• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition

    2014-07-30 09:55:22YongZhaoTianlinWangandZhiZong

    Yong Zhao, Tianlin Wang and Zhi Zong

    1. Transportation Equipment and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China

    2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China 3. School of Naval Architecture, Dalian University of Technology, Dalian 116024, China

    1 Introduction1

    As a fundamental problem, transition prediction and its flow features are important in many engineering applications,such as ship hydrodynamics, aircraft, space vehicles, ground vehicles, turbo machinery blades, and wind turbines (Levin and Henningson, 2003; Maet al., 2007; Yeet al., 2012). The frictional resistance on the wall in a turbulent boundary layer is much greater than that in the laminar flow. Therefore, a suppression or delay of the transition from laminar flow to turbulence can reduce the drag acting on the surface of structures, leading to an improvement of energy efficiency(Lee, 2002; Hackenberget al., 1995). Hence, it is important to predict transition position and understand the corresponding physics. So, transitional flow has received much attention (Wang and Fu, 2009a, 2009b, 2011; Cao, 2009;Wassermann and Kloker, 2005). Besides experimental research (Klewickiet al., 2011), some numerical simulations based on Reynolds averaged numerical simulation (RANS)are conducted on the transition in the last decade (Biauet al.,2007; Jacobs and Durbin, 2000; Xiaoet al.,2006; Yang,2012). However, due to the short length of transition zone with rapid variation of flow parameters, it raises higher request for the turbulent model in RANS method (Wang and Guo, 2012; Chen and Chen, 2010; Fanet al., 2011).

    Therefore, in this paper an attempt is taken for the numerical investigation on transition by RANS with advanced turbulence models which have good performance in complicated flows’ simulation, such ask-ωmodel, stress-ωmodel and their corresponding low Reynolds number correction versions (Wilcox, 2006). Despite that the geometric boundary has serious impact on the flow field, the fundamental understanding of the transition lies in the flat plate boundary flow. So the flat plate boundary layer flow is chosen as the research object. Hence one main purpose of this paper is to clarify the above four models’ performance on predicting the frictional resistance along the plate by the available experimental data, and the second purpose is to understand the flow through the numerical study with the best model.

    2 Governing equations and turbulence models

    The two-dimensional incompressible and steady flow is taken into account. The corresponding governing equations are as follows:

    whereU,Vare streamwise and normal averaged velocity components;r,Pare fluid density and pressure;n,Tnare molecular and turbulent eddy kinetic viscosities.

    Thek-ωmodel was firstly created independently by Kolmogorov and later by Saffman (1970), Wilcox has continually refined and improved the model during the past three decades and demonstrated its accuracy for a wide range of turbulent flow (Wilcox and Alber, 1972; Wilcox,1988; Wilcox, 2006). The latest version was put forward in 2006, termed as Wilcox (2006)k-ωmodel, the turbulent eddy viscosity:

    Reynolds stress for incompressible flow is:

    Turbulence kinetic energy equation:

    Specific dissipation rate:

    Closure coefficients and auxiliary relations:

    where,

    As it can be easily verified, the quantitywcis zero for two-dimensional flows. As to the solid wall, the boundary is under no-slip condition, i.e.

    For the model equation, the boundary condition is specified as:

    wheredis the distance from the nearest grid to the wall.

    If the low Reynolds effect is included in the Wilcox (2006)k-ωmodel, the corrected closure coefficients are the following ones:

    The quantityReTis turbulence Reynolds number defined by

    In the meanwhile, Wilcox also improved the stress-ωmodel in 2006, which is an advanced model to solve the six Reynolds stress equations, including its low Reynolds number correction. For the detailed information of stress-ωmodel and its low Reynolds number correction, the interested readers may refer to Wilcox (2006).

    3 Numerical experiment

    3.1 Flow parameters

    The flow parameters are the followings: the free stream air’s velocity is 24.36 m/s, temperature is 293 K, density is 1.21 kg/m3, pressure is 1.01×105Pa, the length of the plate is 2.8 m, and the Reynolds number based on the flat’s length 4.5×107. These parameters are consistent with the experiment by Schubauer and Klebanoff (1955) in order to validate our numerical experiment by their measured resistance coefficient. The coefficient is defined as, where. This physical quantity is determined by the derivative of velocity and eddy viscosity, thus it is a good candidate for checking numerical simulation.

