• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forced Axial and Torsional Vibrations of a Shaft Line Using the Transfer Matrix Method Related to Solution Coefficients

    2014-07-31 22:28:49KandouciChahrEddineandAdjalYassine

    Kandouci Chahr-Eddineand Adjal Yassine

    Forced Axial and Torsional Vibrations of a Shaft Line Using the Transfer Matrix Method Related to Solution Coefficients

    Kandouci Chahr-Eddine*and Adjal Yassine

    Department of Maritime Engineering, University of Sciences and Technology USTO-MB, Oran 31000, Algeria

    This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.

    shaft line; stress tensor; vibration; axial vibration; torsional vibration; transfer matrix; constant coefficient vector

    1 Introduction1

    The hydrodynamic excitations generated by the running marine propeller in a non-homogeneous hydrodynamic environment may cause significant vibrations in the line shafting system. The dominant variable components of propeller excitations usually have a pulsation equal to the first blade harmonic. Particular attention of classification society rules focus on torsional vibrations of the marine shafting system and their tangential dynamic stresses which may cause shaft failures (Bureau Veritas, 2011; Lloyd’s Register, 2012). It is required that torsional vibration of the shafting system be calculated during the design stage and then measured during sea trials. On the other hand, for all main propulsion shafting systems, the shipbuilders have to ensure that axial vibration amplitudes are satisfactory throughout the speed range (Lloyd’s Register, 2012). Axial vibrations are a result of propeller thrust fluctuations mainly located between the propeller and thrust bearing.

    Vibration analyses of marine shafting systems have been conducted by many researchers in order to improve on a method to estimate the geometries and properties of each shafting element. The forced torsional vibration stress curves obtained from measured vibration at the free end of the propulsion shafting are compared with the results obtained from the calculation of forced vibration, by Tang and Brennan (2013). The results show that a highly flexible component may have a significant effect on the mode shapes. A numerical analysis of the axial vibration taking into account the couplings is compared with the measurement performed on a real ship by Murawski (2004).

    The transfer matrix method relating to state vectors was introduced by Myklestad in the 1940s, and generalized by Prohl and then gradually developed by other researchers. In the field of marine shafting vibrations, Davor (1997) used this method to investigate the coupling between torsional and axial vibrations resulting from a propeller in the solid elastic shaft of merchant ocean going ships. In this aspect this method was used to evaluate the frequencies of the tail shaft transverse vibrations of ships by JIA (2008). The transfer matrix method related to state vectors is widely used for the calculation of free and forced vibrations. Consequently the difficulty lies in the high order of multiplied matrices in the case of long shaft lines. In the present study, the transfer matrix method related to solution coefficients of differential equations has been developed. This method applied to the shafting system was proposed in the works of Kolenda (1979). It has been used for calculations of forced coupled flexural vibrations (Vinh Phat, 1988) and for strength analysis of shaft lines (Kandouci, 1992).

    The advantage of this method as compared with a well-known method of transfer matrix associated with state vectors is the reduction of the number of multiplied matrices in to one matrix when adjacent shaft segments have the same material properties and diameters. Normal and tangential stresses due to the static and variable hydrodynamic excitation components are also studied.

    2 Physical model of the analyzed system

    2.1 physical model of shafts

    A physical model of the analyzed system is shown in Fig.1. It concerns shaft line parts in which the effects of propeller hydrodynamic excitations is greatest. More precisely the propeller and intermediate shafts, clamped atthe place of the axial thrust bearing.

    Fig.1 Physical model of the system

    The shaft line material is considered to be isotropic, the propeller and the coupling flange are assumed to be discrete masses and it is supposed that the inertia central principal axis of each shaft sections coincides with the rotation axis.

    where,0f is the vector of hydrodynamic propeller excitations including just the thrust and torsional moment of the propeller, 1α=concerns the axial force (propeller thrust), α=4 is the torsional moment. M0=[m01m04] is the propeller inertia matrix including the added water mass,3M is the flange coupling inertia matrix located at the end of the third shaft line segment.

