• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FPSO Global Strength and Hull Optimization

    2014-07-30 09:49:54JunyuanMaJianhuaXiaoRuiMaandKaiCao

    Junyuan Ma, Jianhua Xiao, Rui Ma and Kai Cao

    COSCO(Dalian) Shipyard Co.,Ltd, 116113,China

    1 Introduction1

    With the high demand for oil and gas, the offshore installations are developing rapidly. FPSO as an important offshore unit, has been studied and built by a lot of universities, institutes, shipyards and classifications. And the class rules have been updated by societies along the development of technology. Many classification societies have their methods and software for the FPSO design (ABS,2013; DNV, 2011; BV, 2013). And all these methods are mature by now. FPSO Eagle is one of the qualified software.It is chosen because of its strong ability to analyze the global strength and hull optimization. It is important to determine the design basis and analysis method at the beginning of the design procedure. And a clear design procedure is necessary to improve design efficiency. Based on the design basis, the design load, scantling check and three-dimensional(3D) FE is to be analyzed. As a primary offshore FPSO has its own design point, the environment loads and loading conditions are different from the ordinary vessels. And the low cycle fatigue load during the process of the loading and offloading conditions is to be considered.Based on a design procedure and FPI Guide, FPSO global strength is assessed. After the analysis of the whole design procedure, several other cases are calculated by changing the main dimensions of FPSO in the same way. Finally, the results are compared between the different FPSOs with different dimensions, then the optimized size is achieved.The design procedure can be used as a guide for the FPSO hull design. And the results may be used as a reference for the initial design under the similar loads.

    2 Design and optimization procedure

    The design procedure is given as follows:

    1) Determine the hull dimensions (preliminary stage);

    2) Rule check (ISE stage);

    3) Direct strength calculations (TSA stage).

    At the preliminary stage, the general layout, which includes topside, mooring, riser and equipment layout, and so on, is to be confirmed initially. And the structural general arrangement including transverse bulkheads, longitudinal bulkheads and preliminary mid-ship shall be designed. The hull global loads provided in this stage can be used as an input for the calculations for the next stage (Molinet al.,2002;Denget al.,2009). And the preliminary stability (IMO,2008; IMO, 2004) and freeboard calculation (IMO, 2005)are to be completed in this stage. It is important to check the hull dimensions(L >amp; B >amp; D) and arrangement of the structures to ensure that they are in compliance with the main regulations (IMO, 2009).

    Generally, the size of the hull of the FPSO is to be designed to take into consideration the following:

    a) Space requirement of liquid storage, topsides facilities,living quarters, flare boom, pedestal cranes, moorings, risers,umbilical and other equipment;

    b) Limitations of the construction shipyard;

    c) Global hull strength and its fatigue life;

    d) Intact and damage stability;

    e) Global performance during operation;

    f) Green water on deck and wave slamming;

    g) Class rules and class notation requirements;

    h) Safety in the design standard.

    At the ISE (Initial Scantling Evaluation) stage, the hull section scantling will be checked to ensure that it meets the strength criteria of the class rules. The assessment of the main hull structures including mid-ship, transverse frame and transverse bulkheads etc. is to be carried out. The hull strength assessment includes yielding, buckling and fatigue(Zhao, 2002; Paiket al., 2008; Hu and Chen, 1996). It should also be noted that the hull girder ultimate strength will be finished in this stage. This stage is focused on ensuring that the basic hull design reflects the overall hull girder and local structural component strength. During this stage, it is suggested that the design of the hull structures complies with the standards.

    The final stage is the TSA(total strength assessment)stage. The TSA stage is for the direct strength calculations using three-dimensional(3D) FE. In assessing the adequacy of the structural configuration and the initial scantlings, the strength of the hull girder and the individual structural member or element is to be in compliance with the failure criteria specified in the class rules. In this regard, the structural response is to be calculated by performing a structural analysis. In determination of the structural response, the combined load cases are to be considered together with sloshing loads, deck loads, bottom slamming and other loads.

    The procedure above is an iterative process. A lot of work is to be done in the process, especially in the optimization stage. The detailed design procedure, which can be followed for development of the hull structure design and hull optimization, can be found in the flowchart shown in Fig.1.