    3.2 Numerical method and the grids convergence validation

    On the basis of laminar flow, the codes are supplemented to the four advanced models for calculating the transitional flow. Iterative algorithm is used to solve the equations according to the order of the momentum equations, the continuous equation and the turbulence model equations. A threshold value setting as 1×104for streamwise averaged velocity’s relative error between the two consecutive iterative values is used for checking numerical convergence.In the discrete equations, the second-order upwind difference format is used for the convection items and others are second-order central difference scheme. Uniform incoming velocity, free outflow, no-slip wall and periodic boundary conditions are defined for the boundary conditions.In order to check grids’ convergence, three nested grids are used, with nodes number of 301×101, 151×51, and 75×25 to discrete the computational zone 2.8 m×0.03 m. It is found that the grids’ convergence is satisfied for all the four turbulence models. For example, in the case of Wilcox(2006)k-ωmodel and its low Reynolds number correction,the frictional resistance coefficient along the plate is shown in Fig. 1, indicating the numerical results’ independence on the grids’ density. So in the following calculation, the middle density grid is chosen, i.e. 151×51.

    Fig. 1 The comparison of local frictional coefficient along the plate on three distributed grids

    3.3 Models testing

    In this section, the four candidate models are tested through the frictional resistance coefficients along the wall with the experimental ones in the transient zone particularly.Fig. 2 shows the comparisons in the case of Wilcox (2006)k-ωmodel and its low Reynolds number correction. As shown in Fig. 2, the result predicted by the low Reynolds number correction model is very close to the experimental ones. While in no correction version, the results are far from the experimental ones. Turbulence model is brought forward by the hypothesis of fully developed turbulence, and therefore it is natural to see that in the range of laminar flow,simulation without low Reynolds number is not able to give good prediction, and it will over-predict the frictional resistance.

    Fig. 2 The comparison of local frictional coefficient along the plate between Wilcox (2006) k-ω model and its low Reynolds number correction’s numerical and experimental results

    The similar comparison is conducted in the case of stress-ωmodel and its low Reynolds number correction version is shown in Fig. 3. In addition, over prediction appears again in the case of no low Reynolds correction. But in the corrected version, the numerical simulation underestimates the coefficients. Compared to Fig. 2, it is concluded that the Wilcox (2006)k-ωmodel with low Reynolds number correction is the best candidate model to calculate the transitional flow from laminar to turbulence.Therefore, the following numerical results are calculated by this model in this paper.

    Fig. 3 The comparison of local frictional coefficient along the plate between stress-ω model and its low Reynolds number correction’s numerical and experimental results

    3.4 Results and discussion

    For the purpose of understanding the transient flow, in this section, the velocity profiles or its dimensionless ones at several positions, eddy viscous coefficient and turbulent kinetic energy’s distribution in the boundary layer will be studied. Fig. 4 shows the averaged streamwise velocity profiles at the position ofx=1.7, 1.9, 2.1 m in transitional zone. As the distance increases, profile becomes more and more plump, which is in line with the qualitative analysis.Meanwhile, it can be noticed that the variation among these profiles is changed quickly in the transition and it is thought that this brings the main difficulty for turbulence models’numerical prediction.

    Fig. 4 Comparisons of averaged stream-wise velocity profiles near the transition

    It is known the averaged dimensionless velocity has analytical solution. Defining the dimensionless velocityU+and the distance from the platey+as:

    Correlation of measurements indicatesC≈5.0 for smooth surface andk≈4.1 for smooth and rough surfaces. These analytical solutions will be used in fully turbulent flow as reference for the transitional flow’s behavior.

    The profiles on some typical positions are investigated, i.e.in the zone of laminar (shown in Fig. 5), transitional (in Fig.6) and turbulent flow (in Fig. 7). In Fig. 5, both profiles at positionx=1.0, 1.5 m are overlapped quite well in the region wherey+>lt;30; meanwhile, they nearly coincide with the viscous sub-layerU+=y+, according to the property of laminar flow.

    Fig. 5 Comparison of dimensionless averaged stream-wise velocity numerical profiles in laminar zone and analytical solution for laminar flow

    In Fig. 6, the profiles in the transitional zone are plotted.The three profiles differ much from each other. The profile atx=1.7 m is quite similar to laminar flow’s behavior. While in profiles at positions ofx=1.8 m and 1.9 m, the departure increases aftery+=40, and both of them do not meet the turbulent logarithmic solution. Meanwhile, the viscous sub-layer is decreased byy+>lt;7, indicating that transitional flow is in a chaotic and disordered state.

