• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analyzing Parabolic Profile Path for Underwater Towed-Cable

    2014-07-31 22:28:22VineetSrivastava

    Vineet K. Srivastava

    Analyzing Parabolic Profile Path for Underwater Towed-Cable

    Vineet K. Srivastava*

    ISRO Telemetry, Tracking and Command Network (ISTRAC), Bangalore 560058, India

    This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied. The established governing equations for the system have been solved using the central implicit finite-difference method. The obtained difference non-linear coupled equations are solved by Newton’s method and satisfactory results were achieved. The solution of this problem has practical importance in the estimation of dynamic loading and motion, and hence it is directly applicable to the enhancement of safety and the effectiveness of the offshore activities.

    underwater towed-cable; underwater towed system; parabolic profile; central implicit finite-difference method; Newton’s method; offshore activities

    1 Introduction1

    Underwater towed systems are fundamental tools for many marine applications including naval defense, oceanographic and geophysical measurements, e.g. in geophysical applications they are used for oil-prospecting whereas in naval applications they are used for acoustic detection of submerged targets. These systems can be as simple as a single cable with its towed vehicle or may be composed of multiple towed cables and multiple towed bodies. It is well known that the equations of motion for the cable and towed vehicle are non-linear and their dynamic behaviors during various operations are mutually dependent, as a result, these equations are strongly coupled. In order to study the complete problem, they must be solved simultaneously as a whole. It is not easy to solve such a complicated problem analytically and hence numerical methods are usually employed. The most prevalent approaches used in determining the hydrodynamic performances of a cable in an underwater towed system are the lumped mass method (Walton and Polacheck, 1960), inverse methods (Duncan et al., 2007; Todd et al., 2013) and the finite difference method (Ablow and Schechter, 1983; Milinazzo et al., 1987; Thomas et al., 1988; Grosenbaugh et al., 1993; Burgess, 1991; Thomas and Hearn, 1994; Vaz and Patel, 1995 and 1997; Gobat and Grosenbaug, 2006). However, according to Grosenbaugh et al. (1993), the explicit time domain integration scheme used in the lumped mass method made the method conditionally stable. Burgess (1991) pointed out that the time integration used in this algorithm requires the time step to be chosen so that the courant-friedrichs-levy wave condition is satisfied for the highest natural frequency of the lumped mass system. This restricts the use of very small time steps. However, Thomas and Hearn (1994) believed that the collapse of the numerical procedure at large time steps in the method is not due to the instability of the numerical scheme, but is caused by the failure of the Newton-Raphson iterative procedure adopted to determine the correct tension levels to solve the nonlinear equations of motion. The reason for the collapse of the numerical procedure in the lumped mass method may not be clear, however it is true that time steps in this method must be chosen very small in order to avoid the failure in numerical procedure on the basis of experiences (Burgess, 1991; Thomas and Heam, 1994). In the finite difference method, the governing equations for the underwater cable are derived from the balance of forces at a point of cable. Among various finite difference methods, the model developed by Ablow and Schechter (1983) is worthy to note. In this model, the cable is treated as a long thin flexible circular cylinder in arbitrary motion. It is assumed that the dynamics of cable are determined by gravity, hydrodynamic loading and inertial forces. The governing equations are formulated in a local tangential-normal coordinate frame which has un-stretched distance along the cable. The differential equations are then approximated by finite difference equations centered in time and space. By solving the equations, the motion of underwater cable can be determined in the time domain. The principal advantage of this method is that it uses implicit time integration and is stable for large time step sizes. It is a good algorithm for simulation of large-scale underwater cable motion.

    This paper presents a three-dimensional hydrodynamic model to simulate an underwater towed system. In the model, the governing equations of cable are established based on the method of Ablow and Schechter (1983). The six degrees-of-freedom equations of motion for submarine simulations are adopted to predict the hydrodynamicperformance of a towed vehicle. The established governing equations are solved using a central finite difference method. The solution of finite-difference form of the assembly of non-linear algebraic equations is obtained by the Newton’s method. Gauss elimination with partial pivoting is applied to solve the linear system obtained by Newton’s method (Tamsir and Srivastava, 2011 and 2012; Srivastava et al., 2013 and 2014). Since the model uses implicit time integration, it is stable for large time steps. It also gives more flexibility in choosing different time steps for different maneuvering problems, and is an effective algorithm for the simulation of a large-scale towed system.

    2 Mathematical formulation of the problem

    A mathematical model of maneuvering of underwater towed cable array system (Choo and Casarella, 1973) is used to find out the location and tension at any point on the cable as a function of time. The system is treated to be moving under the action of gravity, tow-ship, hydrodynamic loading and inertia forces.

    Let (,)θφ be the Euler angles defining the position of local reference frame relative to the Newtonian reference frame (,,)ijk, where t is tangential to the cable-array system and b is in the plane of i and j.