    Fig.1 Flowchart of design procedure

    3 The goal and criteria of optimization design

    The design and optimization is based on the ABS FPI rules (Zhao, 2002; ABS, 2009; Ferro and Cervetto Soares(1984); ABS, 2012). And the software FPSO Eagle is used for analysis of strength. The goal of optimization is to try to reduce the steel weight based on the owner's specifications and then save the cost of shipbuilding and increase the competitiveness of the yard.

    3.1 Initial design

    Consider all the items listed at the preliminary stage in Part 2. Compare the building capacity of the shipyard and input data of the client. We decided to choose the barge-shaped hull with the dimensions of 200m×50m×15.5m as the initial design. Based on the initial information, the design and optimization are carried out,respectively. The initial general arrangement is shown in Fig.2 and Fig.3.

    3.2 Design basis

    According to the owner's specifications and class requirements, the following basic design concept for the hull structural strength evaluation is considered.

    The notation of the project is as follows:

    +A1 Floating Production, Storage and Offloading System.

    The notation gives the main class requirements. The vessel will be designed to receive, store and offload gas and gas condensate as well as sulfur product. The vessel will be designed for continuous loading, and to offload simultaneously without interruption to loading. The details of the requirements are specified in the ABS FPI GUIDE.The design fatigue life of this project is 20 years and this FPSO will operate near the sea of Makasar. And her transit route is from Dalian to Batam and from Batam to Makasar.

    3.3 Design loads

    In the design of the hull structure of FPSO, all of the load components with respect to the hull girder and local structure were taken into account. These included static loads in still water, wave-induced motions and loads,sloshing, slamming, dynamic loads,etc. The loading conditions at transit, operation, inspection and repair conditions were analyzed respectively based on the loading patterns specified in ABS, 2013. Then the maximum permissible still water bending moment and still water shear force can be achieved during the process of stability analysis(IMO, 2008). The environmental loads are calculated by PRECAL using Eagle software based on the environmental severity factors (ESFs).

    The definition of the severity measureβis as follows:

    where,Ls= most probable extreme value based on the intended site (100 years return period), transit (10 years return period), and the repair/inspection(1 year return period)environments for the dynamic load parameters.Lu= most probable extreme value based on the North Atlantic environment for the dynamic load parameters.

    The wave bending moment is obtained from the following equations:

    where,k1=110;k2=190;βVBM= ESF for vertical bending moment.

    where,L= length of vessel;B= breadth of vessel;b C=block coefficient.

    The wave shear force is obtained from the following equations:

    where,F wp,Fwn=maximum shearing force induced by the wave, in kN;βVSF=ESF for vertical shear force;k=30 ;F1,F2=distribution factor.

    Fig.2 Elevation of general arrangement

    Fig.3 Deck plan of general arrangement

    3.4 Rule check (ISE stage)

    In the design of this stage, the hull girder strength including hull girder section modulus, hull girder moment of inertia, hull girder ultimate strength, yielding, buckling and fatigue strength etc. is evaluated (ABS, 2009; Miner, 1945;ABS, 2012).

    3.4.1 Section modulus check results

    The section modulus results are shown in Table 1 and Table 2.

    Table 1 Design loads and required section modulus (mild)

    In Table 1,Msws: Still water sagging BM;Mswh: Still water hogging BM;Mws: ABS vertical wave sagging BM;Mwh:ABS vertical wave hogging BM;Mtvbm: Total vertical bending moment; SMGross: Gross nominal sectional modulus;SMmin: Minimum required gross SM; SMrequired: Gross required SM; vbm: vertical bending moment.

    Table 2 Comparison ratio between required SM and design SM

    In Table 2, SMGRis gross required section modulus; SMGD,gross design section modulus; SMA/SMR, section modulus(SM) ratio between actual SM and required SM.

    3.4.2 Ultimate strength check results

    The ultimate strength results are shown in Table 3.

    Table 3 Ultimate strength check

    Table 4 Factor for ultimate strength check

    In Table 3 and 4,γs: load factor for the maximum permissible still-water bending moment;γw: load factor for wave-induced bending moment;γu: safety factor for the vertical hull girder bending capacity;Mu: hull girder ultimate strength;Mu: permissible still-water bending moment, in kN?m;Mw: Vertical wave-induced bending moment, in kN?m.

    3.4.3 Fatigue strength check results

    The fatigue strength results are shown in Table 5.