    In Fig. 7, profiles on positionx=2.0, 2.5 m in turbulence region are plotted. It is found that the numerical result agrees with the turbulent logarithmic solution well, as well as the viscous sub-layer solution wherey+>lt;7. As indicated by Figs. 5–7, the numerical results agree with qualitative and quantitative analysis.

    Fig. 6 Comparison of dimensionless averaged stream-wise velocity numerical profiles in transitional zone and analytical solutions both for laminar and turbulent flow

    Fig. 7 Comparison of dimensionless averaged stream-wise velocity’s numerical profiles in turbulence zone and analytical solutions both for laminar and turbulent flow

    Fig. 8 shows contour lines of the ratio between eddy viscous and molecular viscous coefficient. Turbulent viscous coefficient is the key quantity in RANS. Larger value indicates turbulence is more fully developed. It can be noticed that this value undergoes a great increase at the positionx=1.7 m, which is consistent with the position where local frictional resistance coefficient increases obviously in Fig. 2. Furthermore, based on the eddy viscous coefficient’s distribution, the boundary layer flow’s structure can be observed. After the transition, the flow becomes active and the fully developed turbulence is located in the middle of the latter part.

    The turbulent kinetic energy is also associated with turbulence development level. Fig. 9 shows the contour lines of turbulent kinetic energy. Similar to turbulent eddy viscous coefficient distribution, the kinetic energy experiences a sharp raise at the position where transition occurs. It can be noticed that the larger value part is located near the wall surface, which is different from turbulence eddy viscosity coefficient’s distribution, where the larger value is distributed in the middle of the latter part.

    Fig. 8 Contour lines of the ratio between eddy and molecular viscous coefficient

    Fig. 9 Contour lines of turbulent kinetic energy

    Fig. 10 Contour lines of the ratio between tangential Reynolds stress and frictional resistance stress τw

    Contour lines of the ratio between tangential Reynolds stress and skin resistance stresswtare shown in Fig. 10.Tangential Reynolds stress’ distribution is similar to that of turbulent kinetic energy and it’s more concentrated in the transitional zone.

    4 Conclusions

    Numerical computations are performed to investigate transitional flow from laminar flow to turbulence in twodimensional boundary layer flow by RANS. The simulation applies the Wilcox (2006)k-ωand stress-ωturbulence models and corresponding low Reynolds number correction.By comparison of numerical and experimental local frictional resistance coefficients, it is found that Wilcox(2006)k-ωmodel with correction is the best model to simulate this complicated flow. By comparing the dimensionlessU+~y+profiles at particular positions, the flow in transitional zone corrects the velocity profile rapidly and the flow is more chaotic and disordered; in the two ends,i.e. laminar and turbulence zone, theU+~y+profiles are in line with the corresponding analytical solution. The characteristics of turbulence, such as turbulent kinetic energy, eddy viscosity and Reynolds stress are also studied,which indicate that most of the larger values of these quantities are concentrated in the transitional and turbulence regions. However, many factors, such as pressure gradient,turbulent intensity and wall surface roughness can affect transition remarkably, which will be included in the future research.

    Biau D, Arnal D, Vermeersch O (2007). A transition prediction model for boundary layers subjected to free-stream turbulence.Aerospace Science and Technology, 11(5), 370-375.

    Cao W (2009). A study of the transition prediction of hypersonic boundary layer on plane and wedge flow.Acta Aerodynamica Sinica, 27(5), 516-523. (in Chinese)

    Chen JC, Chen WJ (2010). The complex nature of turbulence transition in boundary layer flow over a flat surface.International Journal of Emerging Multidisciplinary Fluid Sciences, 2(2),183-203.

    Fan M, Cao W, Fang XJ (2011). Prediction of hypersonic boundary layer transition with variable specific heat on plane flow.Science China: Physics, Mechanics and Astronomy,54(11),2064-2070.

    Hackenberg PJ, Rioual L, Tutty OR (1995). The automatic control of boundary layer transition experiments and computation.Applied Scientific Research, 54(4), 293-311.

    Jacobs RG, Durbin PA (2000). Simulations of bypass transition.Journal of Fluid Mechanics, 428, 185-212.

    Klewicki J, Ebner R, Wu X (2011). Mean dynamics of transitional boundary-layer flow.Journal of Fluid Mechanics, 682,617-651.

    Lee KH (2002). Control of boundary layer flow transition via distributed reduced-order controller.KSME International Journal, 16(12), 1561-1575.

