• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Modeling of Exhaust Smoke Dispersion for a Generic Frigate and Comparisons with Experiments

    2014-07-31 22:28:40SelmaErginandErinDobrucal

    Selma Erginand Erin? Dobrucal?

    1. Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey

    2. Turkish Naval Academy, Tuzla, Istanbul 34942, Turkey

    Numerical Modeling of Exhaust Smoke Dispersion for a Generic Frigate and Comparisons with Experiments

    Selma Ergin1*and Erin? Dobrucal?2

    1. Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey

    2. Turkish Naval Academy, Tuzla, Istanbul 34942, Turkey

    The exhaust smoke dispersion for a generic frigate is investigated numerically through the numerical solution of the governing fluid flow, energy, species and turbulence equations. The main objective of this work is to obtain the effects of the yaw angle, velocity ratio and buoyancy on the dispersion of the exhaust smoke. The numerical method is based on the fully conserved control-volume representation of the fully elliptic Navier-Stokes equations. Turbulence is modeled using a two-equation (k-ε) model. The flow visualization tests using a 1/100 scale model of the frigate in the wind tunnel were also carried out to determine the exhaust plume path and to validate the computational results. The results show that down wash phenomena occurs for the yaw angles between ψ =10° and 20°. The results with different exhaust gas temperatures show that the buoyancy effect increases with the increasing of the exhaust gas temperature. However, its effect on the plume rise is less significant in comparison with its momentum. A good agreement between the predictions and experiment results is obtained.

    finite volume method; CFD; buoyancy effect; exhaust smoke; generic frigate; smoke dispersion

    1 Introduction1

    The sophistication of the weapons and sensors of present day naval ships requires more than one radar and a number of electronic sensors/equipment to be mounted on the mast as high as possible. Therefore, it is not possible to have the funnel height as high as is found in modern merchant ships. This may cause downwash of exhaust gases or smoke nuisance problems for naval ships. The downwash of exhaust causes funnel gases to dissipate downward toward the deck more rapidly than upward. This has many adverse consequences like the sucking of hot exhaust into the main engine intake and the ships ventilation system in addition to a high temperature contamination of topside electronic equipment and interference of the smoke with helicopter operations (see, for example, Baham and McCallum (1977), Fitzgerald (1986), Kulkarni et al. (2005, 2007), Park et al. (2011), Seshadri et al. (2006) and Syms (2004)). Therefore, an understanding of the exhaust smoke behavior is quite an important aspect of the ship’s design.

    In this study, the exhaust smoke dispersion for a generic frigate is investigated numerically through the numerical solution of the governing fluid flow, energy and turbulence equations. The main objective of this work is to obtain the effects of the yaw angle, velocity ratio and buoyancy on the dispersion of the exhaust gases. The numerical method is based on the fully conserved control-volume representation of the fully elliptic Navier-Stokes equations. Turbulence is modeled using a two-equation (k-ε) model. The computations were performed for six different yaw angles (ψ = 0°, 5°, 10°, 20°, 25° and 30°), four different velocity ratios (K = 0.734, 1.32, 2.772 and 3.242) and five different exit temperatures of the exhaust gases (Texh= 100 °C, 200 °C, 300 °C, 400 °C and 500 °C). The flow visualization tests using a 1/100 scale model of the frigate in the wind tunnel were also carried out to determine the exhaust plume path and to validate the computational results.

    The results show that down wash phenomena occurs for the yaw angles between ψ = 10° and 20°. The results with different exhaust gas temperatures show that the buoyancy effect increases with the increasing of the exhaust gas temperature. However, its effect on the plume rise is less significant in comparison with its momentum. Furthermore, the comparison results between the numerical calculations and experiments show a good agreement.

    2 Experimental study

    Fig. 1 shows the 1/100 scale model of the frigate. As can be seen from the figure the topside configuration of the frigate is comprised of two exhaust funnels, a mast and a superstructure block comprising the main bridge and electronic equipments. The original over-all length, breadth and draft of the frigate are, respectively 110 m, 14.2 m and 4.1 m.

    Fig. 2 shows the wind tunnel used for the flow visualization tests. It is a blow down type tunnel consisting of one diffuser, settling chamber and a test section of 0.80×0.80 m2cross section having a length of 2 m. The maximum velocity attainable in the wind tunnel is 15 m/s.