    The dynamic problem formulation is obtained by applying Newton’s second law of motion to the cable element of infinitesimally stretched length dS.

    where B is the momentum per unit length, Tis the tension,wFis the weight minus buoyancy per unit length anddF is the force exerted by the fluid on the cable-array system per unit length and is taken to be the sum of independently operating normal drag and tangential. A system of three scale equations is obtained by separating the three components of vector equation in the independent directions (,,)tnb. The compatibility relations in terms of velocity can be expressed as

    where r is a position vector from the origin of a fixed coordinate system (i,j,k) to a point on the cable-array system. The position vector r is a function of un-stretched cable-array system length coordinate s and the time t. By separating various components of the Eq. (2) in independent directions (t,n,b), a system of three scalar equations of compatibility is obtained. Three equations of motion and three equations of compatibility together present six scalar dynamic differential equations of first order in space variable s and time variable t. The six governing equations of motion in matrix form can be given as

    where,

    where A is the cross section area of un-stretched cable, Cnand Ctare normal and tangential drag coefficients, d is the diameter of cable, ρ is fluid density; dSis infinitesimal stretched cable length,e=, E is Young’s modulus, mis mass per unit length of cable, m1=m+ρA is virtual mass per unit length, w=(m?ρA)g is immersed weight per unit length, g is gravitational acceleration, T is cable tension magnitude; v is velocity of tow-ship, J=(Jt,Jn,Jb)is current velocity given in local frame (t,n,b), J˙=(J˙t,J˙n,J˙b)is the partial derivative of J with respect to time t holding s fixed, U=(Ut,Un,Ub)is tangential, normal and bi-normalcomponents of cable structural velocity relative to current velocity (V?J); x,y,z are trail, lateral shift and depth of a point on cable with respect to tow-point in the inertial frame, θ(s,t), φ(s,t ) Euler’s angles defining the position of local reference frame (t,n,b) relative to the inertial frame (i,j,k).

    3 Boundary and Initial conditions

    Three boundary conditions at the tow-point of the cable are provided by known velocity components of the tow-ship at any time, i.e.

    In terms of y, we have

    At the free end the three boundary conditions can be given as

    where,

    At t=0, it is assumed that the initial condition is known i.e. y(s, 0)is a known function of s(0≤s≤S). This condition along with six boundary conditions provides the complete solution of the governing equations. Computations start from a steady state solution (more precisely, the tow-ship is assumed to move with constant velocity), which is taken as the initial condition for the whole system. The variables T and φ are determined from equations

    As ()0TS=, the critical angle ()Sφ satisfies Eq. (8). Where T′ is the partial derivative of T with respect to s, holding t fixed; φ′partial derivative of φ with respect to s, holding t fixed. The position (,,)xyz of the cable, in the inertial frame, can be obtained from the relations

    Integrations in sdetermine (,,)xyz provided eT and the angles θ and φ are known.

    If we take

    ThentV,nV,bV can be obtained from the expressions

    where

    The angle θ is computed from the equation

    Jt,Jn,Jbare computed from the expressions:

    where J1, J2and J3are the current velocities in the inertial frame. Similarly, Ut,Un,Ubcan be computed from the relations

    Three components of the tow-ship velocity, free end zero tension along with subsequent two more free end boundary conditions provide a total of six requisite boundary conditions. The solutions of the six governing equations along with six boundary conditions provide dynamic response of the cable array system.

    4 Method of Solution

    Second order central finite difference method is applied to the governing differential Eq. (3) to convert them into the algebraic difference approximations. The total cable-array length S is divided into N segments of arbitrary length

    The time is divided into a number of intervals and various parameters are evaluated at all spatial grid points sjand temporal grid points ti. The discrete approximation to y(sj,ti)is taken to be Y with Yji≈y(sj,ti), forconvenience we use the following notations

    Discretizing the governing equations of motion (3) at the half-grid pointsand dropping second and higher order terms, we get

    Denoting left hand side of the Eq. (20) by, we have

    Similarly, the boundary conditions can be approximated as

    Eqs. (21), (22) and (23) can be together written as

    where

    The system (24) is an implicit, centered, second order approximation to the system of hyperbolic partial differential equations. GiveniY at timeit, the system of equations (24) determine1i+Y at1it+. Further we assume that the initial state of the cable0Y is known. The non-linear algebraic equations (24) are solved using Newton’s iterative method. The precise algorithm of Newton’s method is given below.

    (1) Obtain an estimate for Yi+1by extrapolating Yi?1and Yi, i.e.

    (2) Compute a correction to1i+Y by solving the linear system

    (3) Yi+1=Yi+ΔY gives the improved value of Yi+1.

