• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive dynamic optimization design of machining center

    2014-07-31 20:22:25KuizhouSUNJinyuZHOU
    機(jī)床與液壓 2014年2期
    關(guān)鍵詞:立柱適應(yīng)性動(dòng)態(tài)

    Kui-zhou SUN, Jin-yu ZHOU

    Jiangsu University of Technology, Changzhou 213001, China

    Adaptive dynamic optimization design of machining center

    pillar*

    Kui-zhou SUN?, Jin-yu ZHOU

    JiangsuUniversityofTechnology,Changzhou213001,China

    Analysis has been made on the adaptive dynamic optimization design of machining center pillar by using the quantitative analysis tools. The adaptive comprehensive evaluation index is proposed and the adaptive comprehensive evaluation model of product is established. On the basis of primary evaluation on various indicators such as product function adaptability with methods of Multilevel Fuzzy Integrative Evaluation, the secondary comprehensive evaluation will be continued and comprehensive adaptability evaluation level of VMC850 machining center pillar will be gained, thus it could provide guides and evidence for further improvement of product design. Through presenting adaptive measuring values of all proposals in schematic design phase, the quantitated could be evaluated on the complexity of modifying the design.

    Adaptive design, Dynamic optimization, Machining center pillar

    1.Introduction

    Pillar, an important part of the machining center, bears a direct link with the working performance of the complete machine. Therefore, it is very necessary to enhance static-dynamic performance of the pillar. Empirical design has been adopted in machine tool parts and it basically remains in static design stage[1]. In recent years, scholars have come to realize the importance of CAE analysis[2]. In particular, they proposed many methods of dynamic design to analyze the influence exerted by the dynamic behavior of machine tools on precision machine finish. For instance, Zhang Xueling[3] in Tianjin University adopted the principals of dynamic structure and variational analysis technology of finite element method to realize the optimum structural design of lathe bed of numerically-controlled machine tool.And also, Zhang Jianrun and Ni Xiangyang in Southeast University began to carry out the research to establish the structural dynamics modeling of gantry machining center and optimization design. They adopted the methods of sensitivity analysis and optimization design, as well as by using the tuned damper to improve dynamic property of complete machine[4].

    All of the above work could improve the dynamic behavior of machine tool to some extent and also offer some reference for dynamic optimization design of machining center pillar. While all of the above are almost dynamic designs under single target, this paper is about to apply adaptive dynamic design[5], a concept proposed by professor Gu Peihua, to utilize principals of similarity and reusability to finish the rapid modification, reusing and substitute of products of mechanical structure and thus to explore systematic products of serialization on that base and at the same time to realize rapid modification so as to meet the rapid and personalized market demand of small amount.

    Adaptive dynamic design is an integrated design under multi-target control and constraint and also a function-driven physical design, of which key is using the dynamic design technique to study the product life cycle of adaptive products and the dynamic design based on CAE mechanical structure under the constraint of social economy, resources and environment. This paper is about to choose VMC850 pillar in vertical machining center of precision as research object, to analyze adaptive dynamic design of machining center pillar structure, adopt CAD/CAE integrated simulation technology to conduct parametric design and finite element analysis on pillar structure, and continue to improve the structure as well as dynamic parameter optimization on that basis so as to offer fundamental basis for the design of precision vertical machining center pillar and evidence for the optimization design.

    2.Finite element analysis of the original pillar

    2.1.Modeling of finite element model of pillar

    VMC850 precision vertical machining center (as shown in Figure 1) is a kind of numerically-controlled machine tool with three axes association and the pillar have to be equipped with excellent static and dynamic performance because it functions as a link between spindle box and workbench. The pillar geometric model adopts parametric 3D modeling software UG to obtain the model (as shown in Figure 2) and the materials of the pillar is HT300. Because of the seamless connection between UG and ANSYS WOKBENCH, we can directly import the modeling based on UG into ANSYS WOKBENCH to conduct finite element analysis. Because the shape of the pillar is very complex, methods of exquisite mesh generation in ANSYS WOKBENCH are employed in this paper. After mesh is generated, the total number of node for this finite element model is 39662 and number of element is 21528. As shown in Figure 3, 7 bolts serving as a fix between the main body of pillar and the slide. After finishing all the above-mentioned steps, we can simulate the practical operating condition to carry out the finite element analysis on the pillar and draw some conclusions for further optimization design.

    2.2.Statics analysis of pillar

    The pillar needs to be carried out a statics analysis because it locates in a crucial part in machine tool and has to meet a high stiffness requirement. Force applied on the pillar is complex to analyze, so we just equal it to a respective 300 N concentrated load imposed inX,YandZdirection, three parts linked with the pillar and lead screw of up-and-down motion. And at the same time, we also need to impose fixed constraint in the part of connection between the lower end face of the pillar and the slide while there is no constraint on the upper end face.