    Fig. 1 The 1/100 scale model of the frigate

    Fig. 2 The wind tunnel used in the experimental study

    During the flow visualization tests, the smoke which is produced by using a smoke generator at the ambient temperature is supplied through the funnels of the model to represent the exhaust smoke of the frigate. In the wind tunnel the free stream velocity is measured by a standard Pitot-static tube inserted into the wind tunnel, upstream of the model. The video and still photographs of the smoke flowing from the funnel was taken by using the SONY Handy Cam 420 digital video camera that was mounted on a fixed tripod outside the perspex window on the side of the wind tunnel.

    The uncertainties of the experimental results which include the measurement and calculation deviations are estimated to be between 10 % and 15 %.

    3 Mathematical modeling and solution procedure

    The numerical analysis is based on the time averaged equations describing the conservation of mass, momentum and because of the turbulence model, the equations governing the transport of turbulence kinetic energy k and its dissipation rate ε. It is assumed that the fluid (air) is incompressible with the constant thermophysical properties. The continuity equation:

    Momentum equation:

    Energy equation:

    Turbulent kinetic energy:

    Dissipation rate:

    The effective viscosity in these equations is defined as;

    The turbulent viscosity is obtained from;

    In the above equation, Cμis a constant. In Eqs. (3), (4) and (5), Γ is the diffusion coefficient given by μeff//σT, μeff//σkand μeff//σε, respectively. The values of the constants appearing in the above equations are C1=1.44, C2=1.92, Cμ=0.09, σT=1.0, σk=1.0 and σε=1.3. The term P in Eqs. (4) and (5) represents the generation of turbulence energy given by

    The finite volume method is employed to obtain the numerical solution of the governing equations using the unstructured grid. The convective terms of the momentum equations are discretized using the hybrid differencing scheme. The diffusive terms are discretized by the central differencing scheme. The derivation of the pressure is based on the SIMPLE algorithm. The details of the discretisation and solution procedures are given in Versteeg (1995), Patankar (1980), Dobrucal? (2013), Dobrucal? and Ergin (2012), Ergin et al. (2010, 2011) and ANSYS, Inc. (1999), which also describe the computer code used in the present work.

    The computational domain is a box shape volume that includes the ships body above the waterline. The computational domain is divided into a set of tetrahedralcells. Fig. 3 shows the typical structure of the grid used in the computations.

    Fig. 3 Computational grid

    The Drichlet boundary condition was applied to the inlet of the box. While on the exit boundary, the Neumann boundary condition, i.e., the derivative of the solution was applied. The computational domain was large enough to minimize the inlet boundary influence on the mixing where the model ship was placed. The grid points were distributed non-uniformly with a higher concentration of the grid points closer to the walls, see Fig. 3. In order to obtain a grid independent solution, the effect of the grid size on the results was investigated. Details of the computations can be found in Dobrucal? (2013).

    In the computations, four different velocity ratios (ratio of the exhaust velocity to the relative wind velocity), K = 0.734, 1.32, 2.772 and 3.242 are considered. At the stack exit, the constant exhaust gas temperatures of Texh= 100 °C, 200 °C, 300 °C, 400 °C and 500 °C are used as the boundary conditions. Six different yaw angles (direction of the upcoming air flow), Ψ = 0°, 5°, 10°, 15°, 20° and 30° are considered.

    4 Results and discussions

    Fig. 4 (a)-(d) shows the calculated results for the four different velocity ratios, K= 0.734, 1.32, 2.772 and 3.242 and the yaw angle ψ=0°. The effects of the velocity ratio on the dispersion of exhaust gases can be seen clearly. As expected, the momentum of the exhaust gases increases as the velocity ratio increases. As a result of this, the plume height increases. It can also be seen from Fig. 4 that the downwash problem does not occur for these cases.

    Fig. 4 The effects of the velocity ratio on the dispersion of exhaust gases

    Fig. 5 shows the effects of the yaw angle on the dispersion of exhaust gases for the velocity ratio K=0.61. As can be seen from this figure the plume is directed towards the helicopter deck at the back end of the superstructure for the yaw angles higher than 10°. The exhaust gas cannot rise with its momentum, and it cannot leave the turbulent zone around the superstructure. Therefore, the downwash phenomena occur.