    Levin O, Henningson DS (2003). Exponential vs algebraic growth and transition prediction in boundary layer flow.Flow,Turbulence and Combustion, 70, 183-210.

    Ma HD, Pan HL, Wang Q (2007). Study of flow transition process induced by oblique wave instability in a supersonic flat-plate boundary layer.Chinese Journal of Theoretical and Applied Mechanics, 39(2), 153-157. (in Chinese)

    Saffman PG (1970). A model for inhomogeneous turbulent flow.Proceedings of the Royal Society of London, Series A:Mathematical and Physical Sciences, 317, 417-433.

    Schlichting H (2003).Boundary-layer theory. 8th edtion. Springer,New York, USA, 272-273.

    Schubauer GB, Klebanoff PS (1955).Contributions on the mechanics of boundary-layer transition. NACA technical reports, No. 1289.

    Wang L, Fu S (2009a). Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach.Science in China, Series G: Physics, Mechanics and Astronomy, 52(5), 768-774.

    Wang L, Fu S (2009b). New transition/turbulence model for the flow transition in supersonic boundary layer.Chinese Journal of Theoretical and Applied Mechanics, 41(2), 162-168. (in Chinese)

    Wang L, Fu S (2011). Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition.Flow, Turbulence and Combustion, 87(1),165-187.

    Wang WX, Guo RW (2012). Study of flow characteristics of hypersonic inlet based on boundary layer transition.Acta Aeronautica et Astronautica Sinica, 33(10), 1772-1780. (in Chinese)

    Wassermann P, Kloker M (2005). Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover.Journal of Fluid Mechanics, 530, 265-293.

    Wilcox DC (1988). Reassessment of the scale determining equation for advanced turbulence models.American Institute of Aeronautics and Astronautics Journal, 26(11), 1299-1310.

    Wilcox DC (2006).Turbulence modeling for CFD. 3rd edition.DCW Industries, La Canada, CA, USA, 124-126.

    Wilcox DC, Alber IE (1972). A turbulence model for high speed flows.Proceedings of the Heat Transfer and Fluid Mechanics Institute, Northridge, California, USA, 231-252.

    Xiao ZX, Chen HX, Li QB, Fu S (2006). A primary study of transitions in turbulence models.Chinese Journal of Computational Physics, 23(1), 61-65. (in Chinese)

    Yang ZY (2012). Numerical study of transition process in a separated boundary layer on a flat plate with two different leading edges.WSEAS Transactions on Applied and Theoretical Mechanics, 7(1), 49-58.Ye HX, Shen ZR, Wan DC (2012). Numerical prediction of added resistance and vertical ship motions in regular head waves.

    Journal of Marine Science and Application, 11(4), 410-416.

