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 日日啪夜夜撸| 亚洲自偷自拍三级| 少妇猛男粗大的猛烈进出视频 | 午夜精品国产一区二区电影 | 99热6这里只有精品| 偷拍熟女少妇极品色| 亚洲国产精品成人综合色| 综合色丁香网| 婷婷六月久久综合丁香| 一个人看视频在线观看www免费| 男女国产视频网站| 午夜福利视频精品| 免费观看的影片在线观看| 亚洲高清免费不卡视频| 精品人妻熟女av久视频| 欧美高清性xxxxhd video| 亚洲精华国产精华液的使用体验| 伊人久久国产一区二区| 精品久久久久久久久久久久久| 精品人妻一区二区三区麻豆| 亚洲无线观看免费| 男女啪啪激烈高潮av片| 搡女人真爽免费视频火全软件| av一本久久久久| 日韩强制内射视频| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 婷婷色综合www| 麻豆乱淫一区二区| 亚洲av电影不卡..在线观看| 欧美成人精品欧美一级黄| 中文乱码字字幕精品一区二区三区 | 69av精品久久久久久| 中国美白少妇内射xxxbb| 久久精品国产亚洲av涩爱| 国产老妇女一区| 精品一区二区免费观看| 搡老妇女老女人老熟妇| 简卡轻食公司| 午夜精品在线福利| av女优亚洲男人天堂| 亚洲av成人av| 亚洲图色成人| 亚洲三级黄色毛片| 看免费成人av毛片| 午夜福利在线观看免费完整高清在| 永久网站在线| 赤兔流量卡办理| 日韩三级伦理在线观看| 国产成人精品久久久久久| 久久久久国产网址| 国产精品99久久久久久久久| 国产一区二区三区综合在线观看 | 搡老乐熟女国产| 亚洲欧洲日产国产| 最近中文字幕高清免费大全6| 九色成人免费人妻av| 国产亚洲91精品色在线| av一本久久久久| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 人人妻人人澡人人爽人人夜夜 | 超碰av人人做人人爽久久| 国产老妇伦熟女老妇高清| 午夜激情福利司机影院| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 国产91av在线免费观看| 精品久久久久久久久久久久久| 青春草国产在线视频| 亚洲欧美日韩无卡精品| 黄片无遮挡物在线观看| 免费电影在线观看免费观看| 国产亚洲91精品色在线| 国国产精品蜜臀av免费| 大片免费播放器 马上看| 丰满乱子伦码专区| 美女被艹到高潮喷水动态| 99久久人妻综合| 又黄又爽又刺激的免费视频.| 久久这里有精品视频免费| 国产亚洲精品av在线| av在线蜜桃| 哪个播放器可以免费观看大片| 亚洲成人中文字幕在线播放| 午夜福利高清视频| 亚洲在线观看片| 少妇的逼水好多| 亚洲色图av天堂| 精品熟女少妇av免费看| 免费看a级黄色片| 亚洲欧洲日产国产| 欧美日韩国产mv在线观看视频 | 久久久久久久久中文| 十八禁国产超污无遮挡网站| 欧美xxxx性猛交bbbb| 免费观看精品视频网站| av网站免费在线观看视频 | 你懂的网址亚洲精品在线观看| 神马国产精品三级电影在线观看| 国产亚洲午夜精品一区二区久久 | 青春草国产在线视频| 日日摸夜夜添夜夜添av毛片| av网站免费在线观看视频 | 久久精品国产亚洲网站| a级一级毛片免费在线观看| av在线蜜桃| 久久国产乱子免费精品| 五月玫瑰六月丁香| 亚洲四区av| 亚洲丝袜综合中文字幕| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 99热6这里只有精品| 国产又色又爽无遮挡免| 大陆偷拍与自拍| 日韩精品有码人妻一区| 国产成人福利小说| 日韩亚洲欧美综合| 欧美精品国产亚洲| av天堂中文字幕网| av网站免费在线观看视频 | videossex国产| av在线老鸭窝| 亚洲欧美一区二区三区黑人 | 日日撸夜夜添| 五月天丁香电影| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| 亚洲精品久久久久久婷婷小说| xxx大片免费视频| 日本欧美国产在线视频| 中文在线观看免费www的网站| 中文字幕av在线有码专区| 九九在线视频观看精品| 街头女战士在线观看网站| 五月玫瑰六月丁香| 久久久久九九精品影院| 午夜亚洲福利在线播放| 午夜福利网站1000一区二区三区| 国产黄频视频在线观看| 亚洲欧美精品专区久久| 最近最新中文字幕免费大全7| a级毛片免费高清观看在线播放| 午夜老司机福利剧场| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| av又黄又爽大尺度在线免费看| 精品一区二区三区视频在线| 秋霞伦理黄片| 免费观看av网站的网址| 久久久久久国产a免费观看| 午夜激情欧美在线| 美女高潮的动态| 乱人视频在线观看| 五月天丁香电影| 亚洲av在线观看美女高潮| 日韩在线高清观看一区二区三区| 寂寞人妻少妇视频99o| 最新中文字幕久久久久| 色综合亚洲欧美另类图片| 99九九线精品视频在线观看视频| 日韩亚洲欧美综合| 国产高清三级在线| 老司机影院毛片| 久久久成人免费电影| 男插女下体视频免费在线播放| 熟妇人妻不卡中文字幕| 欧美激情国产日韩精品一区| 麻豆久久精品国产亚洲av| 国产一级毛片七仙女欲春2| 国产麻豆成人av免费视频| 色视频www国产| 97超碰精品成人国产| 男女边摸边吃奶| 又大又黄又爽视频免费| 美女国产视频在线观看| 一级毛片黄色毛片免费观看视频| 国产乱人视频| 精品午夜福利在线看| 大香蕉97超碰在线| 亚洲av在线观看美女高潮| 久久精品国产亚洲av涩爱| 亚洲精品乱码久久久久久按摩| 日韩三级伦理在线观看| 卡戴珊不雅视频在线播放| 亚洲欧美一区二区三区国产| 国产乱人偷精品视频| 欧美不卡视频在线免费观看| 日韩人妻高清精品专区| 久久久久久久久久黄片| 少妇裸体淫交视频免费看高清| 天美传媒精品一区二区| 亚洲在线观看片| 网址你懂的国产日韩在线| 七月丁香在线播放| 99久国产av精品国产电影| av在线老鸭窝| 亚洲自拍偷在线| 亚洲婷婷狠狠爱综合网| 亚洲国产精品国产精品| 久久久欧美国产精品| 夜夜看夜夜爽夜夜摸| 精品国产露脸久久av麻豆 | 女人被狂操c到高潮| 搞女人的毛片| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月| 色视频www国产| av专区在线播放| 男女边摸边吃奶| 女人十人毛片免费观看3o分钟| 高清在线视频一区二区三区| 夫妻性生交免费视频一级片| av网站免费在线观看视频 | 日韩av在线大香蕉| 直男gayav资源| 精品一区二区三区人妻视频| av又黄又爽大尺度在线免费看| 听说在线观看完整版免费高清| 亚洲欧美日韩无卡精品| 日韩大片免费观看网站| 日本wwww免费看| 国产午夜精品一二区理论片| 国产高清不卡午夜福利| 人人妻人人澡欧美一区二区| 一级a做视频免费观看| 亚洲精品成人av观看孕妇| 国产亚洲精品av在线| 国产真实伦视频高清在线观看| 偷拍熟女少妇极品色| 亚洲成人一二三区av| 国产久久久一区二区三区| 最近手机中文字幕大全| 丝瓜视频免费看黄片| 日本黄大片高清| xxx大片免费视频| 亚洲国产色片| 亚洲丝袜综合中文字幕| 亚洲欧美一区二区三区黑人 | 91精品一卡2卡3卡4卡| 国产一级毛片七仙女欲春2| av在线亚洲专区| 久久99精品国语久久久| 日韩av在线大香蕉| 欧美丝袜亚洲另类| 久久久久久久久大av| 亚洲熟妇中文字幕五十中出| 日韩欧美精品免费久久| 中文字幕制服av| 中文字幕免费在线视频6| 欧美性猛交╳xxx乱大交人| 日日撸夜夜添| 一区二区三区四区激情视频| 午夜免费激情av| 午夜久久久久精精品| 