    Fig. 5 The effects of the yaw angle on the dispersion of exhaust gases for K=0.61

    The effects of four different exhaust gas temperatures (Texh=100 °C, 200 °C, 300 °C and 500 °C) on the dispersion of the exhaust gases are presented in Fig. 6. For the results presented in this figure, the velocity ratio, K and the yaw angle, ψ are taken as 1.32 and 0°, respectively. It can be seen that the plume height increases slightly as the exhaust gas temperature increases. This is due to the buoyancy of the hot exhaust gases. Also, Table 1 shows that the Gr/Re2increases as the exhaust gas temperature at the stack exit increases.

    Fig. 6 The effects of the exhaust gas exit temperature on the dispersion of exhaust gases for K=1.32

    Table 1 The buoyancy effect for different exhaust gas exit temperatures with K=1.32

    Fig. 7 and Fig. 8 compare the results with the experiments for different velocity ratios and different yaw angles. It can be seen that the simulations are in good agreement with the experiments.

    Fig. 7 The comparisons of the results with the experiments for different velocity ratios and ψ=0°.

    Fig. 8 The comparison of the results with the experiments for the yaw angle, ψ=20°

    5 Conclusions

    The exhaust smoke dispersion for a generic frigate is investigated through the use of calculations and experiments. The conservation of mass, momentum and energy equations have been solved numerically with the k-ε turbulence model using the finite volume method. The flow visualization tests using a 1/100 scale model of the frigate in the wind tunnel were also carried out to determine the exhaust plume path and to validate the computational results.

    The results show that the dispersion of the smoke is affected by efflux velocity, temperature, and turbulence, as well as the wind velocity and direction and geometry of the superstructure. The results also show that the downwash phenomena occur for the yaw angles, Ψ between 10° and 20°. It has also been found that the effect of the buoyancy forces on the plume rise increases with the increasing of the exhaust gas temperature. However, its effect on the plume rise is less significant in comparison with its momentum.

    The wind tunnel experiments were used to validate the numerical model used in the study. The consistency between the simulations and experiments were found to be good.

    This study has demonstrated that computational fluid dynamics is a powerful tool for studying the problem of exhaust smoke dispersion for ships during the early stages of ship design.

    This study provides a further understanding of the exhaust smoke dispersion for naval ships.

    Acknowledgements

    The authors acknowledge the financial support received from the Scientific Research Projects Office of Istanbul Technical University, ?stanbul, Turkey for the project titled as ‘Numerical and Experimental Investigation of Exhaust Smoke Dispersion for Naval Ships’.

    ANSYS, Inc. ANSYS CFX tutorials (1999). Canonsburg, USA. http://orange.engr.ucdavis.edu/Documentation12.1/121/CFX/xt utr.pdf.

    Baham GJ, McCallum D (1977). Stack design technology for naval and merchant ships. SNAME Transactions, 85, 324-349.

    Dobrucal? E, Ergin S (2012). A study of exhaust smoke dispersion for a generic frigate. Gemi ve Deniz Teknolojisi Dergisi, 192, 16-22. (in Turkish)

    Dobrucal? E (2013). Numerical and experimental study of exhaust smoke dispersion for naval ships, PhD Thesis, Istanbul Technical University, Istanbul, Turkey, 1-238. (in Turkish)

    Ergin S, Paral? Y (2010). A numerical study of exhaust smoke-superstructure interaction for naval ships. Gemi ve Deniz Teknolojisi Dergisi, 185, 4-6. (in Turkish)

    Ergin S, Paral? Y, Dobrucal? E (2011). A numerical investigation of exhaust smoke-superstructure interaction on a naval ship. Proc. of IMAM 2011, Sustainable Maritime Transportation and Exploitation of Sea Resource, Genoa, Italy, 109-115.

    Fitzgerald MP (1986). A method to predict stack performance. Naval Engineering Journal, 98, 35-46.

    Park S, Heo J, Yu BS, Rhee SH (2011). Computational analysis of ship’s exhaust-gas flow and its application for antenna location. Applied Thermal Engineering, 31(10), 1689-1702.

    Patankar SV (1980). Numerical heat transfer and fluid flow. McGraw-Hill, New York, 1-195.

    Seshadri V, Singh SN, Kulkarni PR (2006). A study of the problem of ingress of exhaust smoke into the GT intakes in naval ships. J. Ship Technology, 2(1), 22-35.

    Syms GF (2004). Numerical simulation of frigate airwakes, Int. J. of Computational Fluid Dynamics, 18(2), 199-207.