    亚洲国产欧美人成| 国产高清激情床上av| 黄色一级大片看看| 免费看光身美女| 伦理电影大哥的女人| 99视频精品全部免费 在线| 寂寞人妻少妇视频99o| 午夜a级毛片| 国产一区二区三区在线臀色熟女| 久久午夜亚洲精品久久| 精品久久久久久久久久免费视频| 精品一区二区三区人妻视频| АⅤ资源中文在线天堂| 久久精品夜色国产| 欧美高清成人免费视频www| 两个人的视频大全免费| av又黄又爽大尺度在线免费看 | 国产一区亚洲一区在线观看| 毛片女人毛片| 国产在线精品亚洲第一网站| 人妻夜夜爽99麻豆av| 国产私拍福利视频在线观看| 好男人视频免费观看在线| 亚洲av不卡在线观看| av在线亚洲专区| 日韩精品青青久久久久久| 久久精品影院6| 在线观看午夜福利视频| 九九爱精品视频在线观看| 九草在线视频观看| www.色视频.com| 免费人成视频x8x8入口观看| 亚洲国产精品国产精品| 成年女人看的毛片在线观看| 国产成人精品婷婷| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 白带黄色成豆腐渣| 99热网站在线观看| 欧美色视频一区免费| 国产成人精品一,二区 | 精品无人区乱码1区二区| 久久这里有精品视频免费| 国产免费一级a男人的天堂| 久久久久久久久久黄片| 国产真实乱freesex| 啦啦啦观看免费观看视频高清| 亚洲国产高清在线一区二区三| av免费在线看不卡| 欧美色视频一区免费| 午夜精品一区二区三区免费看| 国产熟女欧美一区二区| 久久精品国产自在天天线| 亚洲第一区二区三区不卡| 51国产日韩欧美| 久久久国产成人免费| 哪里可以看免费的av片| 亚洲18禁久久av| 免费电影在线观看免费观看| 精品久久国产蜜桃| 九九热线精品视视频播放| 中文资源天堂在线| 99热这里只有精品一区| 国内久久婷婷六月综合欲色啪| 丝袜美腿在线中文| 亚洲国产精品成人综合色| 91aial.com中文字幕在线观看| 波多野结衣巨乳人妻| 亚洲第一电影网av| 国产精品一区www在线观看| 最近的中文字幕免费完整| 久久久久网色| 欧美3d第一页| 午夜久久久久精精品| 亚洲无线观看免费| 美女脱内裤让男人舔精品视频 | 欧美日韩在线观看h| 黄片wwwwww| 色综合亚洲欧美另类图片| 97在线视频观看| 久久韩国三级中文字幕| 麻豆精品久久久久久蜜桃| 99久国产av精品| 亚洲在线自拍视频| 在线免费观看不下载黄p国产| 久久国内精品自在自线图片| 99热全是精品| 日本黄色片子视频| 直男gayav资源| 精品99又大又爽又粗少妇毛片| 晚上一个人看的免费电影| 国产色爽女视频免费观看| 国产精品一区二区性色av| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器| 天堂av国产一区二区熟女人妻| 国产高清不卡午夜福利| 91久久精品电影网| 精品人妻偷拍中文字幕| 寂寞人妻少妇视频99o| 少妇丰满av| 一级二级三级毛片免费看| 日韩 亚洲 欧美在线| 欧美极品一区二区三区四区| 黄色欧美视频在线观看| 伊人久久精品亚洲午夜| 亚洲成人av在线免费| 久久欧美精品欧美久久欧美| 国产成年人精品一区二区| 性插视频无遮挡在线免费观看| 久久精品久久久久久久性| 日韩欧美国产在线观看| 人人妻人人看人人澡| 亚洲成人av在线免费| 五月伊人婷婷丁香| 爱豆传媒免费全集在线观看| 少妇的逼好多水| 综合色丁香网| 97热精品久久久久久| 亚洲欧美中文字幕日韩二区| 桃色一区二区三区在线观看| 国产色爽女视频免费观看| 岛国毛片在线播放| 国内精品美女久久久久久| 久久精品国产自在天天线| 深夜精品福利| 麻豆国产97在线/欧美| 淫秽高清视频在线观看| 狠狠狠狠99中文字幕| 男插女下体视频免费在线播放| 麻豆精品久久久久久蜜桃| 国产精品麻豆人妻色哟哟久久 | 3wmmmm亚洲av在线观看| 亚洲欧美日韩无卡精品| 国产一区二区在线观看日韩| 亚洲欧美精品专区久久| 91av网一区二区| 国产高清激情床上av| 国产成人精品婷婷| 成人午夜高清在线视频| 国产色爽女视频免费观看| 日韩av不卡免费在线播放| 免费观看人在逋| 高清毛片免费看| 亚洲电影在线观看av| 久久精品综合一区二区三区| 高清毛片免费看| 我的老师免费观看完整版| 亚洲精品国产成人久久av| 国产精品伦人一区二区| 精品一区二区三区人妻视频| 久久6这里有精品| 乱码一卡2卡4卡精品| av.