    We assume that the system is linear and its vibrations in a fixed local coordinate system are governed by the following differential equations:

    where, uix1represents the axial vibration of the i-th segment in the section x, in the longitudinal direction (α = 1); uix4represents torsional vibration (α = 4); uix={uix1,uix4} is the vibration vector in the section xi1=x.

    Internal force and moment pixαare given by the known beam theory:

    pix={pix1,pix4}is the internal force vector in the section xi1=x.

    In the above Eqs. (1)-(3), E,Ai,Gand (I0)iare respectively Young’s modulus, cross area section, Kirchhoff’s modulus and the polar moment of inertia of the i-th shaft cross section, ρ is the density of the shaft material.

    The boundary conditions at the left and right ends of the system are respectively:

    where 1,4,α=the coefficients0mαand0cαare respectively the elements of the propeller inertia matrix (taking into account the added water mass) and the viscous damping coefficient matrix of the water.

    Corresponding stresses due to the internal force and momentixpαare:

    where (W0)irepresents the torsional modulus of the i-th shaft, σix={σix1,σix4}is the stress vector in the section xi1=x.

    The hydrodynamic excitations acting on the propeller rotating at speedoω are expressed as:

    and can be written in complex form:

    Vibrations, internal forces and stresses are looked for, like the real parts of the following expressions:

    Substituting Eq. (10) into differential Eqs. (1) and (2), we can get:

    where,

    while

    is the constant coefficient vector. The latter can be determined using the boundary conditions (4) and (5), the condition of displacement continuity and internal force equilibrium, at junctions connecting two adjacent shafts.

    The vector of internal forces can be written as:

    where,

    2.2 an example of two adjacent shaft

    For the calculation, an example of two adjacent shaft segments is illustrated in Fig 2. The axes of the coordinate system (xi1, xi2, xi3) of the i-th segment are respectively parallel to the axes of the fixed local coordinate system (x1, x2, x3) given in Fig. 1.

    Fig. 2 Schematic illustration of two adjacent shaft segments

    In Fig. 2,iL is length of the i-th shaft segment;,,iLpαis generalized internal force in the section1ixx= at the end of the i-th segment, in the direction α;1,0,ipα+is generalized internal force in the section at the beginning of the (i+1)-th shaft segment, in the direction α;ixuαis generalized displacement of the i-th segment, in the section xi1=x, in the direction α.

    At the junction of the two shaft segments, which have different constants of material or/and diameters, the following conditions are satisfied:

    Taking into account the expressions (13), (14), (16) and (17), the conditions (18) and (19) can be written as follows:

    where()iνBis the transfer matrix related to the solution coefficients, calculated from expression:

    Using the above expressions, we obtain:

    For the s?1 following shaft segments, we have the relationship:

    For the calculation of the shaft line vibration, the number of multiplied matrices in Eq. (27) may be large, however the matrices()iBνpresent an advantageous property, when the shaft segments have the same material constants and diameter, the expression (27) is reduced to:

    where the matrix()iνG is obtained from the matrix()iνB by setting (eA)i=(eT)i=1, and replacing Liby:

    The advantage of this method does not exist with the well-known transfer matrix relating to the state vector.

    In the case where the section connecting two adjacent shaft segments passes through the center of gravity of the discrete mass, the following equations are verified:

    whereiM is the inertia matrix of discrete mass located atthe end of the i-th shaft segment ( e.g. flange coupling ). The Eqs. (30) and (31) are written as follows:

    where, Mi=[miJi],miis the discrete mass concentrated at the end of the i-th shaft segment, Jiis the polar moment of inertia of this mass.

    According to Eqs. (32) and (33), we get:

    where Ri(ν)is the transfer matrix through the discrete mass.

    Once these transfer matrices are calculated, we determine the vectors of the solution coefficients a(v),a(v),…,a(v)of

    23N the vibrations from the second to the n-th shaft segments, as function of a(v), which is the solution coefficient vector

    1of the first shaft vibrations.