    Table 5 Simplified fatigue strength check

    The fatigue damage parameter, DM, will be presented and calculated by comparing the fatigue strength of the structure(capacity) and the fatigue inducing loads (demands). The calculation method is as follows:

    where, DMi=cumulative DMifatigue damage ratio for the applicable loading conditionI;fi,j?k=factors.

    For fatigue assessment of the structures of FPSO, the low cycle fatigue (LCF) is concerned due to the stress magnitudes exceeding the yield strength of the material during some operation conditions. The low cycle damage is:

    where,q=2.4;B= 3.51×1010(MPa units);NLCF=total cycles of loading/offloading.

    The total fatigue damage due to both low cycle and high cycle stress is calculated by:

    where,δ= 0.02; DMLCF=low cycle fatigue damage;DMHCF=high cycle fatigue damage.

    3.4.4 Sloshing check

    The purpose of the sloshing analysis is to determine if the sloshing natural periods of the anticipated filling levels in each tank are close to the installation's pitch and roll motion periods. The effectiveness of the impulsive sloshing pressure on the design of the main supporting structures of the tank transverse and longitudinal bulkheads is subject to special consideration (Rognebakke and Faltinsen, 2001).The typical results are shown in Figs.4-6.

    Fig.4 Ship motions

    Fig.5 Wing cargo tank sloshing check

    Fig.6 Sloshing results of longitudinal @FR49+19m

    3.5 Direct strength evaluation(TSA stage)

    The TSA provides a calculation the structural response by performing a finite element analysis. This is based on a"net" ship approach. The reassessed net scantlings are obtained by deducting the nominal design corrosion margins from the reassessed scantlings.

    Generally, the strength assessment of the hull structure can be based on one of two approaches. One approach is based on a three cargo tank length finite element model about mid-ships where the strength assessment is focused on the results obtained from structures in the middle tank.Another approach is based on a complete hull length or full cargo block length finite element model including all cargo and ballast tanks in the hull structure. Since there is a large amount of work required during the optimization process,the first method is applied to the hull optimization.

    In the analysis, the three-hold length 3D model within 0.4L amidships is made. And two frames fore and aft of the two end bulkheads were modeled. All primary load-carrying members were modeled. Secondary structural members which may affect the overall load distribution are made. And structural idealization is made and based on the stiffness and anticipated response of the structures.

    The overall response of the hull girder under the imposed sea loading is obtained. The analysis of the global model is used not only to assess the hull girder plating of the deck,side shell, bottom, inner bottom, longitudinal bulkheads, and transverse bulkheads but also to assess the main supporting members. And the local fine-mesh models are used to determine the additional requirements for the critical areas.The typical FE model is shown in Fig.7.

    Fig.7 FE Model of FPSO

    The standard combined load cases with the corresponding loading patterns are used in the FE analysis. And in assessing the strength of the tank boundary supporting structures, the additional combined load cases of the sloshing load cases are considered. The hull girder shear force and bending moment are adjusted automatically by the Eagle. And the boundary conditions, which are in compliance with the rules, are applied at the ends of the cargo tank FE model. A typical result for one of the loading cases is shown in Fig.8.

    With consideration to the huge workload, the VonMises stress and the deflection is the key point in the optimization.The buckling strength is calculated using a simple method for a typical area. And the fatigue strength is based on the simplified method in the ISE stage.

    Fig.8 VonMises stress plot for one of the load cases

    4 Consequence assessment for the hull optimization

    Optimization design is made according to the same design procedure and method. Several ships with different dimensions and the same loads are analyzed. And the consequence comparison is shown in Table 6 and Table 7.

    Based on the design basis, the results from Table 6 and Table 7 can be found as follows:

    1) The total weight of the barge-shaped and ship-shaped hull is nearly same.

    2) For barge-shaped hull, increasing depth appropriately can reduce the weight of structures.

    4.1 Comparison between ship-shaped and barge-shaped

    The comparison is based on the assumptions below:

    a)The load cases are the same.

    b)The ratio between actual and rule is the same.

    Table 6 Steel weights of longitudinal structures for ship-shaped and barge-shaped

    4.2 Barge-shaped with different depths

    The comparison is based on the assumptions below:

    a) The load cases are the same.

    b)The ratio between SMA and SMR is the same.

    Table 7 Steel weights of longitudinal structures in the hull with different depths

    In Table 7,Weight = Total weight of all longitudinal structures.