    (4) If the absolute value of maximum relative change in any component of the solution Yi+1is less than 10?3, increment the time and go to step (a), otherwise repeat (b) and (c) using new value of Yi+1.

    In step (a), using Yias the initial guess for Yi+1is sufficient to achieve (quadratic) convergence. Gauss elimination with partial pivoting has been used to solve the linear system.

    5 Numerical results and discussions

    The developed Newton’s iterative scheme is implemented on the underwater towed cable-array model. The underwater towed cable-array system is discussed under a six segment model. In the towed cable-array model, the steady ocean current (0.5 m/s) was taken.

    5.1 Six segment cable model

    Here we discuss dynamic behavior of the cable during the ship maneuvering for three different oceanic current conditions using the developed code. Fig. 1 illustrates the towed array system while Table 1 gives the physical characteristics of each segment of six segment cable model.

    Fig. 1 Six Segment Towed Array System

    Table 1 Tow cable system physical properties

    5.2 Dynamic state analysis: parabolic profile path

    In this section, we discuss the dynamic state analysis of underwater towed-cable when tow-ship changes its speed making a parabolic profile path. Linear profile case is discussed by Srivastava et al. (2011). The parabolic profile can be given as

    where0v andfv are the tow-ship’s initial and final speeds, respectively and T is the elapsed time taken to reach the final speed. The tow-ship profile path is considered under three different conditions namely when its speed increases, decreases, and also with both situations, say 4 m/s to 12 m/s and 12 m/s to 4 m/s.

    5.2.1 Tow-ship accelerates from 4 m/s to 12 m/s in parabolic profile

    Fig. 2(a), (b) and (c) shows the graph between the trail and the cable depth when tow-ship accelerates from 4 m/s to 12 m/s in a parabolic path, when there is no current, against and along the current directions, respectively. The cable depth increases slightly, when the tow-ship accelerates, when there is no current, against and along the current directions, accordingly as shown in Table 2. It can be observed that maximum cable depth occurs when the tow-ship accelerates along the current direction and minimum cable depth occurs when the tow-ship is accelerating against the current direction. Fig. 2(d), (e) and (f) shows variation between the cable length and tension when tow-ship accelerates, when there is no current, against and along the current directions, respectively. The tow-point tension varies from 17.0 kN to 96.3 kN, 21.5 kN to 103.9 kN and 13.1 kN to 89.1 kN (refer Table 3), for three different current situations respectively. It can be seen that maximum tow-point tension occurs when tow-ship accelerates against the current direction and minimum occurs when tow-ship accelerates along the current direction.

    Fig. 2 Tow-ship accelerates from 4 to 12 m/s in parabolic path

    Table 2 Cable depth range (m) in parabolic profile

    Table 3 Tow-point tension range in parabolic profile

    5.2.2 Tow-ship decelerates from 12 m/s to 4 m/s in parabolic profile

    Fig. 3(a), (b) and (c) shows the graph between trail and cable depth when the tow-ship decelerates from 12 m/s to 4 m/s in a parabolic profile, with no current, against and along the current directions, respectively. It can be observed that maximum cable depth occurs when the tow-ship decelerates along the current direction and minimum cable depth occurs when the tow-ship decelerates against the current direction (refer Table 2).

    Fig. 3 Tow-ship decelerates from 12 to 4 m/s in parabolic profile

    Fig. 3(d), (e) and (f) shows the graph between the cable length and tension when the tow-ship decelerates from 12 m/s to 4 m/s, under no current, against and along the current directions. From Table 3, it could be observed that maximum tow-point tension occurs when the tow-ship decelerates against the current direction and minimum tow-point tension occurs when the tow-ship decelerates along the current direction.

    5.2.3 Tow-ship accelerates from 4 m/s to 12 m/s thereafter decelerates from 12 m/s to 4 m/s

    Fig. 4(a), (b) and (c) shows the graph between the trail and the cable depth when the tow-ship accelerates from 4 m/s to 12 m/s thereafter decelerates from 12 m/s to 4 m/s in a parabolic profile path, in case of no current, against and along the current directions, accordingly. It is observed that maximum cable depth occurs when the tow-ship accelerates and decelerates along the current direction and minimum cable depth occurs when the tow-ship is accelerating and decelerating against the current direction (refer Table 2). Fig. 4(d), (e) and (f) shows the graph between the cable length and tension when tow-ship accelerates from 4 m/s to 12 m/s thereafter decelerates from 12 m/s to 4 m/s, when there is no current, against and along the current direction. It is observed that maximum tow-point tension occurs when the tow-ship accelerates and decelerates against the current direction and minimum tow-point tension occurs when the tow-ship accelerates and decelerates along the current direction (refer Table 3).