    Figure 1. VMC850 machining center

    Figure 2. 3D model of original pillar

    Figure 3. Finite element model of original pillar

    The result of the static finite element analysis is presented in Table 1 and Table 2. Table 1 tells that all of the maximum deflection in various directions of pillar is small, and Table 2 tells that static rigidity of pillar inXdirection is the worst, and InYdirection is the second and InZdirection is the best. Stiffness inXandYdirection is a weak part in the whole process of the machine tool part, exerting a restriction on the improvement of the engine performance. From the point of stress analysis, the stress of material is far smaller than the maximum permissible stress, so the key to enhance stiffness lies in structure optimization of the pillar with machine precision being the guarantee.

    Table 1. Static mechanics of primary structure

    Table 2. Static stiffness of primary pillar

    2.3.Modal analysis of pillar

    Due to vibration caused by alternating load when the machine tool is machining the parts, a major dynamic stress arises in internal structure, exerting a serious deformation and a big damage on the pillar, thus it will affect the precision and stability of machining. As a result, modal analysis is essential part. In order to improve accuracy and efficiency of the result, modal analysis of finite element is needed to ascertain vibration performance of pillar structure—inherent frequency and mode of vibration. During the structural dynamic analysis, weight factor of all stages of models decreases as the modal frequency increases[6], so the conclusion is that characteristics of mode of lower stage basically determinates dynamic property of the pillar structure. In this paper, we only study the first 4 stages of inherent frequency and mode of vibration in pillar structure. By using subspace iteration method in ANSYS WORKBENCH, we try to seek for a finite element solution of inherent frequency and mode of vibration proposed there is no damping and the vibration is free. The results are listed in Table 3 and Table 4.

    Table 3. The inherent frequency and mode of vibration in the 4 first orders of the primary pillar

    Table 4. Three kinds of improved designs

    The Table 4 tells that the 1st order twists inZdirection, 3rd order protrudes and vibrates inXdirection, and both the 2rd and the 4th order swing inXandYdirection. The main reason leading to protrusion and vibration is the lack of appropriate strengthening rib plate in the inner part of the pillar and the unreasonable size of open hole in the back of the pillar, so we have to improve the design of the pillar structure.

    Figure 4. Modal cloud table of pillar

    3.The improved design and optimal selection of schemes of pillar structure

    Based on statics and the simulation results of modal finite element, we analyze the form of removed area in the center of the back of pillar as well as influence on structural dynamic and static performances exerted by the change of arrangement form of strengthening rib plate in the inner pillar so as to improve the pointed structure and thus realize multi-target dynamic optimization design to enhance static and dynamic performance of pillar.

    3.1.The improved design of pillar structure

    The object of improving the pillar structure is to guarantee the numerical value of static rigidity and improve inherent frequency or its weak modal at the premise of controlling the pillar quality. Based on the above improvement ideas and analysis results of static and dynamic finite element, we propose 3 improvement solutions as listed in Table 4 and its three-dimensional geometrical modeling in Figures 5~7.

    Then we import the geometric model of various improved designs into ANSYS WORKBENCH to build finite element modeling, and proceed to the process of respective dynamic and static simulation solution after pretreatment, finally we get analyzed data( as listed in Table 5). We regard light weight as quality indicator, displacement of the maximum deformation and the maximum stress as indicators for static performance check; in addtion, we regard inherent frequency in the first 4 orders as indicators for vibration resistance check[7].

    Figure5.DesignS1Figure6.DesignS2

    Figure 7. Design S3

    First-gradeindexSecond-gradeindexDesignS0DesignS1DesignS2DesignS3Qualityquality398.997423.995425.763369.372Maximumdisplacement/10-4mwhole4.0653.8983.9094.177XDirection3.0442.9092.9183.241YDirection2.6732.5732.5802.607ZDirection0.7360.6930.7030.626Maximumstress/MPaprincipalstress55.60163.13262.37663.283shearingstrength28.90234.19233.73632.31Inherentfrequency/Hzmodalof1storder111.5200.34199.85188.97modalof2rdorder177.59204.92204.41190.95modalof3rdorder263.09343.88351.71341.28modalof4thorder298.14486.68490.03396.36

    3.2.Optimal selection method of the improved designs

    According to principals of adaptive design[8], we give a comprehensive assessment on the improved design through comprehensive evaluation method of static and dynamic performance, and pick out the best design. If we assume thatS={S1,S2,…,Sn} is the improved design based on primary designS0andU={U1,U2,…,Um} is a group of evaluation index. Based on principals of fuzzy conversion, evaluation model could be expressed as follows:

    (1)

    In this formula,Wis weight vector of performance index;Ris matrix of performance evaluation;Ciis evaluation of the ith designing scheme, andi=1~n.