人妻夜夜爽99麻豆av| 国产高清国产精品国产三级 | av黄色大香蕉| 小蜜桃在线观看免费完整版高清| h日本视频在线播放| 99久国产av精品| 久久久久国产网址| 久久热精品热| 色综合色国产| 中文字幕久久专区| 亚洲成人av在线免费| 日本猛色少妇xxxxx猛交久久| 99久久精品国产国产毛片| 久久精品熟女亚洲av麻豆精品 | 日韩一本色道免费dvd| 99九九线精品视频在线观看视频| 午夜福利成人在线免费观看| www.av在线官网国产| 欧美日韩在线观看h| 欧美性猛交╳xxx乱大交人| 美女内射精品一级片tv| 免费看日本二区| 成年av动漫网址| 欧美最新免费一区二区三区| 亚洲怡红院男人天堂| 色播亚洲综合网| 国产午夜精品一二区理论片| 国内揄拍国产精品人妻在线| 性色avwww在线观看| 亚洲av电影不卡..在线观看| 免费观看av网站的网址| or卡值多少钱| 精品久久久久久久久久久久久| 纵有疾风起免费观看全集完整版 | 日日撸夜夜添| 免费看a级黄色片| 亚洲国产精品成人综合色| 精品人妻一区二区三区麻豆| 精品国产露脸久久av麻豆 | 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 亚洲精品视频女| 国产亚洲av嫩草精品影院| 国产成人精品福利久久| 国产黄a三级三级三级人| 久久精品国产亚洲av天美| 国产爱豆传媒在线观看| 久久97久久精品| 18禁动态无遮挡网站| av在线蜜桃| 国产综合精华液| 精品久久久久久成人av| 日韩一本色道免费dvd| 在线观看免费高清a一片| 日韩电影二区| 国产一区二区三区av在线| 高清欧美精品videossex| 午夜免费观看性视频| 日韩欧美精品v在线| 久久97久久精品| 国产大屁股一区二区在线视频| 午夜福利网站1000一区二区三区| 久久综合国产亚洲精品| 国产精品一区www在线观看| 激情 狠狠 欧美| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线 | 国产黄a三级三级三级人| 欧美丝袜亚洲另类| 久久久久久久久中文| 尾随美女入室| 美女主播在线视频| 久久久色成人| 伦精品一区二区三区| 亚洲国产高清在线一区二区三| 中文字幕av成人在线电影| 一区二区三区免费毛片| 欧美人与善性xxx| 丰满乱子伦码专区| 夜夜爽夜夜爽视频| 日韩精品有码人妻一区| 国产69精品久久久久777片| 九九在线视频观看精品| 淫秽高清视频在线观看| 亚洲国产成人一精品久久久| 亚洲av日韩在线播放| 日本免费a在线| 少妇熟女欧美另类| 菩萨蛮人人尽说江南好唐韦庄| 亚洲婷婷狠狠爱综合网| 国产一区有黄有色的免费视频 | 亚洲欧洲国产日韩| 精品人妻熟女av久视频| 国产熟女欧美一区二区| 嫩草影院入口| 三级经典国产精品| 久久精品综合一区二区三区| 麻豆乱淫一区二区| 肉色欧美久久久久久久蜜桃 | 午夜激情久久久久久久| 91精品伊人久久大香线蕉| 又爽又黄a免费视频| 午夜福利在线在线| 搡老乐熟女国产| av又黄又爽大尺度在线免费看| 床上黄色一级片| 日本三级黄在线观看| 国模一区二区三区四区视频| 91精品国产九色| 日韩精品青青久久久久久| 日韩亚洲欧美综合| 国产精品久久久久久久电影| 能在线免费看毛片的网站| 黄色一级大片看看| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 亚洲av男天堂| 特大巨黑吊av在线直播| 久久精品人妻少妇| 成年人午夜在线观看视频 | 99热这里只有是精品50| 色视频www国产| 日韩精品青青久久久久久| 欧美一区二区亚洲| 中文字幕久久专区| 五月玫瑰六月丁香| 伊人久久国产一区二区| 国产亚洲5aaaaa淫片| 日韩亚洲欧美综合| 国产有黄有色有爽视频| 日日摸夜夜添夜夜爱| 不卡视频在线观看欧美| 男女国产视频网站| 国产免费又黄又爽又色| 