    Fig. 4 Tow-ship accelerates from 4 m/s to 12 m/s then decelerates from 12 m/s to 4 m/s in parabolic curve

    From Tables 2 and 3 we observe the same variation in the cable depth but more variations in tow-point tension in comparison with the linear profile given by Srivastava et al. (2011).

    6 Conclusions

    A three-dimensional numerical program had been carried out for the analysis of the underwater towed cable-array system when tow-ship makes parabolic profile during manuoeuring. An implicit central finite difference method had been employed for solving the three dimensional cable equations. In order to solve the non-linear and coupled problems, Newton’s iteration scheme had been used, and satisfactory results were obtained. The developed numerical program can be applied to towed array systems for detecting a moving object or submarine.

    Ablow CM, Schechter S (1983). Numerical simulation of undersea cable dynamics. Ocean Engineering, 10(6), 443-457.

    Burgess JJ (1991). Modeling of undersea cable installation with a finite difference method. Proceedings of the 1st International Offshore and Polar Engineering Conference, Edinburgh, UK, 283-288.

    Choo YI, Casarella MJ (1973). A survey of analytical methods for dynamic simulation of cable- body systems. Journal of Hydronautics, 7(4), 137-144.

    Duncan RG, Froggatt, ME, Kreger ST, Seeley RJ, Gifford DK, Sang AK, Wolfe MS (2007). High-accuracy fiber optic shape sensing. Proceedings of SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring, San Diego, USA.

    Grosenbaugh MA, Howell CT, Moxnes S (1993). Simulating the dynamics of underwater vehicles with low-tension tethers. International Journal of Offshore and Polar Engineering, 3(3), 213-218.

    Gobat JI, Grosenbaugh MA (2006). Time-domain numerical simulation of ocean cable structures. Ocean Engineering, 33(10), 1373-1400.

    Milinazzo F, Wilkie M, Latchman SA (1987). An efficient algorithm for simulating the dynamics of the towed cable systems. Ocean Engineering, 14(6), 513-526.

    Srivastava VK, Sanyasiraju YVSS, Tamsir M (2011). Dynamic behavior of underwater towed cable in linear profile. IJSER, 2 (7), 1-6.

    Srivastava VK, Tamsir M (2012). Crank-Nicolson semi-implicit approach for numerical solutions of two-dimensional coupled nonlinear Burgers’ equations. International Journal of Applied Mechanics and Engineering, 17(2), 571-581.

    Srivastava VK, Awasthi MK, Singh S (2013). An implicit logarithmic finite-difference technique for two-dimensional coupled viscous Burgers’ equation. AIP Advances, 3(12), ADV122105-9.

    Srivastava VK, Tamsir M, Awasthi MK, Singh S (2014). One-dimensional coupled Burgers’ equation and its numerical solution by an implicit logarithmic finite-difference method. AIP Advances, 4(3), ADV037119-10.

    Tamsir M, Srivastava VK (2011). A semi-implicit finite-difference approach for two-dimensional coupled Burgers’ equations. IJSER, 2(6), 46-51.

    Thomas DO, Hearn GE (1994). Deepwater mooring line dynamics with emphasis on seabed interference effects. Proceedings of the 26th Offshore Technology Conference, Houston, USA, 203-214.

    Thomas ND, Thomas CS, James AT (1988). Numerical simulation of cable-towed acoustic arrays. Ocean Engineering, 15(6), 511-548.

    Todd MD, Stull CJ, Dickerson M (2013). A local material basis solution approach to reconstructing the three-dimensional displacement of rod-like structures from strain measurements. ASME Journal of Applied Mechanics, 80(4), 041028.

    Vaz MA, Patel MH (1995). Transient behavior of towed marine cables in two dimensions. Applied Ocean Research, 17, 143-153.

    Vaz MA, Patel MH (1997). Three dimensional transient analysis of the installation of marine cables. Acta Mechanica, 124, 1-26.

    Walton TS, Polacheck H (1960). Calculation of transient motion of submerged cables. Mathematics of Computation, 14, 27-46.

    Author’s biography

    1671-9433(2014)02-0185-08

    Srivastava

    his M. Sc. (Mathematics) degree from University of Allahabad in year 2007 and M. Tech. (Industrial Mathematics and Scientific Computing) in 2010 from Indian Institute of Technology Madras, Chennai, India. His research interest are numerical PDE, mathematical modeling, ocean engineering, computational biology, computational physics, flight dynamics, digital signal processing, orbital and celestial mechanics. Presently, he is working as a Scientist/Engineer in Indian Space Research Organization (ISRO), India.

    Received date: 2013-05-18.

    Accepted date: 2014-01-02.