    Kulkarni PR, Singh SN, Seshadri V (2005). Flow visualization studies of exhaust smoke-superstructure interaction on naval ships. Naval Engineers Journal, 117(1), 41-56.

    Kulkarni PR, Singh SN, Seshadri V (2007). Parametric studies of exhaust smoke–superstructure interaction on a naval ship using CFD. Computer & Fluids, 36(4), 794-816.

    Versteeg HK, Malalasekera W (1995). An introduction to computational fluid dynamics the finite volume method. Prentice Hall, Glasgow, UK, 1-495.

    Author biographies

    Selma Ergin is a Professor with the Faculty of Naval Architecture and Ocean Engineering. Before joining the Istanbul Technical University in 1993, she had completed her B.Sc. and M.Sc. degrees in Mechanical Engineering in Turkey and a Ph.D. degree in Mechanical Engineering from Brunel University in England. Professor Ergin currently works on energy efficiency of ships, emission control from marine diesel engines, alternative fuels, simulation of engine room fires and infrared signature of ships. She has published 1 book and over 30 journals and refereed conference papers. She has supervised 1 Ph.D. dissertation (2 more in progress) and 11 M.Sc. theses. Professor Ergin is on the Editorial Board of the Journal of Engineering for the Maritime Environment.

    1671-9433(2014)02-0206-06

    brucal? was born in 1979. He

    his Ph.D. Degree from the Department of Naval Architecture and Marine Engineering, Istanbul Technical University. He works at the Turkish Naval Academy as an assistant professor. His current research interests include ocean renewable energy, computational fluid dynamics (CFD) and hydrodynamics.

    Received date: 2013-11-22.

    Accepted date: 2014-03-25.