    After finishing the comparison above, the barge-shaped FPSO with the main dimensions of 200m×50m×17.7m is chosen as the optimization hull. This design can meet the specifications of the owner, and reduce the steel weight by approximately 500 tons.

    5 Conclusions

    Based on the design procedure, this paper analyzes the scantling of several mid-ship section, through analyzing the calculation results, the following conclusions have been obtained:

    1) The design procedure can be applied to the FPSO hull design and hull optimization. Especially for the optimization,because a lot of work is to be done, the design procedure can help improve design efficiency.

    2) Under this design basis, the FPSO of the barge-shaped design is better than the ship-shaped design, because the depth of the barge-shaped design can be changed with flexibility. And increasing the depth not only reduces the steel weight but also benefits the longitudinal strength.Under determined loads, a better main dimension can be found through the design procedure in this paper.

    3) The arrangement and operation conditions are different for every FPSO. Then the still water bending moment and wave bending moment is different. Based on the different loads, the mid-ship section scantlings are different. The achieved assessment results can provide a reference for the determination of FPSO design.

    The authors wish to thank the sponsors of this project:American Bureau of Shipping.

    ABS (2013). Rules for building and classing floating production installations. American Bureau of Shipping.

    ABS (2009). Guide for the fatigue assessment of offshore structures.American Bureau of Shipping.

    ABS (2012). Guide for buckling and ultimate strength assessment for offshore structures. American Bureau of Shipping.

    BV (2013). Rules for the classification of offshore units. Bureau Veritas.

    Chakarov K, Garbatov Y, Guedes Soares C (2008). Fatigue analysis of ship deck structure accounting for imperfections.

    International Journal of Fatigue, 30(10-11), 1881-1897.

    Deng Xian-feng, Li Xiaoming, Zhang Tie, Chen Dongchang,Huang Qin (2009). Global performance snalysis for FPSO in shallow water.Shipbuilding of China, 50(A11), 192-198.

    DNV (2011). Design of offshore steel structures, general(LRFD Method) . Det Norske Veritas.

    Ferro G, Cervetto Soares C (1984). Hull girder reliability.

    Proceedings of the Ship Structural Symposium, 89-110.

    Hu Yuren, Chen Bozhen (1996).Fatigue reliability analysis of the ship and ocean engineering strucures. Beijing, China Communication Press, 127-146.

    IMO(2004). MARPOL 73/78. International Maritime Organization.IMO(2005). Load Lines. International Maritime Organization.

    IMO (2009). Code for The Construction And Equipment of Mobile Offshore Drilling Units. International Maritime Organization.

    IMO (2008). International code on intact stability. International Maritime Organization.

    Miner MA (1945). Cumulative damage in fatigue.Journal of Applied Mechanics-Transactions of the ASME, 12(3),A159-A164.

    Molin B, Remy F, Rigaud S, Jouette (de) Ch. (2002). LNG-FPSO's:frequency domain, coupled analysis of support and liquid cargo motions.IMAM, Greece.

    Paik JK, Kim BJ, Seo JK (2008). Methods for ultimate limit state assessment of ships and ship-shaped offshore structures.Ocean Engineering, 35, 261-270.

    Rognebakke OF, Faltinsen O (2001). Effect of sloshing on ship motions.17th Int. Workship on Water Waves and Floating Bodies, Hiroshima, Japan.

    Zhao Gengxian (2002). FPSO design.Shanghai Shipbuilding, (2),4-8.

    Zhao Gengxian (2002). On the design features of FPSO structures.

    Ship >amp;Boat, (1), 38-41.