    For the system as illustrated in Fig.1, we have:

    In the same way, the boundary conditions (4) and (5) can be written in the form:

    As a result, we obtain the constant coefficient vector of the first shaft segment

    where,

    B0is the viscous damping coefficient matrix of the propeller vibrations.

    3 Analyzed system description

    As an application, a shaft marine system of a real vessel B354 with a displacement of 10 000 DWT is used (see Fig. 3). Fig.4 represents the shaft line part analyzed.

    Fig. 3 Scheme of the analyzed shaft line part

    Fig. 4. Analyzed model

    The parameters of the propeller and shafts are shown in Table 1 and Table 2 respectively. Young’s modulus is E= 2.1×1011N/m2, Kirchhoff’s modulus is G = 0.85×1011N/m, and the density of the material is ρ=7 680 kg/m3. With the flange coupling, the mass3m=1 363.6 kg, and the polar moment of inertia23164.8m.kg. j=?

    Table 1 Parameters of the propeller

    Table 2 The parameters of the shafts

    Table 3 Propeller hydrodynamic excitations

    According to the measurments made by the Technical Center of the Gdansk Shipyard (CTO, 1983), the first and second blade harmonics are considered. The parameters of the hydrodynamic excitations are shown in Table 3. The propeller hydrodynamic excitations have the form:

    4 Results of the calculations

    The obtained results using a developed computer programare given below graphically, as a function of the distance from the propeller.

    Static deformations and amplitudes of the vibrations are shown in Figs. (5)-(8). Figs. (9)-(12) represent the static values and the amplitudes of the normal and tangential stresses. These are the responses of the system to the constant and variable components of the propeller hydrodynamic excitations. The jumps on the stress curves correspond to the diameter variations.

    Fig. 5 shows the effect of the constant component of the thrust propeller on longitudinal deformations of the shaft line. The static tangential stresses due to the constant component of the angular momentum of the propeller are shown in Fig. 10.

    Fig. 5 Static axial deformations

    Fig. 6 Static torsional deformations

    Fig. 7 Amplitudes of the axial vibrations

    Fig. 8 Amplitudes of the torsional vibrations

    Fig. 9 Static normal stresses

    Fig.10 Static tangential stresses

    Fig. 11 Amplitudes of the normal stresses

    Fig. 12 Amplitudes of the tangential stresses

    5 Conclusions

    The results of the calculations show that, given the relatively large diameters of the different shafts, the longitudinal deformations are negligible (approximately 0.2 mm, Fig. 5), and there is no risk of buckling according to the formula of Euler. The static tangential stresses due to the static component of the propeller’s moment are considerably higher than the static normal stresses due to the constant component of the propeller thrust, and are more than all the amplitudes of the variable normal and tangential stresses. The static tangential stresses due to the average angular momentum of the propeller represent the dominant component of the stress tensor. This result confirms the recommendations of the classification societies according to which, in the absence of resonance, the strength of the shaft line depends on the value of this component.

    Bureau Veritas (2011). BV rules for the classification of steel ships, part C: machinery, electricity, automation and fire protection. Bureau Veritas, Neuilly-sur-Seine, France, 154-158.

    CTO (1983). Hydrodynamic forces caused by the stream after the hull. Ship Design and Research Centre, Gdańsk, Poland. (in Polish)

    Davor S (1997). Torsional-axial coupling in the line shafting vibrations in merchant ocean going ships. Master’s thesis, Concordia University, Montreal, 10-17.

    JIA XJ (2008). Analysis of the flexural vibration of ship’s tail by transfer matrix method. Journal of Marine Science and Application, 7(3), 179-183.

    Kandouci CE (1992). Strength Analysis of shaft line in a complex state of stress. Ph. D. thesis, Faculty of Shipbuilding, Technical University of Gdańsk, Gdańsk, Poland. (in Polish)

    Kolenda J. (1979). A more precise description of forced vibrations of shafting system with flexural asymmetric rigidity on flexible foundations. Journal of Theoretical and Applied Mechanics, 17(2), 105-126. (in Polish)

    Lloyd’s Register (2012). LR rules and regulations for the classification of ships. Lloyd’s Register, London, UK.