    (2)

    (3)

    “Sign” in this formula serves as symbol “±”,which will be“-”when the performance index is high( such as inherent frequency of pillar), or “+” in the other way (such as quality, the maximum displacement, the maximum stress of pillar). Through finite element analysis in ANSYS WORBENCH, we gainuj0anduji,structural performance index of pillar,uj0means the jth performance index in the initial designS0and the formula to figure out the degree of performance improvement is as follows:

    (4)

    (5)

    The various designs could be ranked according to the numerical value ofEi, and thus the best improved design will be picked out.

    3.3.The finalization of the best improved design of pillar

    S={S1,S2,…,Sn} is a series of improved designs based on the initial oneS0.The main static and dynamic performance indexes to evaluate the improved designs are qualitym, the maximum deformationd, the maximum stressσ,and inherent frequencyf. Table 6 tells that qualitymand the maximum deformationdincludes 3 second-grade indexes, the maximum stressσincludes 2 second-grade indexes, inherent frequencyfincludes 4 second-grade indexes. For a convenient analysis of degree of performance improvement, this paper will ascertain weight coefficient of all levels of indexes in line with expert evaluation method[9-11],as shown in Table 6.

    The weight vector of performance index is:

    Table 6. Weight coefficient of all levels of indexes

    First-gradeindexWeightcoefficientSecond-gradeindexWeightcoefficientquality0.25quality1total0.4maximumdisplacement0.25directionofX0.2directionofY0.2directionofZ0.2maximumstress0.25principalstress0.5shearingstrength0.5inherentfrequency0.25modaloffirstorder0.4modalofsecondorder0.3modalofthirdorder0.2modaloffourthorder0.1

    Based on the evaluation indexes in Table 5, matrix of performance evaluation could be obtained in line with formula(3):

    Then,E=(1.078 0,1.080 5,1.087 4), so a conclusion can be drawn thatS3>S2>S1in terms of degree of performance improvement of all the 3 improved designs and the improved oneS3is the best.

    4.Size optimization of structure of the best improved design

    As compared the 3 kinds of improved designs with the original design, we gain the best designS3, which demonstrates that doubleXreinforcing rib plus two square holes will decrease the weight of pillar without weakening static and dynamic performance. Since static characteristics have already met the accuracy requirement, we can conduct size optimization of the two square holes in order to enhance its utmost dynamic behavior.

    Assuming that the length and width of removed rectangular region in the center of the back of pillar is the design variablet1andt2, and the weighted average of the first 4 orders’ modal frequency in modal analysis is this objective function “f=0.4f1+0.3f2+0.2f3+0.1f4”. In this formula,f1is first-order modal frequency,f2is second-order modal frequency,f3is third-order modal frequency, andf4is fourth-order modal frequency; 0.4, 0.3, 0.2 and 0.1 are weight coefficient, respectively according with the first 4 orders’ modal frequency. Then the mathematical model of optimization design is as follows:

    (6)

    s.t 0 mm≤t1≤540 mm;0 mm≤t2≤270 mm

    The relations between the design variablet1,t2and the objective functionfcan be gained with the help of finite element analysis in ANSYS WORKBENCH and above mathematic model, just like Table 8. We assume thatt2=t1/2 according to the practical structure size of the pillar and convenience for drawing. By analyzing Table 8, a conclusion can be drawn that the first 4 orders’ modal frequency is the lowest one whent1=540,t2=270, and the first 4 orders’ modal frequency is the highest one whent1=0,t2=0.

    Figure 8. Relations between design variable t1, t2and the objective function

    The above Table tells that the frequency is the highest when the center of the back is the shape of doubleXreinforcing rib and keeps the rectangular region, while the design of removing a piece of rectangular region is the best one if taking weight and other factors into a comprehensive consideration. Only in terms of dynamic behavior of pillar, the comparison between the first 4 orders’ inherent frequency of design before and after (as listed in Table 7) tells that all the first 4 orders’ inherent frequency is improved to a great extent against the initial design after optimization, thus it is beneficial to enhance the vibration resistance and achieves the object of optimization design.

    5.Conclusion

    This paper put forward the concept of adaptive dynamic design which is based on adaptive design with VMC850 pillar in vertical machining center of precision as the object of study, and established mathematical model of adaptive dynamic design, conducted procedure analysis on the adaptive dynamic design of machining center pillar and established quantitative analysis tool of adaptive dynamic design, including analysis of improvement rate and adaptive measurement. Then we adopted CAD/CAE integrate emulation technique to conduct parametric design and finite element analysis on the pillar structure and then improve the structure and optimize the dynamic parameter on that base, thus this paper could provide theoretical basis and evidence for the improvement of the design of this pillar in vertical machining center of precision.

    Table 7. Changes of inherent frequency before optimization and after

    [1] Li Hui,F(xiàn)eng Xianying.Study on Creative Design of Linkage Multi-axes CNC Machine Tools[J].Journal of Shandong University of Technology,2001,31(3):4-7.