    *Corresponding author Email: vineetsriiitm@gmail.com

    ? Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2014

    午夜精品久久久久久毛片777| 亚洲精品av麻豆狂野| 亚洲一区中文字幕在线| 国产成人系列免费观看| 国产黄色小视频在线观看| 日本一区二区免费在线视频| 精品一区二区三区av网在线观看| 麻豆成人av在线观看| 国产野战对白在线观看| 国产精品九九99| 亚洲五月婷婷丁香| 欧美久久黑人一区二区| 曰老女人黄片| 国产精品久久久av美女十八| 国内毛片毛片毛片毛片毛片| 少妇的丰满在线观看| 91在线观看av| 国产av在哪里看| 久久精品综合一区二区三区| 成人手机av| 黄色丝袜av网址大全| 免费无遮挡裸体视频| 色在线成人网| а√天堂www在线а√下载| 精品无人区乱码1区二区| 精品国内亚洲2022精品成人| 成人国产一区最新在线观看| 亚洲九九香蕉| 国产精品亚洲av一区麻豆| 亚洲午夜理论影院| 亚洲国产精品999在线| 嫩草影院精品99| 女警被强在线播放| 韩国av一区二区三区四区| 亚洲全国av大片| АⅤ资源中文在线天堂| 一进一出抽搐动态| 国产亚洲精品一区二区www| 男人舔奶头视频| 国产一区二区激情短视频| 欧美乱妇无乱码| 欧美久久黑人一区二区| 天天躁夜夜躁狠狠躁躁| 国产精品自产拍在线观看55亚洲| 免费在线观看成人毛片| 中文资源天堂在线| 美女大奶头视频| 久久中文字幕一级| 国产区一区二久久| 国产精品国产高清国产av| 亚洲成人中文字幕在线播放| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色| 高潮久久久久久久久久久不卡| 精品高清国产在线一区| 亚洲av五月六月丁香网| 在线视频色国产色| 国产91精品成人一区二区三区| 99国产极品粉嫩在线观看| 国产精品,欧美在线| videosex国产| 丝袜美腿诱惑在线| 1024视频免费在线观看| 麻豆成人午夜福利视频| 免费看日本二区| 啦啦啦观看免费观看视频高清| 成人永久免费在线观看视频| 亚洲国产高清在线一区二区三| 亚洲精品一区av在线观看| 婷婷六月久久综合丁香| 久久香蕉国产精品| 老鸭窝网址在线观看| 18禁黄网站禁片午夜丰满| 中文字幕最新亚洲高清| 国产熟女xx| 亚洲中文字幕一区二区三区有码在线看 | 女人被狂操c到高潮| 国产亚洲精品综合一区在线观看 | 成人三级做爰电影| 亚洲最大成人中文| 宅男免费午夜| 99热6这里只有精品| 人人妻人人看人人澡| 此物有八面人人有两片| 香蕉丝袜av| 狂野欧美激情性xxxx| 国内精品一区二区在线观看| 亚洲激情在线av| 一边摸一边抽搐一进一小说| 黄色a级毛片大全视频| 色哟哟哟哟哟哟| 波多野结衣高清作品| 久久性视频一级片| 怎么达到女性高潮| 2021天堂中文幕一二区在线观| 国产精品av久久久久免费| 国产日本99.免费观看| 好看av亚洲va欧美ⅴa在| 天天躁狠狠躁夜夜躁狠狠躁| 母亲3免费完整高清在线观看| 成人18禁在线播放| 一区二区三区高清视频在线| av有码第一页| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 日本 av在线| 欧美黑人巨大hd| 国产精品永久免费网站| 妹子高潮喷水视频| videosex国产| 人妻久久中文字幕网| 国产精品98久久久久久宅男小说| 亚洲,欧美精品.| 国产真实乱freesex| 人人妻人人看人人澡| 无遮挡黄片免费观看| cao死你这个sao货| 日韩大尺度精品在线看网址| 三级国产精品欧美在线观看 | 久9热在线精品视频| 一卡2卡三卡四卡精品乱码亚洲| 国产伦一二天堂av在线观看| 欧美黑人精品巨大| 18禁裸乳无遮挡免费网站照片| 99久久综合精品五月天人人| 女同久久另类99精品国产91| 国产一区二区激情短视频| 两人在一起打扑克的视频| 国产精品乱码一区二三区的特点| 中文字幕人妻丝袜一区二区| 国产69精品久久久久777片 | 深夜精品福利| 亚洲免费av在线视频| 日本熟妇午夜| 88av欧美| 99久久综合精品五月天人人| 12—13女人毛片做爰片一| 变态另类丝袜制服| 国产97色在线日韩免费| 手机成人av网站| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器 | 欧美激情久久久久久爽电影| 长腿黑丝高跟| 色av中文字幕| 日本免费一区二区三区高清不卡| 91av网站免费观看| 正在播放国产对白刺激| 男女午夜视频在线观看| 日本一二三区视频观看| 一级毛片高清免费大全| 在线永久观看黄色视频| 