    Murawski L (2004). Axial vibrations of propulsion system taking in to account the couplings and the boundary conditions. Journal of Marine Science and Technology, 9(4), 171-184.

    Tang B, Brennan MJ (2013). On the influence of the mode shapes of marine propulsion shafting system on the prediction of torsional stresses. Journal of Marine Science and Technology, 21(2), 209-214.

    Vinh Phat N (1988). Analysis of transverse vibrations of shat line taking into account the flexibility of the bearing support. Ph. D. thesis, Institute of Shipbuilding, Technical University of Gdańsk, Gdańsk, Poland. (in Polish).

    Author biographies

    Adjal Yassine, was born in 1982, received his Master degree from the University of Sciences and Technology of Oran-Algeria, currently he is Ph.D candidate, interested field focus on mechanical vibration.

    1671-9433(2014)02-0200-06

    Chahr-Eddine, was born in 1960,

    his Ph.D in 1992 from the Institute of Shipbuilding of Gdansk Technical University, and he is currently a senior lecturer at University of Sciences and Technology of Oran since 1992. His main research is dynamic of propelling systems.

    Received date: 2013-11-28.

    Accepted date: 2014-04-22.

    *Corresponding author Email: kan_cha31@yahoo.fr

    ? Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2014

    禁无遮挡网站| 在线观看66精品国产| 日日啪夜夜撸| 亚洲av成人av| 美女cb高潮喷水在线观看| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放 | 99久久无色码亚洲精品果冻| 少妇熟女欧美另类| 免费观看精品视频网站| 国产极品精品免费视频能看的| 国产真实伦视频高清在线观看| 亚洲欧洲日产国产| 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| www.av在线官网国产| 黄片无遮挡物在线观看| 91久久精品国产一区二区三区| 最近手机中文字幕大全| 精品久久久久久成人av| 高清视频免费观看一区二区 | 变态另类丝袜制服| 大香蕉97超碰在线| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产高清国产av| 亚洲国产精品sss在线观看| 噜噜噜噜噜久久久久久91| 国产淫片久久久久久久久| 一级爰片在线观看| 日本免费在线观看一区| 亚洲一级一片aⅴ在线观看| 国产爱豆传媒在线观看| 看非洲黑人一级黄片| 少妇裸体淫交视频免费看高清| 国产中年淑女户外野战色| 国产欧美日韩精品一区二区| 国产免费一级a男人的天堂| 高清日韩中文字幕在线| 69人妻影院| 99热全是精品| 尾随美女入室| 日本与韩国留学比较| 亚洲最大成人av| 51国产日韩欧美| 99热精品在线国产| 