    [2] Lu Changhou,Liu Wenxin,Jin Chuanbo.Calculating Models on Dynamic Chanracteristics of Cone Plain Bearings for Machine Tool Spindles[J].Journal of Shandong University of Technology,1997,27(3):7-10.

    [3] Zhang XueLing,Xu Yanshen,Zhong Weihong.Research on Structural Optimization Method in Design of NC Machine Tool Bed Based on Dyanmic Analysis by FEM[J].Journal of Mechanical Strength,2005,27(03):353-357.

    [4] Ni Xiangyang.Dynamics Modeling and Optimization Design of a Gantry Style Machining Center[D].Nanjing:Southeast University,2005.

    [5] Xin Zhijie.Research on Theory,Methodology and Application of Adaptable Dynamic Design of Machine Tools Structures for Product Family[D].Tianjin:Tianjin University,2008.

    [6] Cong Ming,F(xiàn)ang Bo,Zhou Ziliang.Finite Element Analysis and Optimization Design of the Carriage of Turn Broach NC Machine Tool[J].China Mechanical Engineering,2008,19(2):208-213.

    [7] Xiao Lili,Chen Wei fang,Ye Wenhua et al.Finite Element Analysis and Optimization Design for the Vertical Slide Board of the “box-in-box” structure[J].Journal of Shandong University:Engineering Science,2010,40(1):78-83.

    [8] Chen Yongliang,Geng Wenxuan,Man Jia et al.Adaptable Design of Machine Tool Structure Based on Quantification of Structural Configuration and Performance Improvement[J].China Mechanical Engineering,2009,20(9):1029-1033.

    [9] Cao Huajun,Liu Fei,He Yan.Machine Tool Selection Model and ITS Application for Green Manufacturing[J].Chinese Journal of Mechanical Engineering,2004,40(3):26-29.

    [10]SUH J D,LEE D G,KEG G R.Composite machine tool structures for high speed milling machines[J].CIRP Annals-Manufac-turing Technology,2002,51(1):285-288.

    [11]Tang Wencheng,Yi Hong,TangYin.Topological Optimal Design for the Machine Tool Structures[J].Journal of Southeast University,1996,26(5):22-26.

    加工中心立柱可適應(yīng)動(dòng)態(tài)優(yōu)化設(shè)計(jì)*

    孫奎洲?, 周金宇

    江蘇理工學(xué)院,江蘇 常州 213001

    應(yīng)用定量化的分析工具,對(duì)加工中心立柱結(jié)構(gòu)進(jìn)行了可適應(yīng)動(dòng)態(tài)設(shè)計(jì)過程分析。提出產(chǎn)品可適應(yīng)性的綜合評(píng)價(jià)指標(biāo),建立了產(chǎn)品可適應(yīng)性綜合評(píng)價(jià)模型。應(yīng)用多級(jí)模糊綜合評(píng)價(jià)方法在對(duì)產(chǎn)品功能適應(yīng)性等多種評(píng)價(jià)指標(biāo)進(jìn)行初級(jí)評(píng)價(jià)的基礎(chǔ)上,進(jìn)行了二級(jí)綜合評(píng)價(jià),得到了VMC850加工中心立柱產(chǎn)品可適應(yīng)性綜合評(píng)價(jià)等級(jí),從而為進(jìn)一步改進(jìn)產(chǎn)品設(shè)計(jì)提供了指導(dǎo)和修改依據(jù)。在方案設(shè)計(jì)階段,通過給出各方案的可適應(yīng)性度量數(shù)值以及對(duì)修改設(shè)計(jì)的難易程度做出定量評(píng)價(jià),可有效地指導(dǎo)機(jī)床結(jié)構(gòu)設(shè)計(jì)過程。

    可適應(yīng)性設(shè)計(jì);動(dòng)態(tài)優(yōu)化;加工中心

    TG502.1

    2014-03-20

    10.3969/j.issn.1001-3881.2014.12.015

    *Project supported by National High Technology Research and Development Program of China ((863 project), No.2012AA040104)