97超级碰碰碰精品色视频在线观看| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久精品电影| 国产av又大| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 亚洲国产欧美网| 搡老岳熟女国产| 久久久久九九精品影院| 欧美日本视频| 香蕉av资源在线| 日韩有码中文字幕| 变态另类成人亚洲欧美熟女| 久久久久久大精品| 日韩欧美在线二视频| 麻豆久久精品国产亚洲av| 露出奶头的视频| 亚洲男人的天堂狠狠| 精品一区二区三区视频在线观看免费| 淫秽高清视频在线观看| 欧美大码av| 亚洲av成人不卡在线观看播放网| 午夜福利在线观看吧| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| av片东京热男人的天堂| 亚洲熟女毛片儿| 久久久久久久午夜电影| 国产高清videossex| 午夜视频精品福利| 老鸭窝网址在线观看| 国产精品电影一区二区三区| 男人舔女人下体高潮全视频| 亚洲成av人片免费观看| 激情在线观看视频在线高清| 中文字幕熟女人妻在线| 精品第一国产精品| 五月伊人婷婷丁香| 日韩有码中文字幕| 日本成人三级电影网站| videosex国产| 两个人看的免费小视频| 欧美在线黄色| 日韩有码中文字幕| 熟女电影av网| 香蕉丝袜av| 最近最新中文字幕大全电影3| 91字幕亚洲| 黄频高清免费视频| 欧美极品一区二区三区四区| 看黄色毛片网站| 国产三级中文精品| 亚洲精品粉嫩美女一区| 亚洲成av人片免费观看| 脱女人内裤的视频| 夜夜看夜夜爽夜夜摸| 色噜噜av男人的天堂激情| 久久中文字幕一级| 很黄的视频免费| 真人做人爱边吃奶动态| ponron亚洲| 色综合站精品国产| 日本一区二区免费在线视频| 一级毛片高清免费大全| 此物有八面人人有两片| 18禁国产床啪视频网站| 亚洲人成网站在线播放欧美日韩| 香蕉av资源在线| 十八禁人妻一区二区| 亚洲欧洲精品一区二区精品久久久| 欧美乱色亚洲激情| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| 身体一侧抽搐| 变态另类丝袜制服| 18禁黄网站禁片午夜丰满| 人人妻人人看人人澡| 免费看a级黄色片| 久久中文字幕一级| 久久草成人影院| 777久久人妻少妇嫩草av网站| 一进一出好大好爽视频| 午夜免费激情av| 欧美一级a爱片免费观看看 | 免费人成视频x8x8入口观看| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕日韩| 亚洲av熟女| 日日爽夜夜爽网站| 黄片小视频在线播放| 亚洲免费av在线视频| 亚洲 欧美 日韩 在线 免费| 亚洲精华国产精华精| 黄色毛片三级朝国网站| 欧美黑人欧美精品刺激| 一本精品99久久精品77| 国产精品av视频在线免费观看| 18禁黄网站禁片午夜丰满| 国产亚洲av高清不卡| 男女之事视频高清在线观看| 男男h啪啪无遮挡| 亚洲激情在线av| 国产成人欧美在线观看| 人人妻,人人澡人人爽秒播| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区mp4| 日韩欧美免费精品| 真人做人爱边吃奶动态| 日韩三级视频一区二区三区| 最新美女视频免费是黄的| 亚洲国产精品sss在线观看| 日韩有码中文字幕| 亚洲成人久久性| 免费看十八禁软件| av免费在线观看网站| 日韩欧美免费精品| 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久av网站| 欧美中文综合在线视频| 高潮久久久久久久久久久不卡| 欧美在线黄色| 亚洲第一欧美日韩一区二区三区| 日本五十路高清| 香蕉国产在线看| 婷婷精品国产亚洲av| 免费看美女性在线毛片视频| 麻豆一二三区av精品| 亚洲,欧美精品.| 亚洲avbb在线观看| 一级a爱片免费观看的视频| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 这个男人来自地球电影免费观看| 国产精品免费视频内射| 亚洲aⅴ乱码一区二区在线播放 | 日本 欧美在线| 一本大道久久a久久精品| 九色成人免费人妻av| 高清在线国产一区| 久久99热这里只有精品18| 精品久久蜜臀av无| 最好的美女福利视频网| 久久久精品国产亚洲av高清涩受| 成人特级黄色片久久久久久久| cao死你这个sao货| 国产精品国产高清国产av| 国内毛片毛片毛片毛片毛片| 麻豆一二三区av精品| 88av欧美| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久久久黄片| 国产精品一区二区免费欧美| 宅男免费午夜| 久久人妻av系列| 国产精品av视频在线免费观看| 