    *Corresponding author Email: ergin@itu.edu.tr

    ? Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2014

    日韩av不卡免费在线播放| 色视频www国产| 精品久久久久久久久久久久久| 日韩欧美在线乱码| 人人妻人人澡欧美一区二区| 欧美性猛交╳xxx乱大交人| 老司机影院成人| 国产 一区 欧美 日韩| 国内精品一区二区在线观看| 精品人妻视频免费看| 亚洲欧洲日产国产| 久久国内精品自在自线图片| 亚洲在线观看片| 欧美最新免费一区二区三区| 国产伦精品一区二区三区视频9| 欧美日韩乱码在线| 欧美成人精品欧美一级黄| a级一级毛片免费在线观看| 免费观看在线日韩| 在线免费观看的www视频| 久久久久久久午夜电影| 成人毛片60女人毛片免费| 国产在线男女| 别揉我奶头 嗯啊视频| av在线老鸭窝| 99久久人妻综合| 午夜久久久久精精品| 免费人成在线观看视频色| 特级一级黄色大片| 在线观看66精品国产| 中文字幕av成人在线电影| eeuss影院久久| 亚洲av免费在线观看| 激情 狠狠 欧美| 亚洲精品影视一区二区三区av| 国产片特级美女逼逼视频| 国产精品一二三区在线看| 欧洲精品卡2卡3卡4卡5卡区| 大又大粗又爽又黄少妇毛片口| 尾随美女入室| 国产极品精品免费视频能看的| 亚洲欧美精品专区久久| 在线观看美女被高潮喷水网站| 热99re8久久精品国产| 国产伦精品一区二区三区四那| 国产女主播在线喷水免费视频网站 | 美女内射精品一级片tv| 丝袜喷水一区| 亚洲成人久久性| 国产成人精品婷婷| 非洲黑人性xxxx精品又粗又长| 黄色欧美视频在线观看| 天堂中文最新版在线下载 | 成熟少妇高潮喷水视频| 三级男女做爰猛烈吃奶摸视频| 日韩制服骚丝袜av| 久久九九热精品免费| 真实男女啪啪啪动态图| 九九在线视频观看精品| 波多野结衣高清作品| 日韩亚洲欧美综合| 久久久欧美国产精品| 亚洲av中文av极速乱| 久久精品综合一区二区三区| 国产单亲对白刺激| 亚洲国产精品合色在线| www.色视频.com| 国内精品久久久久精免费| 少妇高潮的动态图| 精品国产三级普通话版| 午夜精品在线福利| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 国产一区二区亚洲精品在线观看| 国产亚洲欧美98| 亚洲性久久影院| 欧美日本亚洲视频在线播放| 日本爱情动作片www.在线观看| 如何舔出高潮| 国产熟女欧美一区二区| 床上黄色一级片| 人妻少妇偷人精品九色| 欧美人与善性xxx| 成人三级黄色视频| 男人的好看免费观看在线视频| 国产成人a区在线观看| 身体一侧抽搐| 最近视频中文字幕2019在线8| 韩国av在线不卡| 日韩成人伦理影院| 国产三级在线视频| 国产精品久久视频播放| 大又大粗又爽又黄少妇毛片口| 欧美一区二区精品小视频在线| 成人特级av手机在线观看| 日韩一区二区三区影片| 黄色一级大片看看| 日韩欧美三级三区| 久久九九热精品免费| 成人一区二区视频在线观看| 又粗又爽又猛毛片免费看| 日韩强制内射视频| 精品欧美国产一区二区三| 国产精品嫩草影院av在线观看| 午夜免费激情av| 在线免费十八禁| 麻豆av噜噜一区二区三区| 日韩欧美国产在线观看| 欧美高清成人免费视频www| 亚洲电影在线观看av| 日本色播在线视频| 久久精品综合一区二区三区| 一本久久中文字幕| 免费看日本二区| 日韩一区二区视频免费看| 一级黄色大片毛片| 久久久午夜欧美精品| 久久久久久久久久黄片| 一个人免费在线观看电影| 少妇人妻精品综合一区二区 | 国产亚洲精品久久久久久毛片| 日日撸夜夜添| 国产精品美女特级片免费视频播放器| 搞女人的毛片| 免费电影在线观看免费观看| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区 | av卡一久久| 久久久a久久爽久久v久久| ponron亚洲| 我要看日韩黄色一级片| 精品人妻一区二区三区麻豆| 亚洲精品日韩在线中文字幕 | 免费观看在线日韩| 青青草视频在线视频观看| 午夜精品国产一区二区电影 | 欧美zozozo另类| 尤物成人国产欧美一区二区三区| 1000部很黄的大片| 狠狠狠狠99中文字幕| 久久久久久久久久久丰满| 国产极品精品免费视频能看的| 丰满乱子伦码专区| 欧美高清性xxxxhd video| 午夜福利在线观看免费完整高清在 | 国产精品久久电影中文字幕| 久久久久久九九精品二区国产| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 