    ? Kui-zhou SUN, E-mail: sunkuizhou@126.com

    猜你喜歡
    立柱適應(yīng)性動(dòng)態(tài)
    谷子引種適應(yīng)性鑒定與篩選初報(bào)
    國內(nèi)動(dòng)態(tài)
    國內(nèi)動(dòng)態(tài)
    國內(nèi)動(dòng)態(tài)
    八旬老者 文化養(yǎng)生——記85歲北大老學(xué)長陳立柱
    中老年保健(2021年8期)2021-08-24 06:24:14
    動(dòng)態(tài)
    健全現(xiàn)代金融體系的適應(yīng)性之“點(diǎn)論”
    中國外匯(2019年23期)2019-05-25 07:06:20
    五臺(tái)山掠影
    記者觀察(2019年1期)2019-04-04 01:06:36
    組合鋁合金立柱在超大跨度玻璃幕墻中的應(yīng)用
    上海建材(2018年4期)2018-11-13 01:08:54
    大型飛機(jī)A380-800在既有跑道起降的適應(yīng)性研究
    亚洲精品美女久久久久99蜜臀| 在线十欧美十亚洲十日本专区| 国产精品av久久久久免费| 97精品久久久久久久久久精品| 亚洲av男天堂| 大香蕉久久网| 韩国精品一区二区三区| 我的亚洲天堂| 最黄视频免费看| 亚洲第一av免费看| 欧美日韩精品网址| 国产人伦9x9x在线观看| 青草久久国产| 色94色欧美一区二区| 精品高清国产在线一区| cao死你这个sao货| 国产av一区二区精品久久| 色婷婷久久久亚洲欧美| 日本猛色少妇xxxxx猛交久久| 满18在线观看网站| 国产av一区二区精品久久| 男人舔女人的私密视频| 王馨瑶露胸无遮挡在线观看| 亚洲九九香蕉| 亚洲成人免费电影在线观看| 亚洲av成人一区二区三| 亚洲精品国产一区二区精华液| 国产男女超爽视频在线观看| 亚洲专区国产一区二区| 熟女少妇亚洲综合色aaa.| 国产精品成人在线| 亚洲精华国产精华精| videosex国产| 三上悠亚av全集在线观看| 色婷婷久久久亚洲欧美| 日本av手机在线免费观看| 中国国产av一级| 男女下面插进去视频免费观看| 我要看黄色一级片免费的| 久久久久国内视频| 亚洲欧美一区二区三区黑人| 成人影院久久| 这个男人来自地球电影免费观看| 99精品欧美一区二区三区四区| 99国产极品粉嫩在线观看| 亚洲精品中文字幕在线视频| 少妇猛男粗大的猛烈进出视频| 夫妻午夜视频| 亚洲精品乱久久久久久| 欧美亚洲 丝袜 人妻 在线| 51午夜福利影视在线观看| 国产一区有黄有色的免费视频| 天堂俺去俺来也www色官网| 一本大道久久a久久精品| 国产成人啪精品午夜网站| 中文精品一卡2卡3卡4更新| 欧美xxⅹ黑人| 人妻 亚洲 视频| 久久精品国产亚洲av香蕉五月 | 久久综合国产亚洲精品| 欧美激情 高清一区二区三区| 国产精品影院久久| 妹子高潮喷水视频| 亚洲精品成人av观看孕妇| 亚洲av国产av综合av卡| 久久精品国产a三级三级三级| 免费久久久久久久精品成人欧美视频| 成年女人毛片免费观看观看9 | √禁漫天堂资源中文www| 国产一区二区三区av在线| www.自偷自拍.com| 老司机靠b影院| 妹子高潮喷水视频| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一出视频| 麻豆av在线久日| 99re6热这里在线精品视频| a级片在线免费高清观看视频| 亚洲国产成人一精品久久久| 高潮久久久久久久久久久不卡| 国产一区二区三区av在线| 亚洲欧美一区二区三区黑人| 精品人妻在线不人妻| a级毛片黄视频| 丁香六月欧美| 亚洲综合色网址| 69精品国产乱码久久久| 男女下面插进去视频免费观看| 欧美黑人欧美精品刺激| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品在线美女| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区在线不卡| 少妇的丰满在线观看| 久久精品国产亚洲av高清一级| 国产深夜福利视频在线观看| 777久久人妻少妇嫩草av网站| 男男h啪啪无遮挡| 黄色怎么调成土黄色| 99精品久久久久人妻精品| 亚洲欧美精品自产自拍| 狠狠狠狠99中文字幕| 这个男人来自地球电影免费观看| 国产国语露脸激情在线看| av在线播放精品| 国产av又大| 欧美人与性动交α欧美精品济南到| 狠狠狠狠99中文字幕| 十八禁人妻一区二区| 亚洲av日韩在线播放| 19禁男女啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 久久女婷五月综合色啪小说| 一个人免费在线观看的高清视频 | 国产一区二区三区综合在线观看| 色老头精品视频在线观看| 国产99久久九九免费精品| 伦理电影免费视频| 人人妻人人添人人爽欧美一区卜| 精品久久蜜臀av无| 欧美日韩中文字幕国产精品一区二区三区 | 午夜老司机福利片| 精品福利永久在线观看| 