    中国美白少妇内射xxxbb| 亚洲一级一片aⅴ在线观看| 国产高清有码在线观看视频| 色视频www国产| 成人一区二区视频在线观看| 久久久亚洲精品成人影院| 亚洲av男天堂| 好男人视频免费观看在线| 免费看日本二区| 亚洲欧美成人精品一区二区| 亚洲自拍偷在线| 欧美国产精品一级二级三级 | 少妇人妻 视频| 久久影院123| 中文乱码字字幕精品一区二区三区| 日日啪夜夜爽| 免费av不卡在线播放| 国产黄频视频在线观看| 综合色av麻豆| 久久精品久久久久久久性| 国产午夜精品一二区理论片| 久久精品人妻少妇| 国产高清国产精品国产三级 | 国产伦精品一区二区三区四那| 夜夜看夜夜爽夜夜摸| 日韩制服骚丝袜av| 春色校园在线视频观看| 国产综合懂色| 全区人妻精品视频| 亚洲av免费在线观看| 大片免费播放器 马上看| 亚洲精品国产av蜜桃| 精品少妇黑人巨大在线播放| 黄片wwwwww| 日本爱情动作片www.在线观看| 性色av一级| 日韩在线高清观看一区二区三区| 国产精品无大码| 成人漫画全彩无遮挡| 国产中年淑女户外野战色| 欧美极品一区二区三区四区| 涩涩av久久男人的天堂| 赤兔流量卡办理| 免费大片黄手机在线观看| 伦理电影大哥的女人| 免费看不卡的av| 亚洲国产精品999| 成人高潮视频无遮挡免费网站| 黄色一级大片看看| 人体艺术视频欧美日本| 在线a可以看的网站| 在线看a的网站| 亚洲精品aⅴ在线观看| 神马国产精品三级电影在线观看| 黄片无遮挡物在线观看| 国产真实伦视频高清在线观看| 男女啪啪激烈高潮av片| 2022亚洲国产成人精品| 2021天堂中文幕一二区在线观| 亚洲精品久久久久久婷婷小说| 我的老师免费观看完整版| 在线观看av片永久免费下载| 国产永久视频网站| 亚洲精品久久久久久婷婷小说| 久久久久精品久久久久真实原创| 亚洲自偷自拍三级| 久久ye,这里只有精品| 青春草亚洲视频在线观看| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜爱| 91在线精品国自产拍蜜月| 一级毛片电影观看| 国产一区二区亚洲精品在线观看| 免费电影在线观看免费观看| 国产国拍精品亚洲av在线观看| 青春草亚洲视频在线观看| 深爱激情五月婷婷| 色视频在线一区二区三区| 久久韩国三级中文字幕| 亚洲四区av| 婷婷色av中文字幕| 嘟嘟电影网在线观看| 国产日韩欧美亚洲二区| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| www.av在线官网国产| 国产黄色免费在线视频| 免费电影在线观看免费观看| 亚洲,一卡二卡三卡| 亚洲va在线va天堂va国产| 亚洲国产日韩一区二区| 亚洲精品日韩在线中文字幕| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品乱久久久久久| 男女国产视频网站| 午夜老司机福利剧场| 国产爽快片一区二区三区| 欧美人与善性xxx| 午夜视频国产福利| 国产伦在线观看视频一区| 亚洲激情五月婷婷啪啪| 97超视频在线观看视频| 亚洲精品影视一区二区三区av| 国产精品蜜桃在线观看| 男女无遮挡免费网站观看| 在线a可以看的网站| 久久精品国产自在天天线| 成人特级av手机在线观看| 国语对白做爰xxxⅹ性视频网站| 久热久热在线精品观看| 又黄又爽又刺激的免费视频.| 十八禁网站网址无遮挡 | 69人妻影院| 最后的刺客免费高清国语| 亚洲欧美日韩另类电影网站 | 最近手机中文字幕大全| 一级黄片播放器| 久久久久久久久久久丰满| 国产探花在线观看一区二区| 80岁老熟妇乱子伦牲交| 久久鲁丝午夜福利片| 九九在线视频观看精品| 两个人的视频大全免费| 亚洲欧洲国产日韩| 综合色av麻豆| 日本一二三区视频观看| 国产v大片淫在线免费观看| 欧美老熟妇乱子伦牲交| 亚洲精品亚洲一区二区| 国产精品三级大全| 毛片女人毛片| 亚洲精品乱码久久久v下载方式| 黄色一级大片看看| 精品国产乱码久久久久久小说| 激情五月婷婷亚洲| 免费观看的影片在线观看| 国产一级毛片在线| 国产淫语在线视频| 热99国产精品久久久久久7| videossex国产| 国产乱来视频区| 直男gayav资源| 天天一区二区日本电影三级| 少妇被粗大猛烈的视频| 一级a做视频免费观看| 丝袜美腿在线中文| 亚洲国产精品成人久久小说| 中文在线观看免费www的网站| 中文资源天堂在线| 男的添女的下面高潮视频| 少妇丰满av| 色哟哟·www| 少妇猛男粗大的猛烈进出视频 | 人人妻人人澡人人爽人人夜夜| 国产黄频视频在线观看| 