欧美一区二区精品小视频在线| 又粗又硬又长又爽又黄的视频| 免费观看的影片在线观看| 日韩欧美国产在线观看| 天堂中文最新版在线下载 | www.av在线官网国产| 日本午夜av视频| 亚洲最大成人av| 午夜激情欧美在线| 免费av观看视频| 久久久亚洲精品成人影院| 日韩三级伦理在线观看| 免费看日本二区| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆| 天美传媒精品一区二区| 亚洲人与动物交配视频| kizo精华| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 中文字幕免费在线视频6| 黄色配什么色好看| 婷婷六月久久综合丁香| 久久久久九九精品影院| 国产久久久一区二区三区| 久久久久国产网址| 久久这里只有精品中国| 欧美xxxx黑人xx丫x性爽| 亚洲不卡免费看| 国产成人freesex在线| 国产精品无大码| 久久久精品欧美日韩精品| 国产视频内射| 久久鲁丝午夜福利片| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 女人被狂操c到高潮| 麻豆成人av视频| 亚洲成人精品中文字幕电影| 欧美激情在线99| 亚洲精品乱码久久久v下载方式| 国产黄片美女视频| 日本wwww免费看| 午夜老司机福利剧场| 观看免费一级毛片| 国产高潮美女av| 久久精品综合一区二区三区| 色视频www国产| 欧美人与善性xxx| 婷婷色综合大香蕉| 亚洲av熟女| 九九爱精品视频在线观看| 在线观看66精品国产| 亚州av有码| 久久久国产成人免费| 成人午夜精彩视频在线观看| 国产精品无大码| 国产高清有码在线观看视频| 嘟嘟电影网在线观看| 国产午夜精品论理片| 日韩av在线免费看完整版不卡| 91久久精品国产一区二区三区| 日本黄色片子视频| 少妇高潮的动态图| 精品久久久久久电影网 | 久久精品人妻少妇| 免费观看人在逋| 国产91av在线免费观看| 天堂中文最新版在线下载 | 日韩av在线免费看完整版不卡| 国产精品精品国产色婷婷| 国产一级毛片在线| 日韩,欧美,国产一区二区三区 | 成人欧美大片| 久久99蜜桃精品久久| 久久99热这里只频精品6学生 | 亚洲欧美精品专区久久| 亚洲欧美日韩卡通动漫| 91午夜精品亚洲一区二区三区| 有码 亚洲区| 韩国高清视频一区二区三区| 国产精品国产高清国产av| 久久久久久久久大av| 在现免费观看毛片| 中文资源天堂在线| 亚洲欧美成人综合另类久久久 | 日韩一本色道免费dvd| 国产精品精品国产色婷婷| 国产精品蜜桃在线观看| 精品熟女少妇av免费看| 最近视频中文字幕2019在线8| 嘟嘟电影网在线观看| 欧美最新免费一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久午夜电影| 麻豆精品久久久久久蜜桃| 成人高潮视频无遮挡免费网站| 亚洲av成人精品一二三区| 国产亚洲精品久久久com| 国产午夜精品一二区理论片| 亚洲国产精品sss在线观看| 18禁在线无遮挡免费观看视频| 亚洲av成人精品一区久久| 日韩一本色道免费dvd| 一个人免费在线观看电影| 免费黄网站久久成人精品| 亚洲电影在线观看av| 欧美一区二区国产精品久久精品| 欧美成人精品欧美一级黄| av福利片在线观看| 男女国产视频网站| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 一级二级三级毛片免费看| 国产91av在线免费观看| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 真实男女啪啪啪动态图| 国产亚洲5aaaaa淫片| 91久久精品国产一区二区成人| 十八禁国产超污无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 69人妻影院| 欧美成人一区二区免费高清观看| 色视频www国产| 欧美高清成人免费视频www| 国产精品一区二区性色av| 天天一区二区日本电影三级| 中文字幕av成人在线电影| 久久精品影院6| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品久久男人天堂| 亚洲国产精品合色在线| 五月伊人婷婷丁香| 一个人免费在线观看电影| 免费看av在线观看网站| 欧美变态另类bdsm刘玥| 国产伦精品一区二区三区视频9| 久久久久网色| 国产精品一区二区三区四区免费观看| 男女边吃奶边做爰视频| 