视频区欧美日本亚洲| 黄片小视频在线播放| 欧美av亚洲av综合av国产av| 久久久精品免费免费高清| 国产在线观看jvid| 午夜两性在线视频| 亚洲中文字幕日韩| 亚洲精品国产av成人精品| 午夜福利影视在线免费观看| 欧美日韩av久久| 精品久久久精品久久久| 人妻人人澡人人爽人人| 一本久久精品| 一区二区三区乱码不卡18| 人人澡人人妻人| av福利片在线| 大型av网站在线播放| 永久免费av网站大全| 国产福利在线免费观看视频| 永久免费av网站大全| 日韩电影二区| av在线app专区| 精品国产超薄肉色丝袜足j| 午夜两性在线视频| av线在线观看网站| 久热这里只有精品99| 日本五十路高清| 另类精品久久| 天天躁夜夜躁狠狠躁躁| av线在线观看网站| 亚洲国产毛片av蜜桃av| 狠狠精品人妻久久久久久综合| 伦理电影免费视频| 爱豆传媒免费全集在线观看| 午夜激情久久久久久久| 亚洲av男天堂| 青草久久国产| 中文字幕人妻丝袜制服| 在线天堂中文资源库| videosex国产| 国产主播在线观看一区二区| 精品人妻1区二区| www.自偷自拍.com| 妹子高潮喷水视频| 欧美成人午夜精品| 一级黄色大片毛片| 老司机在亚洲福利影院| 老司机影院成人| 一区二区三区乱码不卡18| 搡老熟女国产l中国老女人| 亚洲欧美一区二区三区久久| 亚洲av片天天在线观看| 久久国产亚洲av麻豆专区| 在线观看免费高清a一片| 亚洲精品av麻豆狂野| 亚洲欧美日韩高清在线视频 | 精品一区二区三卡| 精品一区二区三卡| 18禁国产床啪视频网站| 在线观看一区二区三区激情| 韩国精品一区二区三区| 亚洲少妇的诱惑av| 国产av又大| 午夜福利视频在线观看免费| netflix在线观看网站| 欧美乱码精品一区二区三区| 国产亚洲av高清不卡| 亚洲精品在线美女| 亚洲欧美激情在线| 精品一区二区三卡| 女性被躁到高潮视频| 韩国高清视频一区二区三区| 久久国产精品男人的天堂亚洲| 叶爱在线成人免费视频播放| 成在线人永久免费视频| 人人妻人人爽人人添夜夜欢视频| 久久狼人影院| 午夜福利,免费看| 国产亚洲精品第一综合不卡| 久久久久久久国产电影| 国产在视频线精品| 手机成人av网站| 天天躁日日躁夜夜躁夜夜| 亚洲精品成人av观看孕妇| 亚洲全国av大片| av在线app专区| 另类亚洲欧美激情| 五月开心婷婷网| 成在线人永久免费视频| 五月开心婷婷网| 久久久水蜜桃国产精品网| 日韩,欧美,国产一区二区三区| 国产av精品麻豆| 大香蕉久久网| 国产在线视频一区二区| 国产在线免费精品| 日韩欧美一区二区三区在线观看 | 亚洲国产精品一区二区三区在线| 人妻 亚洲 视频| 精品国产一区二区三区四区第35| 久久久久网色| 精品国产超薄肉色丝袜足j| 手机成人av网站| 超碰成人久久| 久久国产精品影院| 婷婷色av中文字幕| 在线亚洲精品国产二区图片欧美| 亚洲国产精品成人久久小说| 热re99久久国产66热| 一区二区三区乱码不卡18| 999久久久精品免费观看国产| 999精品在线视频| 久久国产精品人妻蜜桃| 久久久国产一区二区| 高清在线国产一区| 亚洲综合色网址| 国产片内射在线| 亚洲欧美一区二区三区久久| 97精品久久久久久久久久精品| 黄色 视频免费看| 国产精品一二三区在线看| www.自偷自拍.com| 婷婷色av中文字幕| 国产精品熟女久久久久浪| 涩涩av久久男人的天堂| 国产在线一区二区三区精| 精品人妻一区二区三区麻豆| www.自偷自拍.com| 国产91精品成人一区二区三区 | 男女午夜视频在线观看| 亚洲欧美色中文字幕在线| 欧美97在线视频| 啦啦啦 在线观看视频| 国产精品一区二区在线观看99| 亚洲第一av免费看| av免费在线观看网站| 精品少妇一区二区三区视频日本电影| 99国产精品一区二区三区| 亚洲熟女毛片儿| 王馨瑶露胸无遮挡在线观看| 欧美日韩国产mv在线观看视频| 欧美激情久久久久久爽电影 | 日日摸夜夜添夜夜添小说| 黄色视频在线播放观看不卡| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久成人av| 不卡一级毛片| 久久人人97超碰香蕉20202| 国产亚洲精品第一综合不卡| 国产精品二区激情视频| 日韩视频一区二区在线观看| 久久久久国内视频| 老司机午夜福利在线观看视频 | 大陆偷拍与自拍| 天天添夜夜摸| 这个男人来自地球电影免费观看| 国产成人一区二区三区免费视频网站| 狂野欧美激情性xxxx| 欧美人与性动交α欧美精品济南到| 国产一区二区在线观看av| 国产精品秋霞免费鲁丝片| 欧美精品av麻豆av| 一区在线观看完整版| 精品一区二区三区四区五区乱码| 国产精品 欧美亚洲| 色综合欧美亚洲国产小说| 麻豆av在线久日| 在线观看一区二区三区激情| 丝瓜视频免费看黄片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品美女久久av网站| 欧美在线一区亚洲| 一区二区三区精品91| 免费看十八禁软件| 亚洲人成电影免费在线| 国产成人一区二区三区免费视频网站| 欧美国产精品一级二级三级| 青春草亚洲视频在线观看| 久久热在线av| 一边摸一边抽搐一进一出视频| 韩国精品一区二区三区| h视频一区二区三区| 国产成人精品久久二区二区91| 777米奇影视久久| 亚洲精品国产av成人精品| 欧美性长视频在线观看| 动漫黄色视频在线观看| 日本五十路高清| 精品乱码久久久久久99久播| 亚洲,欧美精品.