久久久久久久午夜电影| 成年人午夜在线观看视频| 老女人水多毛片| 亚洲精品一二三| 精品国产露脸久久av麻豆| 国产亚洲5aaaaa淫片| xxx大片免费视频| 成人漫画全彩无遮挡| 狂野欧美激情性bbbbbb| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 亚洲精品自拍成人| 国产一区亚洲一区在线观看| 禁无遮挡网站| 亚洲av不卡在线观看| 免费看不卡的av| 日本-黄色视频高清免费观看| 91aial.com中文字幕在线观看| 夫妻午夜视频| 国产美女午夜福利| 免费黄频网站在线观看国产| 亚洲,欧美,日韩| 亚洲精品视频女| 久久久精品94久久精品| 五月天丁香电影| 国产精品久久久久久久久免| 又爽又黄a免费视频| 中国美白少妇内射xxxbb| 2021天堂中文幕一二区在线观| 久久人人爽人人爽人人片va| 国产精品久久久久久av不卡| 久久久久久久国产电影| 91狼人影院| 日韩一本色道免费dvd| 99久久精品热视频| 亚洲av一区综合| 成年人午夜在线观看视频| 国产大屁股一区二区在线视频| 久久久久久久久久久免费av| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 免费在线观看成人毛片| 日韩成人伦理影院| 一区二区三区精品91| 麻豆国产97在线/欧美| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频 | 欧美成人一区二区免费高清观看| 极品教师在线视频| 精品久久久久久久人妻蜜臀av| 亚洲经典国产精华液单| 亚洲欧洲国产日韩| 国产成人精品婷婷| 最后的刺客免费高清国语| 高清毛片免费看| 最近中文字幕2019免费版| 只有这里有精品99| 六月丁香七月| 特级一级黄色大片| 一级a做视频免费观看| 国产欧美日韩一区二区三区在线 | 久久精品夜色国产| 国产黄片美女视频| 日韩成人av中文字幕在线观看| 国产一区有黄有色的免费视频| 一区二区三区精品91| 婷婷色综合www| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 91精品国产九色| 制服丝袜香蕉在线| av卡一久久| 18+在线观看网站| 日日撸夜夜添| 中文字幕制服av| 91久久精品电影网| 午夜老司机福利剧场| av在线亚洲专区| 丰满人妻一区二区三区视频av| 性色av一级| 永久网站在线| 日日摸夜夜添夜夜爱| 午夜视频国产福利| 大片电影免费在线观看免费| 国产大屁股一区二区在线视频| 国产精品无大码| 在现免费观看毛片| 亚洲成人av在线免费| 国产精品女同一区二区软件| 午夜免费观看性视频| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 我的老师免费观看完整版| 一个人观看的视频www高清免费观看| a级一级毛片免费在线观看| 一区二区av电影网| 亚洲精品456在线播放app| 国产女主播在线喷水免费视频网站| 欧美激情在线99| 午夜视频国产福利| 国产黄a三级三级三级人| 99久久人妻综合| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 白带黄色成豆腐渣| 日本爱情动作片www.在线观看| 国产欧美日韩精品一区二区| 各种免费的搞黄视频| 特大巨黑吊av在线直播| 2021天堂中文幕一二区在线观| 五月天丁香电影| 日韩,欧美,国产一区二区三区| 九色成人免费人妻av| 亚洲av在线观看美女高潮| 亚洲真实伦在线观看| 五月天丁香电影| 夫妻性生交免费视频一级片| 国产乱来视频区| 国产免费福利视频在线观看| 最近手机中文字幕大全| www.av在线官网国产| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 免费看日本二区| 亚洲精品视频女| 久久久色成人| 白带黄色成豆腐渣| 69av精品久久久久久| 中文资源天堂在线| 激情 狠狠 欧美| 精品久久久噜噜| 九九久久精品国产亚洲av麻豆| 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| 水蜜桃什么品种好| 熟女电影av网| 99九九线精品视频在线观看视频| av在线老鸭窝| av播播在线观看一区| 女人十人毛片免费观看3o分钟| 精品一区二区三卡| 中文精品一卡2卡3卡4更新| 亚洲不卡免费看| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 亚洲欧美一区二区三区黑人 | 日本猛色少妇xxxxx猛交久久| av在线app专区| 亚洲精品成人久久久久久| 免费观看的影片在线观看| 欧美潮喷喷水| 制服丝袜香蕉在线| 日日撸夜夜添| 国产乱来视频区| 一个人看的www免费观看视频| 大码成人一级视频| 建设人人有责人人尽责人人享有的 | 蜜臀久久99精品久久宅男| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| 精品国产一区二区三区久久久樱花 | av线在线观看网站| 国产一区二区在线观看日韩| 在线亚洲精品国产二区图片欧美 | 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看日韩| 午夜精品国产一区二区电影 | 精品人妻熟女av久视频| 国产女主播在线喷水免费视频网站| 一区二区三区免费毛片| 国产成人精品福利久久| av在线播放精品| 91狼人影院| 狂野欧美激情性xxxx在线观看| 99久久精品一区二区三区| 国产成人精品婷婷| 欧美潮喷喷水| 成人特级av手机在线观看| 成人一区二区视频在线观看| 夫妻午夜视频| 看黄色毛片网站| 高清av免费在线| 国产免费又黄又爽又色| 久久久国产一区二区| 国产成人a区在线观看| 亚洲国产精品专区欧美| av线在线观看网站| 亚洲av.av天堂| 久久久久久久久久久丰满| 成人国产麻豆网| 狠狠精品人妻久久久久久综合| 日日啪夜夜撸| 99久国产av精品国产电影| 久久女婷五月综合色啪小说 | 国产精品国产av在线观看| 午夜激情久久久久久久| 亚洲丝袜综合中文字幕| 日韩av免费高清视频| 国产成人精品一,二区| 高清日韩中文字幕在线| 亚洲精品一区蜜桃| 日韩大片免费观看网站| 国产一区有黄有色的免费视频| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 成人国产av品久久久| 亚洲精品乱码久久久久久按摩| 一二三四中文在线观看免费高清| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 亚洲怡红院男人天堂| 内地一区二区视频在线| 精品久久久久久电影网| videos熟女内射| 中国三级夫妇交换| 夜夜爽夜夜爽视频| 夫妻午夜视频| 中文资源天堂在线| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 女人十人毛片免费观看3o分钟| 亚洲国产日韩一区二区| 欧美成人a在线观看| 免费av不卡在线播放| 亚洲国产最新在线播放| 天堂中文最新版在线下载 | 大香蕉久久网| videossex国产| 色网站视频免费| 亚洲综合精品二区| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 天天躁夜夜躁狠狠久久av| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 日韩一区二区三区影片| 欧美日韩在线观看h| 又爽又黄无遮挡网站| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 国产男人的电影天堂91| 午夜免费观看性视频| 久久久久久久午夜电影| 亚洲国产精品999| 精品少妇久久久久久888优播| 色5月婷婷丁香| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 亚洲av男天堂| 神马国产精品三级电影在线观看| 搡老乐熟女国产| 国产久久久一区二区三区| av网站免费在线观看视频| 老司机影院成人| 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 麻豆精品久久久久久蜜桃| 国产真实伦视频高清在线观看| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 亚洲精品国产成人久久av| 女人十人毛片免费观看3o分钟| 午夜免费观看性视频| 精品久久久久久久久av| 精品人妻一区二区三区麻豆| 美女主播在线视频| 欧美丝袜亚洲另类| 亚洲av欧美aⅴ国产| 春色校园在线视频观看| 成人亚洲精品一区在线观看 | 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| a级一级毛片免费在线观看| av又黄又爽大尺度在线免费看| 亚洲精品一区蜜桃| 国产精品福利在线免费观看| 最近2019中文字幕mv第一页| 大话2 男鬼变身卡| 天天躁日日操中文字幕| 熟女av电影| 久久久精品94久久精品| 