姜今錫,劉文斌,金艷
(延邊大學(xué)理學(xué)院 數(shù)學(xué)系, 吉林 延吉 133002)
微分或變分不等式廣泛應(yīng)用于力學(xué)、控制論、經(jīng)濟(jì)數(shù)學(xué)、對(duì)策論和最優(yōu)化中的許多重要問(wèn)題,如最優(yōu)控制問(wèn)題、彈性問(wèn)題、滲流問(wèn)題以及處理非線性奇異攝動(dòng)問(wèn)題等.變分不等式作為非線性微分方程的一個(gè)特殊類型,具有非線性性、不確定或自由邊界條件、以及解的不可微性等特點(diǎn),其最優(yōu)控制問(wèn)題的討論比非線性微分方程更為困難[1-2].文獻(xiàn)[1-12]從不同角度對(duì)多種類型的線性及非線性變分不等式的最優(yōu)控制問(wèn)題進(jìn)行了討論,考察了解的存在性、最優(yōu)化條件、數(shù)值解法等問(wèn)題,并得到了許多有價(jià)值的研究成果,但是其中大多數(shù)研究?jī)H局限于其目標(biāo)函數(shù)相對(duì)于狀態(tài)可微分的特殊情形.本文基于已有的研究成果,重點(diǎn)討論目標(biāo)函數(shù)相對(duì)于狀態(tài)函數(shù)不可微情形下的一個(gè)最優(yōu)控制問(wèn)題,并證明其解的存在性.
狀態(tài)函數(shù)u滿足的半線性橢圓型變分不等式如下:
(1)
不等式(1)在H1(Ω)上存在唯一的解u.
引理1如下非線性邊值問(wèn)題(2)存在唯一的解,且其解uε∈H1(Ω)滿足如下關(guān)系式:
(2)
證明問(wèn)題(2)的變分方程式為
(3)
〈Aεuε,v〉V×V*∶=(rλuε,v)Ω+(rαuε+rβ,β1(uε),v)Ωβ2(uε),v)Γ1,
引理2若φ∈L2(Γ3),則問(wèn)題(2)的解uε在Ω上幾乎處處滿足uε≥0.
證明可直接從引理1和引理2得到.
定理1若φ∈L2(Γ3),則不等式(1)的解u滿足u∈H3/2(Ω).
引理3u是不等式(1)的解當(dāng)且僅當(dāng)u為如下問(wèn)題的解:
證明利用變分不等式的半梯度表示及其性質(zhì)即可得到證明.
(4)
因?yàn)閡n也是(1)式的解,所以在Γ1上有
(5)
(6)
定理2最優(yōu)控制問(wèn)題(P)至少有一個(gè)解.
參考文獻(xiàn):
[1] Bermudez A, Saguez C. Optimal control of a sigorrini problem[J]. SIAM Journal on Control and Optimization, 1987,25(3):576-587.
[2] Bermudez A, Saguez C. Optimal control of variational inequalities[J]. Control and Cybernetics, 1985,14(1/3):9-30.
[3] He Zhengxu. State constramed control problems governed by variational inequalities[J]. SIAM Journal on Control and Optimization, 1987,25(5):1119-1144.
[4] 張石生,向淑文.一類型變分不等式解的存在性唯一性問(wèn)題及其對(duì)力學(xué)中的Signorini問(wèn)題的應(yīng)用[J].應(yīng)用數(shù)學(xué)與力學(xué),1991,12(5):401-406.
[5] 陳學(xué)華.帶不變凸的非光滑約束分式最優(yōu)控制問(wèn)題的對(duì)偶[J].蘇州大學(xué)學(xué)報(bào):自然科學(xué)版,2001,17(3):27-34.
[6] David Adams R, Suzanne Tenhard. Optimal shape design subject to ellptic viriational inequalities[J]. Applied Mathematics and Optimization, 2003,47(1):79-95.
[7] Hintermuller M, Laurain A. Optimal shape design subject to ellptic variational inequalities[J]. SIAM Journal on Control and Optimization, 2011,49(3):1015-1047.
[8] Gunzburger M D, Manservis S. Analisis and approximation of the velocity tracking problem for navier-stokes flows with distributed control[J]. SIAM Journal on Numerical Analysis, 2000,37(5):1481-1512.
[9] Gunzburger M D, Manservis S. The velocity traching problem for navier-stokes flows with boundary control[J]. SIAM Journal on Numerical Analysis, 2001,39(2):594-634.
[10] Arada N, Raymond J P. Optimal control problems with mixed control-state constraints[J]. SIAM Journal on Control and Optimization, 2000,39(5):1391-1407.
[11] Chen Qihong, Chu Delin, Roger Tan C E. Optimal contrrol of obstacle for quasi-linear elliptic variational problems[J]. SIAM Journal on Control and Optimization, 2005,44(3):1067-1080.
[12] Lou Hongwei. An optimal control problem governed by quasi-linear variational inequalities[J]. SIAM Journal on Control and Optimization, 2002,41(4):1229-1253.