中出人妻视频一区二区| 日韩欧美精品v在线| 热99re8久久精品国产| 亚洲精品中文字幕在线视频| 午夜精品在线福利| 日本黄色视频三级网站网址| 在线观看免费日韩欧美大片| 亚洲人成网站在线播放欧美日韩| 99riav亚洲国产免费| 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩东京热| 中文字幕熟女人妻在线| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| 国产av麻豆久久久久久久| 国产精品一区二区三区四区久久| 在线播放国产精品三级| av国产免费在线观看| 99久久精品国产亚洲精品| 久久久久久九九精品二区国产 | 97碰自拍视频| 99久久国产精品久久久| 神马国产精品三级电影在线观看 | 亚洲国产精品999在线| 很黄的视频免费| 久久精品国产亚洲av香蕉五月| xxxwww97欧美| 午夜视频精品福利| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 成年人黄色毛片网站| 欧美黑人巨大hd| 国产精品,欧美在线| 亚洲av电影不卡..在线观看| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 亚洲黑人精品在线| 国产精品一区二区三区四区免费观看 | 在线观看www视频免费| 又大又爽又粗| 午夜两性在线视频| 给我免费播放毛片高清在线观看| 国产午夜福利久久久久久| 这个男人来自地球电影免费观看| 亚洲国产欧美网| 亚洲18禁久久av| 在线观看美女被高潮喷水网站 | 哪里可以看免费的av片| 特大巨黑吊av在线直播| 国产一区二区三区视频了| АⅤ资源中文在线天堂| 国产97色在线日韩免费| 免费无遮挡裸体视频| 在线免费观看的www视频| 热99re8久久精品国产| 婷婷精品国产亚洲av| 亚洲国产欧美人成| 亚洲精品国产一区二区精华液| 精品国产超薄肉色丝袜足j| 日韩欧美免费精品| 欧美一级a爱片免费观看看 | 亚洲全国av大片| 国产午夜精品久久久久久| 亚洲色图 男人天堂 中文字幕| 国产精品野战在线观看| 亚洲成人久久性| a级毛片在线看网站| 亚洲国产日韩欧美精品在线观看 | 国产亚洲精品av在线| 久久久久久久久久黄片| 精品午夜福利视频在线观看一区| 免费在线观看影片大全网站| а√天堂www在线а√下载| 高潮久久久久久久久久久不卡| 国产不卡一卡二| 三级毛片av免费| 精品不卡国产一区二区三区| 日本免费a在线| 一级毛片精品| 美女黄网站色视频| 国产成人啪精品午夜网站| 国产亚洲精品第一综合不卡| 99国产精品一区二区蜜桃av| 脱女人内裤的视频| 国产欧美日韩一区二区三| 黄片大片在线免费观看| av视频在线观看入口| 淫妇啪啪啪对白视频| 丁香欧美五月| 国产真实乱freesex| 午夜激情av网站| 极品教师在线免费播放| 99热这里只有是精品50| 午夜a级毛片| 亚洲人成伊人成综合网2020| 久久精品91蜜桃| 欧美zozozo另类| 亚洲专区字幕在线| www.999成人在线观看| 午夜成年电影在线免费观看| 妹子高潮喷水视频| 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 哪里可以看免费的av片| 最近最新免费中文字幕在线| 天堂av国产一区二区熟女人妻 | 国产91精品成人一区二区三区| 操出白浆在线播放| 亚洲成人免费电影在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产清高在天天线| 国产69精品久久久久777片 | 国产精品影院久久| 男人的好看免费观看在线视频 | 欧美在线一区亚洲| 波多野结衣巨乳人妻| 美女黄网站色视频| 最新在线观看一区二区三区| 日韩免费av在线播放| 这个男人来自地球电影免费观看| 天天一区二区日本电影三级| 欧美一区二区国产精品久久精品 | 少妇粗大呻吟视频| 欧美乱妇无乱码| 国产黄片美女视频| 日日干狠狠操夜夜爽| 国产乱人伦免费视频| 久久天躁狠狠躁夜夜2o2o| 亚洲成人免费电影在线观看| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 高清在线国产一区| 黄色视频不卡| 国产伦一二天堂av在线观看| 午夜福利在线观看吧| 不卡一级毛片| 99热6这里只有精品| 美女免费视频网站| 观看免费一级毛片| 国产一区二区在线av高清观看| 国产亚洲精品av在线| 国产高清有码在线观看视频 | av在线天堂中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产精品 国内视频| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区精品| 