| 欧美精品人与动牲交sv欧美| 亚洲国产欧美在线一区| www.精华液| 男男h啪啪无遮挡| 亚洲精品中文字幕在线视频| 亚洲第一av免费看| 黄片小视频在线播放| 日韩三级视频一区二区三区| 国产亚洲精品久久久久5区| av福利片在线| 少妇猛男粗大的猛烈进出视频| 国产深夜福利视频在线观看| 国产在线免费精品| 国产一区二区激情短视频 | 免费在线观看日本一区| 久久久久网色| 国产三级黄色录像| 最新在线观看一区二区三区| 一本综合久久免费| 免费少妇av软件| 亚洲人成77777在线视频| 肉色欧美久久久久久久蜜桃| 一区在线观看完整版| 久久国产亚洲av麻豆专区| 三上悠亚av全集在线观看| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 久久久久精品国产欧美久久久 | 一级毛片精品| 悠悠久久av| 日韩精品免费视频一区二区三区| 免费观看人在逋| 色婷婷av一区二区三区视频| 亚洲色图综合在线观看| 国产精品1区2区在线观看. | 亚洲国产精品一区二区三区在线| 亚洲美女黄色视频免费看| 中文欧美无线码| 久久午夜综合久久蜜桃| 国产成+人综合+亚洲专区| av视频免费观看在线观看| 两性夫妻黄色片| 王馨瑶露胸无遮挡在线观看| 国产一级毛片在线| www日本在线高清视频| 成年人午夜在线观看视频| 久久久国产欧美日韩av| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 久久久久网色| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 女警被强在线播放| 午夜91福利影院| 亚洲欧美成人综合另类久久久| 国产成+人综合+亚洲专区| 男女免费视频国产| 欧美午夜高清在线| 美女大奶头黄色视频| 久久影院123| 欧美日韩亚洲高清精品| 国产精品自产拍在线观看55亚洲 | 一级毛片电影观看| 国产精品一区二区精品视频观看| 国产不卡av网站在线观看| 电影成人av| 中文字幕高清在线视频| 精品人妻1区二区| 国产精品九九99| 大陆偷拍与自拍| 午夜成年电影在线免费观看| 亚洲精品第二区| 在线天堂中文资源库| 日韩大码丰满熟妇| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 日本精品一区二区三区蜜桃| av福利片在线| 亚洲va日本ⅴa欧美va伊人久久 | 久久久国产精品麻豆| 亚洲伊人久久精品综合| av电影中文网址| 精品亚洲乱码少妇综合久久| 国产精品自产拍在线观看55亚洲 | 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| 午夜成年电影在线免费观看| 国产精品免费视频内射| 捣出白浆h1v1| 国产区一区二久久| 久久久久国产精品人妻一区二区| 成人亚洲精品一区在线观看| 色综合欧美亚洲国产小说| 在线十欧美十亚洲十日本专区| 成人国产一区最新在线观看| 亚洲一码二码三码区别大吗| 成人18禁高潮啪啪吃奶动态图| 不卡一级毛片| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 黄网站色视频无遮挡免费观看| 免费观看av网站的网址| 国产一区二区 视频在线| 午夜视频精品福利| 深夜精品福利| 桃红色精品国产亚洲av| 成年女人毛片免费观看观看9 | 国产精品久久久人人做人人爽| 两性夫妻黄色片| 高潮久久久久久久久久久不卡| av天堂在线播放| 成人亚洲精品一区在线观看| 性少妇av在线| 色播在线永久视频| 国产亚洲av片在线观看秒播厂| 亚洲黑人精品在线| 精品第一国产精品| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 在线av久久热| 黄色视频在线播放观看不卡| 日本黄色日本黄色录像| 91麻豆av在线| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 天堂中文最新版在线下载| 国产男人的电影天堂91| 日韩 亚洲 欧美在线| 日本黄色日本黄色录像| 一区二区av电影网| av不卡在线播放| 免费在线观看完整版高清| 国产97色在线日韩免费| 最黄视频免费看| 伊人亚洲综合成人网| 青春草亚洲视频在线观看| 日韩制服丝袜自拍偷拍| 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 丝袜喷水一区| 肉色欧美久久久久久久蜜桃| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲高清精品| 亚洲精华国产精华精| 成在线人永久免费视频| www.