在线天堂| 最新中文字幕久久久久| 国产大屁股一区二区在线视频| 欧洲精品卡2卡3卡4卡5卡区| 高清在线视频一区二区三区 | 午夜老司机福利剧场| 简卡轻食公司| 男人狂女人下面高潮的视频| 网址你懂的国产日韩在线| 亚洲av免费在线观看| 最近的中文字幕免费完整| 国内精品一区二区在线观看| 丰满乱子伦码专区| 亚洲欧美精品综合久久99| 九九在线视频观看精品| 免费大片18禁| 高清毛片免费看| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| 国内久久婷婷六月综合欲色啪| 国产精品综合久久久久久久免费| av卡一久久| 免费观看精品视频网站| 少妇丰满av| 国产老妇伦熟女老妇高清| 麻豆成人av视频| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 人体艺术视频欧美日本| 亚洲av第一区精品v没综合| 久久久a久久爽久久v久久| 国产极品天堂在线| 亚洲精品国产av成人精品| 中文字幕av在线有码专区| 少妇丰满av| 国产真实乱freesex| 亚洲欧美日韩东京热| 丰满人妻一区二区三区视频av| 少妇人妻精品综合一区二区 | av在线天堂中文字幕| 亚洲国产精品国产精品| 少妇人妻一区二区三区视频| 好男人在线观看高清免费视频| 久久精品国产亚洲av涩爱 | 尾随美女入室| 日日撸夜夜添| 亚洲av不卡在线观看| 两个人的视频大全免费| 在线观看午夜福利视频| 久久久久国产网址| or卡值多少钱| 亚洲在线观看片| av在线观看视频网站免费| 亚州av有码| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av香蕉五月| 久久人人爽人人爽人人片va| 成人无遮挡网站| 精品无人区乱码1区二区| 国产激情偷乱视频一区二区| 成人毛片60女人毛片免费| eeuss影院久久| 18禁在线播放成人免费| 午夜爱爱视频在线播放| 成年av动漫网址| 欧美日本视频| 欧美+亚洲+日韩+国产| 我的女老师完整版在线观看| 毛片一级片免费看久久久久| 日本一二三区视频观看| 国产精品蜜桃在线观看 | 亚洲图色成人| 少妇的逼水好多| 日本黄色视频三级网站网址| 日韩成人av中文字幕在线观看| 欧美一级a爱片免费观看看| 91aial.com中文字幕在线观看| 给我免费播放毛片高清在线观看| 久久久久国产网址| av在线天堂中文字幕| av在线老鸭窝| 少妇丰满av| 51国产日韩欧美| 小说图片视频综合网站| 国产黄片视频在线免费观看| 午夜免费男女啪啪视频观看| 国产成人精品婷婷| 国产大屁股一区二区在线视频| 日韩欧美精品v在线| 国产片特级美女逼逼视频| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区三区| 亚洲久久久久久中文字幕| 国产乱人视频| 日韩亚洲欧美综合| 精品不卡国产一区二区三区| 舔av片在线| 国产综合懂色| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区 | 日日摸夜夜添夜夜爱| 天堂av国产一区二区熟女人妻| 日韩制服骚丝袜av| 人妻久久中文字幕网| 国内少妇人妻偷人精品xxx网站| 毛片一级片免费看久久久久| 伊人久久精品亚洲午夜| 一级毛片电影观看 | 国产午夜精品一二区理论片| 成人国产麻豆网| 春色校园在线视频观看| 国产 一区 欧美 日韩| 99热这里只有是精品在线观看| 一个人看视频在线观看www免费| 欧美bdsm另类| 日韩欧美三级三区| 麻豆成人午夜福利视频| 日韩欧美在线乱码| 久久精品国产自在天天线| av女优亚洲男人天堂| 久久久a久久爽久久v久久| 美女大奶头视频| 久久韩国三级中文字幕| 国产精品电影一区二区三区| av天堂在线播放| 中国国产av一级| 国产91av在线免费观看| 日本成人三级电影网站| 亚洲18禁久久av| 麻豆精品久久久久久蜜桃| 欧美不卡视频在线免费观看| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 少妇熟女aⅴ在线视频| 日韩欧美一区二区三区在线观看| 亚洲最大成人手机在线| 看片在线看免费视频| 亚洲国产精品sss在线观看| 国产精品久久视频播放| 午夜久久久久精精品| 22中文网久久字幕| 黄色视频,在线免费观看| 晚上一个人看的免费电影| 大香蕉久久网| 男人舔女人下体高潮全视频| 午夜福利视频1000在线观看| 亚洲三级黄色毛片| 波多野结衣高清无吗| 女人十人毛片免费观看3o分钟| 99热这里只有精品一区| 亚洲中文字幕日韩| 有码 亚洲区| 在现免费观看毛片| 国产亚洲av片在线观看秒播厂 | 色综合亚洲欧美另类图片| 一边摸一边抽搐一进一小说| 日本熟妇午夜| 国产高清有码在线观看视频| 欧美日本视频| 深爱激情五月婷婷| 