日本成人三级电影网站| 国产精品爽爽va在线观看网站| 久久久国产成人精品二区| 国语自产精品视频在线第100页| 亚州av有码| 三级毛片av免费| 国产探花极品一区二区| 长腿黑丝高跟| 国产精品久久电影中文字幕| 国产免费一级a男人的天堂| 激情 狠狠 欧美| 亚洲人成网站在线播| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品影视一区二区三区av| 国内精品久久久久精免费| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 亚洲最大成人中文| 国产精品一区二区三区四区久久| 男人狂女人下面高潮的视频| 国产一级毛片七仙女欲春2| 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类| 三级男女做爰猛烈吃奶摸视频| 长腿黑丝高跟| 高清毛片免费看| 12—13女人毛片做爰片一| 一个人免费在线观看电影| 中文在线观看免费www的网站| 精品人妻偷拍中文字幕| 美女内射精品一级片tv| 国产在线男女| 我的女老师完整版在线观看| 99久国产av精品| 亚洲第一区二区三区不卡| 淫秽高清视频在线观看| 国产色爽女视频免费观看| 国产三级中文精品| 国产亚洲精品久久久com| 中文资源天堂在线| 日韩欧美一区二区三区在线观看| a级毛色黄片| 在线a可以看的网站| 精品久久国产蜜桃| 亚洲天堂国产精品一区在线| 97人妻精品一区二区三区麻豆| 插阴视频在线观看视频| 欧美人与善性xxx| 在线免费观看的www视频| a级毛色黄片| 成人国产麻豆网| 国产精品久久视频播放| 国产精品99久久久久久久久| 床上黄色一级片| 亚洲欧美精品综合久久99| 身体一侧抽搐| 中国美女看黄片| 97超碰精品成人国产| 热99在线观看视频| 国产成人aa在线观看| 国产毛片a区久久久久| 国产高清视频在线观看网站| 别揉我奶头 嗯啊视频| 91午夜精品亚洲一区二区三区| 日日摸夜夜添夜夜爱| 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 51国产日韩欧美| 人人妻人人澡人人爽人人夜夜 | 2021天堂中文幕一二区在线观| 99riav亚洲国产免费| 亚洲欧美成人精品一区二区| 国产成年人精品一区二区| 婷婷色av中文字幕| 大型黄色视频在线免费观看| 免费观看的影片在线观看| 国产伦一二天堂av在线观看| 麻豆国产97在线/欧美| 亚洲久久久久久中文字幕| 日本免费一区二区三区高清不卡| 国产亚洲av嫩草精品影院| 国产伦理片在线播放av一区 | 国产久久久一区二区三区| 亚洲精品自拍成人| 亚洲av免费高清在线观看| 熟妇人妻久久中文字幕3abv| 亚洲精品国产成人久久av| av黄色大香蕉| 亚洲激情五月婷婷啪啪| 一级毛片久久久久久久久女| 最近的中文字幕免费完整| 最近最新中文字幕大全电影3| 久久精品国产亚洲av涩爱 | 桃色一区二区三区在线观看| 小蜜桃在线观看免费完整版高清| 亚洲一区二区三区色噜噜| 有码 亚洲区| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 午夜福利在线在线| 超碰av人人做人人爽久久| 欧美成人精品欧美一级黄| 欧美不卡视频在线免费观看| 日韩精品有码人妻一区| 亚洲婷婷狠狠爱综合网| 午夜久久久久精精品| 国产午夜福利久久久久久| 久久精品影院6| 国产真实乱freesex| 可以在线观看毛片的网站| 亚洲真实伦在线观看| av在线播放精品| 国产日本99.免费观看| 免费人成在线观看视频色| 日日啪夜夜撸| 欧美日韩乱码在线| 久久精品国产99精品国产亚洲性色| 日本熟妇午夜| 蜜臀久久99精品久久宅男| 日韩强制内射视频| av女优亚洲男人天堂| 免费av观看视频| 久久人人精品亚洲av| 亚洲国产精品成人综合色| 日本三级黄在线观看| 全区人妻精品视频| 国产精品免费一区二区三区在线| 国产真实乱freesex| 欧美日本视频| av在线蜜桃| 熟女人妻精品中文字幕| 又黄又爽又刺激的免费视频.