熟女人妻精品国产| 国产亚洲精品第一综合不卡| 亚洲人成电影观看| 国产成人a∨麻豆精品| 精品亚洲成国产av| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 午夜影院在线不卡| 国产精品久久久久久人妻精品电影 | 午夜福利一区二区在线看| 国产国语露脸激情在线看| 国产老妇伦熟女老妇高清| www.999成人在线观看| 婷婷丁香在线五月| 91字幕亚洲| 十八禁人妻一区二区| 美女国产高潮福利片在线看| 久久国产精品大桥未久av| xxxhd国产人妻xxx| 久久久欧美国产精品| 99久久精品国产亚洲精品| 欧美日韩黄片免| 亚洲精华国产精华精| 精品久久久精品久久久| 亚洲av日韩精品久久久久久密| 久久影院123| 欧美97在线视频| 亚洲国产av新网站| 精品少妇一区二区三区视频日本电影| 老司机影院毛片| 啦啦啦在线免费观看视频4| 人妻 亚洲 视频| 在线av久久热| 国产精品影院久久| 欧美人与性动交α欧美精品济南到| 狂野欧美激情性bbbbbb| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 国产精品久久久人人做人人爽| 一本色道久久久久久精品综合| 十八禁高潮呻吟视频| 亚洲天堂av无毛| 热re99久久精品国产66热6| 男女下面插进去视频免费观看| 人妻人人澡人人爽人人| kizo精华| 日本猛色少妇xxxxx猛交久久| 日本五十路高清| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 久久99一区二区三区| 99久久99久久久精品蜜桃| 久久女婷五月综合色啪小说| 一区二区三区四区激情视频| 1024香蕉在线观看| av网站在线播放免费| 丝瓜视频免费看黄片| 后天国语完整版免费观看| 97精品久久久久久久久久精品| 国产亚洲精品久久久久5区| 亚洲欧美一区二区三区久久| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| avwww免费| av又黄又爽大尺度在线免费看| 精品人妻1区二区| 三级毛片av免费| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 又紧又爽又黄一区二区| 69av精品久久久久久 | 久久 成人 亚洲| 人妻一区二区av| 亚洲精品国产色婷婷电影| avwww免费| 欧美一级毛片孕妇| 极品少妇高潮喷水抽搐| 国产成人一区二区三区免费视频网站| 丝袜在线中文字幕| 久久香蕉激情| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| 精品少妇一区二区三区视频日本电影| 日韩人妻精品一区2区三区| 我要看黄色一级片免费的| 久久精品人人爽人人爽视色| 精品少妇久久久久久888优播| 他把我摸到了高潮在线观看 | 午夜激情久久久久久久| 在线观看人妻少妇| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产av蜜桃| 亚洲熟女精品中文字幕| 妹子高潮喷水视频| 后天国语完整版免费观看| 超碰97精品在线观看| 久久性视频一级片| 天堂俺去俺来也www色官网| 欧美成狂野欧美在线观看| 激情视频va一区二区三区| 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 亚洲一区二区三区欧美精品| 亚洲精品一卡2卡三卡4卡5卡 | 一级毛片电影观看| 一区二区日韩欧美中文字幕| www.精华液| 少妇被粗大的猛进出69影院| 男女国产视频网站| 精品国产一区二区三区四区第35| 久久久久国产一级毛片高清牌| 青春草视频在线免费观看| 一级片'在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产男女内射视频| 欧美97在线视频| 大片电影免费在线观看免费| 一区福利在线观看| 亚洲国产中文字幕在线视频| 午夜福利一区二区在线看| 搡老乐熟女国产| 免费在线观看完整版高清| 国产成人av激情在线播放| 久久久水蜜桃国产精品网| 人妻久久中文字幕网| 久久精品aⅴ一区二区三区四区| √禁漫天堂资源中文www| 国产又色又爽无遮挡免| 法律面前人人平等表现在哪些方面 | 久久精品人人爽人人爽视色| 热re99久久国产66热| 免费观看av网站的网址| 老司机亚洲免费影院| 国产免费福利视频在线观看| 日韩 亚洲 欧美在线| 久久精品成人免费网站| 亚洲欧美日韩另类电影网站| 亚洲精华国产精华精| 国产亚洲av高清不卡| 制服诱惑二区| 国产一级毛片在线| 欧美日韩一级在线毛片| 老熟女久久久| 可以免费在线观看a视频的电影网站| 国产一区有黄有色的免费视频| 久久久久视频综合| 精品一区二区三卡| 夫妻午夜视频| 免费在线观看完整版高清| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 精品少妇久久久久久888优播| 国产精品.久久久| 搡老熟女国产l中国老女人| 51午夜福利影视在线观看| 国产老妇伦熟女老妇高清| 午夜福利在线观看吧|