日韩成人伦理影院| 一级毛片久久久久久久久女| 国产午夜精品论理片| 国产成人91sexporn| 精品欧美国产一区二区三| 大香蕉久久网| or卡值多少钱| 丝袜喷水一区| 亚洲综合色惰| 真实男女啪啪啪动态图| 亚洲自偷自拍三级| 国产成人a区在线观看| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 秋霞在线观看毛片| 中文亚洲av片在线观看爽| a级毛片免费高清观看在线播放| 麻豆乱淫一区二区| 国产精品99久久久久久久久| 久久99蜜桃精品久久| 国产精品久久视频播放| 亚洲精华国产精华液的使用体验 | 日韩欧美国产在线观看| 国产亚洲精品久久久久久毛片| 日日啪夜夜撸| 久久综合国产亚洲精品| 成人av在线播放网站| 精品久久久久久久久久久久久| 成人毛片60女人毛片免费| 一级毛片我不卡| 亚洲av二区三区四区| 日日干狠狠操夜夜爽| 国产午夜精品论理片| 听说在线观看完整版免费高清| 在线国产一区二区在线| 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜添av毛片| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| av视频在线观看入口| 特级一级黄色大片| 69人妻影院| 久久精品国产亚洲av涩爱 | 小说图片视频综合网站| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 免费观看的影片在线观看| 成人特级黄色片久久久久久久| 午夜老司机福利剧场| 欧美日韩综合久久久久久| 一个人观看的视频www高清免费观看| 黄色一级大片看看| 欧美xxxx黑人xx丫x性爽| 成人高潮视频无遮挡免费网站| 国产黄色小视频在线观看| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 欧美性感艳星| 欧美激情久久久久久爽电影| 国产精品久久久久久av不卡| 国产熟女欧美一区二区| 国产老妇伦熟女老妇高清| av在线蜜桃| 国产精品久久久久久精品电影小说 | 午夜视频国产福利| 99久久中文字幕三级久久日本| 国产人妻一区二区三区在| 91久久精品国产一区二区成人| 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 国产精华一区二区三区| 看黄色毛片网站| 热99在线观看视频| 久久久色成人| 成人高潮视频无遮挡免费网站| 国产精品三级大全| 国产又黄又爽又无遮挡在线| 国内少妇人妻偷人精品xxx网站| 国产高清有码在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩av不卡免费在线播放| av卡一久久| 久久久久久久久久成人| 国产精品免费一区二区三区在线| 在线免费十八禁| 亚洲最大成人中文| 亚洲欧洲日产国产| 午夜福利成人在线免费观看| 内射极品少妇av片p| 国产精品福利在线免费观看| 成人午夜高清在线视频| 日韩成人伦理影院| 五月伊人婷婷丁香| 韩国av在线不卡| 亚洲人成网站在线播放欧美日韩| 激情 狠狠 欧美| 精品日产1卡2卡| 91午夜精品亚洲一区二区三区| 最好的美女福利视频网| 久久久久久国产a免费观看| 成人午夜精彩视频在线观看| 日本免费a在线| 日韩,欧美,国产一区二区三区 | 日本一二三区视频观看| 日本免费一区二区三区高清不卡| 麻豆av噜噜一区二区三区| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| 联通29元200g的流量卡| 我要看日韩黄色一级片| 欧美不卡视频在线免费观看| 毛片女人毛片| 午夜福利在线在线| 人妻久久中文字幕网| 日韩欧美一区二区三区在线观看| 国产探花在线观看一区二区| 深爱激情五月婷婷| 欧美高清成人免费视频www| 国产成人福利小说| 国产 一区 欧美 日韩| 日本色播在线视频| 国产淫片久久久久久久久| 小说图片视频综合网站| 国产精品久久久久久av不卡| 久久久久国产网址| 99九九线精品视频在线观看视频| 亚洲三级黄色毛片| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 内射极品少妇av片p| 变态另类丝袜制服| 日本在线视频免费播放| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 日韩,欧美,国产一区二区三区 | 国产精品1区2区在线观看.