| 最好的美女福利视频网| 午夜老司机福利剧场| 波多野结衣巨乳人妻| 国产真实伦视频高清在线观看| 亚洲精品久久国产高清桃花| 99热精品在线国产| 一区二区三区高清视频在线| a级毛片a级免费在线| 91精品国产九色| 女同久久另类99精品国产91| 一边亲一边摸免费视频| 中文字幕精品亚洲无线码一区| 亚洲性久久影院| 国产精品av视频在线免费观看| 久久九九热精品免费| 国产精品电影一区二区三区| 自拍偷自拍亚洲精品老妇| 丝袜美腿在线中文| 久久久精品大字幕| 亚洲欧美日韩无卡精品| 青春草国产在线视频 | 97在线视频观看| 亚洲在线观看片| 精品一区二区免费观看| 国产精品久久电影中文字幕| 免费观看a级毛片全部| 三级毛片av免费| 国产高潮美女av| 国产成人影院久久av| 色综合色国产| av视频在线观看入口| 国产伦在线观看视频一区| 少妇的逼好多水| 99热这里只有是精品50| 深夜精品福利| 国产日韩欧美在线精品| 国产男人的电影天堂91| 亚洲三级黄色毛片| av又黄又爽大尺度在线免费看 | 国产在视频线在精品| 亚洲精品日韩av片在线观看| 亚洲成a人片在线一区二区| 日韩欧美 国产精品| 国产成人影院久久av| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 看黄色毛片网站| 一边亲一边摸免费视频| 日韩大尺度精品在线看网址| 一边亲一边摸免费视频| 日韩一区二区视频免费看| 深夜精品福利| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 国产成人a区在线观看| 国产私拍福利视频在线观看| 又黄又爽又刺激的免费视频.| 国产精品av视频在线免费观看| 久久草成人影院| 国产一区二区三区av在线 | 久久婷婷人人爽人人干人人爱| 国产v大片淫在线免费观看| 日韩人妻高清精品专区| 午夜激情欧美在线| 日本五十路高清| 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 日韩亚洲欧美综合| 国产成人精品久久久久久| 六月丁香七月| 在线观看av片永久免费下载| 一进一出抽搐动态| 2022亚洲国产成人精品| 亚洲成a人片在线一区二区| 久久久午夜欧美精品| 久久精品夜色国产| 国产极品天堂在线| 少妇熟女欧美另类| 日本免费一区二区三区高清不卡| 乱系列少妇在线播放| 边亲边吃奶的免费视频| 国产真实乱freesex| 国产成人精品久久久久久| 中国美女看黄片| 国语自产精品视频在线第100页| 欧美在线一区亚洲| 三级经典国产精品| 美女内射精品一级片tv| 亚洲中文字幕日韩| 亚洲国产色片| 在线观看av片永久免费下载| 国产视频内射| 美女大奶头视频| 国产一级毛片在线| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久,| 一级毛片aaaaaa免费看小| 床上黄色一级片| 日韩一区二区视频免费看| 久久久久久国产a免费观看| 麻豆一二三区av精品| 国产成人精品婷婷| 看黄色毛片网站| 舔av片在线| 日日摸夜夜添夜夜添av毛片| 狠狠狠狠99中文字幕| 国产精品国产高清国产av| 日本av手机在线免费观看| 伦精品一区二区三区| 免费看美女性在线毛片视频| 国产精品一区二区三区四区免费观看| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 国内精品宾馆在线| 又粗又爽又猛毛片免费看| 秋霞在线观看毛片| 97人妻精品一区二区三区麻豆| 亚洲av电影不卡..在线观看| 国产蜜桃级精品一区二区三区| 久久久久久久久久久丰满| 99久久中文字幕三级久久日本| 国产高清三级在线| 亚洲国产欧美人成| 伦精品一区二区三区| av在线播放精品| 国产黄片美女视频| 国产精华一区二区三区| 中文字幕av成人在线电影| 日韩一区二区三区影片| 黄片wwwwww| 九九爱精品视频在线观看| 美女国产视频在线观看| 联通29元200g的流量卡| 中文字幕熟女人妻在线| 人妻制服诱惑在线中文字幕| 最后的刺客免费高清国语| 国产极品精品免费视频能看的| 亚洲国产精品成人久久小说 | 午夜精品国产一区二区电影 | 久久久国产成人精品二区| 午夜福利在线在线| 国产精品久久久久久精品电影小说 | av黄色大香蕉| 午夜福利高清视频| 亚洲婷婷狠狠爱综合网| 成人永久免费在线观看视频| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 美女大奶头视频| 三级毛片av免费| 日本成人三级电影网站| 一夜夜www| 亚洲欧美成人精品一区二区| 久久久久久久久久黄片| 精品久久久久久成人av| 亚洲欧美精品专区久久| 国产麻豆成人av免费视频| 免费观看在线日韩| 亚洲高清免费不卡视频| 久久鲁丝午夜福利片| 中国国产av一级| 欧美变态另类bdsm刘玥| 亚洲18禁久久av| av黄色大香蕉| 亚洲欧美成人综合另类久久久 | 尤物成人国产欧美一区二区三区| 欧美日韩精品成人综合77777| 国产精品一二三区在线看| 中文字幕av成人在线电影| 久久中文看片网| 日日撸夜夜添| 国产色婷婷99| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 