又粗又爽又猛毛片免费看| 18禁裸乳无遮挡免费网站照片| 亚洲专区字幕在线| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 久久香蕉国产精品| 制服人妻中文乱码| 国产精品久久久av美女十八| 非洲黑人性xxxx精品又粗又长| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频 | 一本大道久久a久久精品| www.999成人在线观看| 日本在线视频免费播放| 国产真人三级小视频在线观看| 欧美丝袜亚洲另类 | 人妻久久中文字幕网| 亚洲国产精品999在线| 麻豆成人午夜福利视频| 熟女电影av网| 日日干狠狠操夜夜爽| 欧美日韩国产亚洲二区| av有码第一页| 中文字幕久久专区| 欧美在线黄色| 少妇的丰满在线观看| 亚洲专区中文字幕在线| 1024视频免费在线观看| 色老头精品视频在线观看| 一个人免费在线观看电影 | 久久精品亚洲精品国产色婷小说| 亚洲性夜色夜夜综合| 亚洲av中文字字幕乱码综合| 国产成年人精品一区二区| 久久久久久久久免费视频了| 香蕉av资源在线| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 成人三级做爰电影| 免费在线观看完整版高清| 成人精品一区二区免费| 大型av网站在线播放| 亚洲精品中文字幕在线视频| 夜夜夜夜夜久久久久| 男女做爰动态图高潮gif福利片| 91老司机精品| 日本免费a在线| 欧美成人午夜精品| 欧美日韩福利视频一区二区| 亚洲国产看品久久| 亚洲欧美日韩高清在线视频| 国产黄色小视频在线观看| 成人特级黄色片久久久久久久| 三级毛片av免费| 亚洲精品久久成人aⅴ小说| 国产探花在线观看一区二区| 午夜亚洲福利在线播放| 久久精品91蜜桃| 国产成人一区二区三区免费视频网站| www日本黄色视频网| 欧美一级a爱片免费观看看 | 一级黄色大片毛片| 国产麻豆成人av免费视频| 啦啦啦免费观看视频1| 欧美一级a爱片免费观看看 | 日韩中文字幕欧美一区二区| 成年免费大片在线观看| 午夜免费观看网址| 91在线观看av| 桃红色精品国产亚洲av| 国产av在哪里看| 精品久久久久久久久久久久久| 90打野战视频偷拍视频| 亚洲色图av天堂| 国产成人aa在线观看| 啦啦啦免费观看视频1| 中文字幕久久专区| 国产成人精品久久二区二区91| 久久久久久免费高清国产稀缺| xxxwww97欧美| 免费在线观看完整版高清| 韩国av一区二区三区四区| a在线观看视频网站| 久久久久亚洲av毛片大全| 亚洲欧洲精品一区二区精品久久久| 一个人免费在线观看的高清视频| 欧美不卡视频在线免费观看 | 中文字幕人成人乱码亚洲影| 精品国产乱子伦一区二区三区| 亚洲av第一区精品v没综合| 日本黄大片高清| 国产精品亚洲av一区麻豆| 亚洲精品色激情综合| 国产成+人综合+亚洲专区| 亚洲成av人片免费观看| 五月伊人婷婷丁香| 国产探花在线观看一区二区| cao死你这个sao货| www.自偷自拍.com| 99热这里只有精品一区 | 最近最新中文字幕大全免费视频| 999精品在线视频| 免费看日本二区| 国产av不卡久久| 婷婷亚洲欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品久久成人aⅴ小说| 成人一区二区视频在线观看| 母亲3免费完整高清在线观看| 男人舔奶头视频| 国产高清videossex| 亚洲九九香蕉| 久久婷婷成人综合色麻豆| 精品午夜福利视频在线观看一区| 国产一区二区激情短视频| 在线观看66精品国产| 亚洲成人久久爱视频| 精品国产美女av久久久久小说| 国产午夜精品论理片| 毛片女人毛片| 亚洲国产看品久久| 久久久久久久久中文| 亚洲精品久久国产高清桃花| 男女午夜视频在线观看| 高潮久久久久久久久久久不卡| 欧美成人性av电影在线观看| 又粗又爽又猛毛片免费看| 天堂影院成人在线观看| 免费看美女性在线毛片视频| 两个人的视频大全免费| 欧美国产日韩亚洲一区| 久久久国产精品麻豆| 国产精品久久久久久久电影 | 国产成人一区二区三区免费视频网站| 色综合亚洲欧美另类图片| 中文资源天堂在线| 国产av又大| www日本黄色视频网| 中文字幕高清在线视频| 黄频高清免费视频| 精品电影一区二区在线| 国产av一区在线观看免费| 在线观看美女被高潮喷水网站 | 99riav亚洲国产免费| 亚洲自拍偷在线| 怎么达到女性高潮| 中亚洲国语对白在线视频| 免费看a级黄色片| 午夜精品一区二区三区免费看| 男女视频在线观看网站免费 | 国产高清videossex| 我要搜黄色片| 亚洲专区中文字幕在线| 国产高清videossex| а√天堂www在线а√下载| 亚洲av成人不卡在线观看播放网| 国产aⅴ精品一区二区三区波|