| 亚洲精品成人久久久久久| 国内精品宾馆在线| 尾随美女入室| 色吧在线观看| 欧美高清性xxxxhd video| 日韩av不卡免费在线播放| 亚洲四区av| 网址你懂的国产日韩在线| 我要搜黄色片| 大香蕉久久网| 老司机影院成人| 午夜福利在线在线| 国产久久久一区二区三区| 国产精品,欧美在线| 精品人妻熟女av久视频| 黄片无遮挡物在线观看| 久久精品国产亚洲av天美| 亚洲自偷自拍三级| 在线观看av片永久免费下载| 一级av片app| 久久精品国产亚洲av香蕉五月| 乱码一卡2卡4卡精品| 丰满的人妻完整版| 久久精品国产鲁丝片午夜精品| 午夜免费男女啪啪视频观看| 丰满的人妻完整版| 精品人妻一区二区三区麻豆| 草草在线视频免费看| 午夜福利成人在线免费观看| 亚洲国产精品sss在线观看| 免费看日本二区| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 一进一出抽搐gif免费好疼| 国产精品久久久久久av不卡| 欧美不卡视频在线免费观看| 欧美日韩乱码在线| 国产精品野战在线观看| 亚洲国产欧洲综合997久久,| 天堂网av新在线| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| 久久精品国产自在天天线| 亚洲av不卡在线观看| 黄片wwwwww| 国产精品久久久久久久久免| 97人妻精品一区二区三区麻豆| 青春草国产在线视频 | 一边摸一边抽搐一进一小说| 99久久九九国产精品国产免费| 久久6这里有精品| 欧美不卡视频在线免费观看| 免费观看的影片在线观看| 蜜臀久久99精品久久宅男| 亚洲av电影不卡..在线观看| 中文精品一卡2卡3卡4更新| 伦精品一区二区三区| 久久午夜福利片| 国产乱人视频| 日本三级黄在线观看| 有码 亚洲区| 国产精品国产高清国产av| 麻豆国产av国片精品| 哪个播放器可以免费观看大片| 又黄又爽又刺激的免费视频.| 九九热线精品视视频播放| 大香蕉久久网| 国产精品一区www在线观看| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 亚洲七黄色美女视频| 国内精品美女久久久久久| 免费看日本二区| av又黄又爽大尺度在线免费看 | 中文亚洲av片在线观看爽| 久久久久性生活片| 我的女老师完整版在线观看| 欧美日韩国产亚洲二区| 给我免费播放毛片高清在线观看| 少妇人妻一区二区三区视频| 亚洲av成人精品一区久久| 色综合站精品国产| 婷婷亚洲欧美| 简卡轻食公司| 搡女人真爽免费视频火全软件| 国产激情偷乱视频一区二区| 亚洲婷婷狠狠爱综合网| av天堂在线播放| 乱码一卡2卡4卡精品| 欧美性感艳星| 日本-黄色视频高清免费观看| 成人二区视频| 国产高清视频在线观看网站| 成人高潮视频无遮挡免费网站| 麻豆成人午夜福利视频| 一区福利在线观看| 日韩一区二区视频免费看| 欧美zozozo另类| 久久热精品热| 亚洲不卡免费看| 久久久精品94久久精品| 在线a可以看的网站| 久久人人爽人人片av| 成人国产麻豆网| 十八禁国产超污无遮挡网站| 哪里可以看免费的av片| 天堂影院成人在线观看| 国产伦理片在线播放av一区 | 欧美成人一区二区免费高清观看| 国产精品1区2区在线观看.| 日韩欧美精品免费久久| 永久网站在线| 亚洲人与动物交配视频| 亚洲精品久久久久久婷婷小说 | 午夜免费激情av| 熟女电影av网| 美女 人体艺术 gogo| 日韩制服骚丝袜av| 欧美日韩国产亚洲二区| 日韩亚洲欧美综合| 成人国产麻豆网| kizo精华| 插阴视频在线观看视频| 日本免费一区二区三区高清不卡| 欧美3d第一页| 在线免费观看的www视频| 一个人看视频在线观看www免费| 午夜福利视频1000在线观看| 日韩精品青青久久久久久| 如何舔出高潮| 波多野结衣高清作品| 看十八女毛片水多多多| 国产视频内射| 天堂√8在线中文| 三级经典国产精品| 人妻系列 视频| 国产精品一区二区三区四区久久| 久久久久国产网址| 国产中年淑女户外野战色| 免费不卡的大黄色大毛片视频在线观看 | 青春草国产在线视频 | 国产在视频线在精品| 一级二级三级毛片免费看| 日本成人三级电影网站| 国产精品久久久久久精品电影小说 | 午夜福利高清视频| 国产精品一区www在线观看| 此物有八面人人有两片| 91精品国产九色| 免费电影在线观看免费观看| 国产伦精品一区二区三区四那| 我要搜黄色片| 成人亚洲欧美一区二区av| 亚洲欧美中文字幕日韩二区| 国产极品天堂在线| 亚洲av不卡在线观看| 亚洲av男天堂| 欧美最黄视频在线播放免费| 国产精品女同一区二区软件| 九草在线视频观看| 国产精品久久视频播放| 一区二区三区高清视频在线| 免费看av在线观看网站|