亚洲人成网站在线播| 国产一级毛片七仙女欲春2| 乱人视频在线观看| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 亚洲精品国产av成人精品| 免费av观看视频| 99久久精品热视频| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 亚洲熟妇中文字幕五十中出| 中文字幕制服av| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 国产色婷婷99| 黄片wwwwww| 国产精品久久视频播放| 亚洲成av人片在线播放无| 国产真实伦视频高清在线观看| 男人的好看免费观看在线视频| 午夜免费男女啪啪视频观看| 国产精品一及| 一级av片app| 午夜福利在线观看免费完整高清在| 国产视频首页在线观看| 天堂影院成人在线观看| 国产精品福利在线免费观看| 在现免费观看毛片| 久久久久久久久久久免费av| 亚洲国产欧美人成| 精品人妻一区二区三区麻豆| 日本与韩国留学比较| 春色校园在线视频观看| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看 | 人体艺术视频欧美日本| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| av在线观看视频网站免费| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线乱码| 爱豆传媒免费全集在线观看| 中文字幕免费在线视频6| 国产午夜精品一二区理论片| 在线播放国产精品三级| 人人妻人人澡人人爽人人夜夜 | 99久久无色码亚洲精品果冻| 亚洲av熟女| 久久久久网色| 欧美高清性xxxxhd video| 最近的中文字幕免费完整| 级片在线观看| 在线a可以看的网站| 日日撸夜夜添| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 少妇的逼水好多| 神马国产精品三级电影在线观看| 国产视频首页在线观看| 色视频www国产| 搞女人的毛片| 精华霜和精华液先用哪个| 一边摸一边抽搐一进一小说| 国产免费又黄又爽又色| 国产精品福利在线免费观看| 18禁在线无遮挡免费观看视频| av在线老鸭窝| 日本与韩国留学比较| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| a级毛片免费高清观看在线播放| 直男gayav资源| 日本五十路高清| 国产亚洲av嫩草精品影院| 人妻制服诱惑在线中文字幕| 中文字幕熟女人妻在线| 日韩视频在线欧美| 国产精品久久久久久精品电影| a级毛色黄片| 亚洲中文字幕一区二区三区有码在线看| 日本爱情动作片www.在线观看| 可以在线观看毛片的网站| 日韩精品有码人妻一区| 欧美成人午夜免费资源| 高清午夜精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 免费黄网站久久成人精品| 精品人妻偷拍中文字幕| 超碰av人人做人人爽久久| 麻豆乱淫一区二区| 亚洲av免费高清在线观看| 国产在视频线在精品| 国产熟女欧美一区二区| 国产高清视频在线观看网站| 好男人在线观看高清免费视频| 91狼人影院| 亚洲av.av天堂| 能在线免费观看的黄片| 免费看光身美女| 国产亚洲91精品色在线| 精品99又大又爽又粗少妇毛片| 国产精品一区二区性色av| 99九九线精品视频在线观看视频| 国产亚洲av片在线观看秒播厂 | 午夜免费男女啪啪视频观看| 美女大奶头视频| 99国产精品一区二区蜜桃av| 国产在线一区二区三区精 | 97人妻精品一区二区三区麻豆| av卡一久久| 国产免费又黄又爽又色| 神马国产精品三级电影在线观看| 成人午夜高清在线视频| 国产乱人偷精品视频| 国内精品美女久久久久久| 嫩草影院精品99| 中文字幕亚洲精品专区| 欧美日韩一区二区视频在线观看视频在线 | 国产免费视频播放在线视频 | 在线播放无遮挡| 亚洲18禁久久av| 欧美高清性xxxxhd video| 深夜a级毛片| 久久精品国产亚洲网站| 亚洲精品乱码久久久久久按摩| 毛片女人毛片| 国产极品精品免费视频能看的| 国产精品久久视频播放| 国产精品一区二区三区四区免费观看| 超碰av人人做人人爽久久| 亚洲人成网站在线观看播放| 成人特级av手机在线观看| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站 | 国产精品无大码| 午夜激情福利司机影院| 国产成人精品久久久久久| 日韩高清综合在线| 一个人看的www免费观看视频| 国产黄片视频在线免费观看| 欧美日韩国产亚洲二区| 听说在线观看完整版免费高清| 国产一区有黄有色的免费视频 | 国产男人的电影天堂91| 十八禁国产超污无遮挡网站| 免费电影在线观看免费观看| 欧美极品一区二区三区四区| 91av网一区二区| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 如何舔出高潮| 亚洲真实伦在线观看| 熟女人妻精品中文字幕| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 1000部很黄的大片| 久99久视频精品免费| 亚洲欧美精品自产自拍| 国产片特级美女逼逼视频| 欧美日韩一区二区视频在线观看视频在线 | 寂寞人妻少妇视频99o| 97热精品久久久久久| 免费无遮挡裸体视频| 女人十人毛片免费观看3o分钟| 国产成人freesex在线| 一级毛片久久久久久久久女| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区四区激情视频| 亚洲在久久综合| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 精品酒店卫生间| 亚洲av熟女| 欧美激情久久久久久爽电影| 91精品伊人久久大香线蕉| www.av在线官网国产| 成人午夜高清在线视频| 黄色日韩在线| 插阴视频在线观看视频| 日本黄大片高清| 亚洲精品国产av成人精品| 插逼视频在线观看| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 日本欧美国产在线视频| 22中文网久久字幕| 麻豆乱淫一区二区| 亚洲国产精品sss在线观看| 久久精品国产99精品国产亚洲性色| 国产精品无大码| 一级av片app| 哪个播放器可以免费观看大片| 欧美丝袜亚洲另类| 只有这里有精品99| 成人鲁丝片一二三区免费| 国产一区二区三区av在线| 国产精品伦人一区二区| 日韩精品有码人妻一区| 日韩欧美国产在线观看| 国产男人的电影天堂91| 赤兔流量卡办理| 国产精品爽爽va在线观看网站| 亚洲精华国产精华液的使用体验| 我要搜黄色片| 黄色一级大片看看| 日韩欧美精品免费久久| 国产精品一区二区性色av| 亚洲国产精品成人久久小说| 午夜福利在线在线| 亚洲精品456在线播放app| 黄片wwwwww| 九九爱精品视频在线观看| 色综合亚洲欧美另类图片| 尤物成人国产欧美一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 色5月婷婷丁香| 青青草视频在线视频观看| 国产精品99久久久久久久久| 女人十人毛片免费观看3o分钟| 亚洲经典国产精华液单| 日本一二三区视频观看| 在线观看av片永久免费下载| 欧美3d第一页| 亚洲欧洲国产日韩| 国产大屁股一区二区在线视频| 亚州av有码| 99热精品在线国产| 成人漫画全彩无遮挡| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6| 看十八女毛片水多多多| 国产亚洲精品久久久com| 国产高潮美女av| 精品无人区乱码1区二区| 久久99精品国语久久久| 精品久久久久久成人av| 亚洲精品色激情综合| 欧美潮喷喷水| 亚洲av一区综合| 黄色配什么色好看| 午夜免费激情av| 成人毛片60女人毛片免费| 午夜激情欧美在线| 五月伊人婷婷丁香| 国产综合懂色| 一级毛片电影观看 | 国产精品日韩av在线免费观看| 亚洲欧美精品综合久久99| 国产爱豆传媒在线观看| 免费黄色在线免费观看| av播播在线观看一区| 久久久国产成人精品二区| 成人三级黄色视频| 亚洲图色成人| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 一夜夜www| 网址你懂的国产日韩在线| 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 麻豆av噜噜一区二区三区| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| 国国产精品蜜臀av免费| 99热精品在线国产| 亚洲av一区综合| 黄色日韩在线| 午夜爱爱视频在线播放| 欧美日韩在线观看h| 久久精品国产亚洲av天美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本欧美国产在线视频| 