日韩三级伦理在线观看| 精品久久久噜噜| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 色综合站精品国产| 99久久精品一区二区三区| 99久久中文字幕三级久久日本| 直男gayav资源| 少妇丰满av| 成人鲁丝片一二三区免费| 日本黄大片高清| 久久久色成人| ponron亚洲| 在线免费观看不下载黄p国产| 22中文网久久字幕| 亚洲国产精品成人久久小说| 国产高潮美女av| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 大香蕉97超碰在线| 天堂中文最新版在线下载 | 免费观看在线日韩| 免费观看的影片在线观看| 一级毛片黄色毛片免费观看视频| 最后的刺客免费高清国语| 大陆偷拍与自拍| 午夜免费激情av| 一级毛片黄色毛片免费观看视频| 18禁裸乳无遮挡免费网站照片| 精品不卡国产一区二区三区| 亚洲欧美清纯卡通| 99视频精品全部免费 在线| 成人无遮挡网站| 一个人看的www免费观看视频| 性色avwww在线观看| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 三级国产精品欧美在线观看| 在现免费观看毛片| 我的老师免费观看完整版| 精品人妻熟女av久视频| 亚洲激情五月婷婷啪啪| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 国产91av在线免费观看| 国产精品一及| 国产一区有黄有色的免费视频 | 成人漫画全彩无遮挡| 特级一级黄色大片| 91久久精品国产一区二区成人| 亚洲成人av在线免费| 五月天丁香电影| 免费看a级黄色片| 精品久久久久久成人av| 国产精品一及| 国产大屁股一区二区在线视频| 国产亚洲91精品色在线| 午夜免费男女啪啪视频观看| 欧美性猛交╳xxx乱大交人| 特级一级黄色大片| 69人妻影院| 国产精品一区二区在线观看99 | 国产精品蜜桃在线观看| 在线观看一区二区三区| 中文字幕制服av| 国产精品一及| 欧美潮喷喷水| av在线天堂中文字幕| 熟女人妻精品中文字幕| 永久网站在线| 成人av在线播放网站| 亚洲激情五月婷婷啪啪| 国模一区二区三区四区视频| 亚洲精品国产av成人精品| 99久久九九国产精品国产免费| 69av精品久久久久久| 亚洲成色77777| 精品一区二区三区视频在线| 国产三级在线视频| 久久精品国产亚洲av天美| 中文精品一卡2卡3卡4更新| 欧美日本视频| 国产高清有码在线观看视频| 国产精品1区2区在线观看.| 亚洲精品国产av成人精品| av网站免费在线观看视频 | 日韩视频在线欧美| 成人特级av手机在线观看| 内射极品少妇av片p| 最近中文字幕高清免费大全6| www.av在线官网国产| 色播亚洲综合网| av天堂中文字幕网| 最近手机中文字幕大全| 精品熟女少妇av免费看| 春色校园在线视频观看| 亚洲电影在线观看av| 老司机影院成人| 日韩av不卡免费在线播放| 啦啦啦啦在线视频资源| av免费观看日本| 成人亚洲精品av一区二区| 国产 亚洲一区二区三区 | 国产在线一区二区三区精| 亚洲国产精品专区欧美| 欧美成人午夜免费资源| 国产精品国产三级国产av玫瑰| 一级毛片aaaaaa免费看小| 一级二级三级毛片免费看| 亚洲在久久综合| 国产精品久久久久久av不卡| 在线天堂最新版资源| 亚洲四区av| 久久久久久久久久久丰满| 国产av码专区亚洲av| 午夜免费激情av| 午夜福利网站1000一区二区三区| 亚洲精品成人av观看孕妇| 3wmmmm亚洲av在线观看| 又黄又爽又刺激的免费视频.| 高清av免费在线| 午夜免费男女啪啪视频观看| 淫秽高清视频在线观看| 日本熟妇午夜| 97热精品久久久久久| 一区二区三区高清视频在线| 欧美丝袜亚洲另类| 欧美日韩精品成人综合77777| 高清毛片免费看|