免费观看的影片在线观看| 精品人妻偷拍中文字幕| 男人狂女人下面高潮的视频| 91麻豆精品激情在线观看国产| 精品久久久久久久久久免费视频| 国产视频首页在线观看| 人妻制服诱惑在线中文字幕| 美女cb高潮喷水在线观看| 中文字幕av成人在线电影| 久久久国产成人精品二区| 国产精品av视频在线免费观看| 亚洲av成人精品一区久久| 国产一区二区亚洲精品在线观看| 成人高潮视频无遮挡免费网站| 性色avwww在线观看| 22中文网久久字幕| 欧美3d第一页| 99热网站在线观看| 国内精品久久久久精免费| 欧美性猛交╳xxx乱大交人| 亚洲色图av天堂| 国内精品宾馆在线| 亚洲真实伦在线观看| 亚洲美女搞黄在线观看| 精品午夜福利在线看| 亚洲成av人片在线播放无| 一个人观看的视频www高清免费观看| 美女脱内裤让男人舔精品视频 | 欧美变态另类bdsm刘玥| 成人午夜高清在线视频| 久久精品91蜜桃| 久久久久性生活片| 草草在线视频免费看| 成人综合一区亚洲| 我要搜黄色片| 你懂的网址亚洲精品在线观看 | 欧美高清成人免费视频www| 亚洲欧美日韩卡通动漫| 成年女人看的毛片在线观看| 国产黄色视频一区二区在线观看 | 在线观看美女被高潮喷水网站| 在线观看66精品国产| 可以在线观看的亚洲视频| 日本色播在线视频| 99热精品在线国产| 搡老妇女老女人老熟妇| 成年女人看的毛片在线观看| 欧美3d第一页| 97超视频在线观看视频| 欧美高清成人免费视频www| 国产精品久久久久久av不卡| 国产精品综合久久久久久久免费| 99热这里只有是精品在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产免费男女视频| 春色校园在线视频观看| 神马国产精品三级电影在线观看| 国产久久久一区二区三区| 亚洲欧洲日产国产| 久久久久国产网址| 国内精品宾馆在线| 波多野结衣高清无吗| 亚洲图色成人| 一边亲一边摸免费视频| 亚洲国产精品合色在线| 亚洲国产色片| www日本黄色视频网| 国内精品久久久久精免费| 欧美日韩乱码在线| 国产午夜福利久久久久久| 亚洲一区高清亚洲精品| 国产精品国产三级国产av玫瑰| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| 亚洲av二区三区四区| 人妻少妇偷人精品九色| 一区福利在线观看| 99久久精品一区二区三区| 69av精品久久久久久| 91久久精品电影网| 成人亚洲精品av一区二区| 国产成人福利小说| h日本视频在线播放| 午夜爱爱视频在线播放| www日本黄色视频网| 亚洲三级黄色毛片| 丝袜美腿在线中文| 大型黄色视频在线免费观看| 久久精品国产鲁丝片午夜精品| 狂野欧美激情性xxxx在线观看| 小说图片视频综合网站| 久久久久性生活片| 97超视频在线观看视频| 不卡视频在线观看欧美| 男人和女人高潮做爰伦理| 婷婷色综合大香蕉| 99热精品在线国产| 天天躁日日操中文字幕| 欧美+亚洲+日韩+国产| 99久久成人亚洲精品观看| 国产精品精品国产色婷婷| 精品不卡国产一区二区三区| 国产亚洲欧美98| 五月玫瑰六月丁香| 国产毛片a区久久久久| 日韩 亚洲 欧美在线| 色综合亚洲欧美另类图片| 久久久久免费精品人妻一区二区| 亚洲最大成人手机在线| 久久精品国产自在天天线| 成人午夜精彩视频在线观看| 美女内射精品一级片tv| 最好的美女福利视频网| 精品久久久噜噜| 91在线精品国自产拍蜜月| 国产爱豆传媒在线观看| 高清在线视频一区二区三区 | 午夜免费激情av| 国产真实伦视频高清在线观看| 日韩大尺度精品在线看网址| 一个人观看的视频www高清免费观看| 亚洲精品日韩在线中文字幕 | av在线天堂中文字幕| 亚洲国产高清在线一区二区三| 中出人妻视频一区二区| 成年女人永久免费观看视频| 欧美最新免费一区二区三区| 亚洲一区高清亚洲精品| 九色成人免费人妻av| 国产精品1区2区在线观看.| 国产亚洲欧美98| 天堂√8在线中文| .国产精品久久| 啦啦啦啦在线视频资源| 国产黄a三级三级三级人| 夫妻性生交免费视频一级片| 成人鲁丝片一二三区免费| 99在线人妻在线中文字幕| 免费av不卡在线播放| 桃色一区二区三区在线观看| 国产av不卡久久| 国产白丝娇喘喷水9色精品| 99热全是精品| 亚洲熟妇中文字幕五十中出| h日本视频在线播放| 久久精品久久久久久久性| 国产黄a三级三级三级人| 欧美区成人在线视频| 精品日产1卡2卡| 亚洲最大成人av| 色哟哟哟哟哟哟| 亚洲国产精品国产精品| 免费观看人在逋| 日韩av不卡免费在线播放| av在线老鸭窝| 色播亚洲综合网| 中文欧美无线码| a级一级毛片免费在线观看| 天天躁日日操中文字幕|