汤姆久久久久久久影院中文字幕 | 午夜精品一区二区三区免费看| 亚洲精品国产成人久久av| 国产成人freesex在线| 丰满少妇做爰视频| 日本免费一区二区三区高清不卡| 久久99热6这里只有精品| 国内揄拍国产精品人妻在线| 免费观看精品视频网站| 一级毛片久久久久久久久女| 精品国产一区二区三区久久久樱花 | av黄色大香蕉| 色综合站精品国产| 久久久久国产网址| 日本一二三区视频观看| 日本五十路高清| 免费黄网站久久成人精品| 五月玫瑰六月丁香| 麻豆成人av视频| 欧美xxxx黑人xx丫x性爽| 纵有疾风起免费观看全集完整版 | 国产大屁股一区二区在线视频| 国产亚洲午夜精品一区二区久久 | 免费人成在线观看视频色| 青青草视频在线视频观看| 国产高清不卡午夜福利| 国产人妻一区二区三区在| 美女大奶头视频| 99热这里只有精品一区| 九色成人免费人妻av| 精品少妇黑人巨大在线播放 | 中文字幕av成人在线电影| 超碰97精品在线观看| 99久久精品热视频| 国产在线男女| 卡戴珊不雅视频在线播放| 国产免费一级a男人的天堂| 麻豆精品久久久久久蜜桃| 男人舔女人下体高潮全视频| 最近最新中文字幕大全电影3| 天堂√8在线中文| 日韩成人伦理影院| 精品久久久久久久末码| 日韩av在线免费看完整版不卡| 极品教师在线视频| 亚洲av.av天堂| 国产伦精品一区二区三区四那| 少妇裸体淫交视频免费看高清| 亚洲av二区三区四区| 简卡轻食公司| av免费观看日本| 午夜精品一区二区三区免费看| 青春草亚洲视频在线观看| 国产精品1区2区在线观看.| 久久久国产成人免费| 哪个播放器可以免费观看大片| 18禁动态无遮挡网站| 最近最新中文字幕免费大全7| 国产又色又爽无遮挡免| av卡一久久| 成人毛片a级毛片在线播放| 欧美3d第一页| 国产欧美另类精品又又久久亚洲欧美| 欧美人与善性xxx| 午夜福利视频1000在线观看| av在线观看视频网站免费| 精品人妻一区二区三区麻豆| 综合色av麻豆| 亚洲成人av在线免费| 在线免费观看不下载黄p国产| 亚洲欧美成人综合另类久久久 | 91在线精品国自产拍蜜月| 三级国产精品欧美在线观看| 国产精品蜜桃在线观看| 国产成人福利小说| 亚洲色图av天堂| 国产美女午夜福利| 精品国产三级普通话版| 国产欧美日韩精品一区二区| 天天躁日日操中文字幕| 久久精品人妻少妇| 尤物成人国产欧美一区二区三区| 青春草亚洲视频在线观看| 中文亚洲av片在线观看爽| 青春草国产在线视频| 国产成人免费观看mmmm| 91狼人影院| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 久久久精品大字幕| 免费观看性生交大片5| 欧美日韩一区二区视频在线观看视频在线 | 成人毛片a级毛片在线播放| 亚洲av电影不卡..在线观看| 九色成人免费人妻av| 女人久久www免费人成看片 | 国产精品av视频在线免费观看| 赤兔流量卡办理| 一级毛片我不卡| 免费看a级黄色片| 国产综合懂色| 日本av手机在线免费观看| 国产精品一区二区性色av| 欧美另类亚洲清纯唯美| 国产视频首页在线观看| 精品不卡国产一区二区三区| 干丝袜人妻中文字幕| 亚洲自偷自拍三级| 黄色一级大片看看| 最近的中文字幕免费完整| 亚洲av男天堂| 亚洲,欧美,日韩| 久久久久网色| 久久婷婷人人爽人人干人人爱| 免费av观看视频| 国产亚洲精品久久久com| www日本黄色视频网| 免费人成在线观看视频色| av卡一久久| 婷婷色麻豆天堂久久 | 一边亲一边摸免费视频| 国产精品1区2区在线观看.| 成年免费大片在线观看| 久久精品影院6| 国语自产精品视频在线第100页| 国产美女午夜福利| 我的女老师完整版在线观看| 亚洲欧美日韩东京热| 亚洲人与动物交配视频| 最近最新中文字幕免费大全7| 日本熟妇午夜| 热99re8久久精品国产| 国产成人免费观看mmmm| 亚洲欧美日韩东京热| 久久精品夜色国产| 亚洲av男天堂| 精品少妇黑人巨大在线播放 | av国产免费在线观看| 欧美变态另类bdsm刘玥| 午夜福利视频1000在线观看| 26uuu在线亚洲综合色| 波多野结衣巨乳人妻| 国产在视频线精品| 日韩中字成人| 免费人成在线观看视频色| 亚洲国产最新在线播放| 少妇人妻一区二区三区视频| 麻豆一二三区av精品| 99久久精品国产国产毛片| 日韩精品有码人妻一区| 欧美日本视频| 国产精品嫩草影院av在线观看| 亚洲精品成人久久久久久| 免费观看精品视频网站|