男女无遮挡免费网站观看| 国产欧美另类精品又又久久亚洲欧美| 干丝袜人妻中文字幕| 免费高清在线观看视频在线观看| 水蜜桃什么品种好| 夜夜看夜夜爽夜夜摸| 一区二区三区乱码不卡18| 一个人看的www免费观看视频| 日韩成人av中文字幕在线观看| 国产伦精品一区二区三区四那| 各种免费的搞黄视频| 老师上课跳d突然被开到最大视频| 黄片wwwwww| 干丝袜人妻中文字幕| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| 亚洲综合色惰| 日韩一区二区视频免费看| 听说在线观看完整版免费高清| 少妇高潮的动态图| 在线 av 中文字幕| 国产午夜精品久久久久久一区二区三区| 久久久a久久爽久久v久久| 视频区图区小说| 亚洲av在线观看美女高潮| 久久人人爽人人爽人人片va| 国产成人午夜福利电影在线观看| 日日摸夜夜添夜夜爱| 亚洲国产高清在线一区二区三| 人妻少妇偷人精品九色| 日本午夜av视频| 老女人水多毛片| 丰满乱子伦码专区| 五月开心婷婷网| 欧美成人一区二区免费高清观看| 久久久久久九九精品二区国产| 色视频www国产| 99久久精品热视频| 亚洲av中文字字幕乱码综合| 日本爱情动作片www.在线观看| 精品国产露脸久久av麻豆| 亚洲人与动物交配视频| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 久久ye,这里只有精品| 国产精品一区二区三区四区免费观看| 久久久色成人| 欧美日韩视频精品一区| 国产色爽女视频免费观看| 欧美国产精品一级二级三级 | 精品亚洲乱码少妇综合久久| 久久久久久国产a免费观看| 国产成人freesex在线| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| xxx大片免费视频| 亚洲性久久影院| 97热精品久久久久久| 日韩人妻高清精品专区| 精品99又大又爽又粗少妇毛片| 啦啦啦在线观看免费高清www| 日日摸夜夜添夜夜添av毛片| 午夜老司机福利剧场| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 精品久久国产蜜桃| 白带黄色成豆腐渣| 国产精品99久久99久久久不卡 | av专区在线播放| 亚洲欧美日韩卡通动漫| 纵有疾风起免费观看全集完整版| 特大巨黑吊av在线直播| 大片电影免费在线观看免费| 亚洲最大成人中文| 在现免费观看毛片| 精华霜和精华液先用哪个| 精品久久久噜噜| 黄色怎么调成土黄色| 免费观看av网站的网址| 日本黄色片子视频| 97超视频在线观看视频| 久久久久久久久久成人| 亚洲av免费高清在线观看| 国产精品无大码| 亚洲av成人精品一区久久| 国产综合精华液| 欧美三级亚洲精品| 免费看日本二区| 国产男人的电影天堂91| 久久鲁丝午夜福利片| 中文乱码字字幕精品一区二区三区| 亚洲天堂av无毛| 夜夜爽夜夜爽视频| 日日摸夜夜添夜夜爱| 亚洲av欧美aⅴ国产| 亚洲人成网站在线播| 国产黄a三级三级三级人| 国产成人精品福利久久| 国产成人aa在线观看| 日韩不卡一区二区三区视频在线| 秋霞伦理黄片| 欧美xxxx性猛交bbbb| 国产精品秋霞免费鲁丝片| 亚洲人成网站在线观看播放| 嫩草影院入口| 亚洲精品视频女| av黄色大香蕉| 听说在线观看完整版免费高清| 你懂的网址亚洲精品在线观看| 色视频www国产| 黑人高潮一二区| 亚洲最大成人中文| 乱系列少妇在线播放| 草草在线视频免费看| 国产在线男女| 一区二区三区乱码不卡18| 中文欧美无线码| 国产免费又黄又爽又色| 免费观看无遮挡的男女| 日韩av在线免费看完整版不卡| 免费看日本二区| 国产成人福利小说| h日本视频在线播放| 秋霞在线观看毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久电影网| 91精品一卡2卡3卡4卡| 男插女下体视频免费在线播放| 日本色播在线视频| 成人欧美大片| 能在线免费看毛片的网站| 91aial.com中文字幕在线观看| 成人综合一区亚洲| 国产免费视频播放在线视频| 久久久午夜欧美精品| 日本一本二区三区精品| 欧美zozozo另类| 神马国产精品三级电影在线观看| 真实男女啪啪啪动态图| 久久97久久精品| 日韩一本色道免费dvd| 涩涩av久久男人的天堂| 久久99热这里只频精品6学生| 两个人的视频大全免费| 亚洲av在线观看美女高潮| 免费大片18禁| 国产女主播在线喷水免费视频网站| 久久精品国产亚洲av天美| 听说在线观看完整版免费高清| 大话2 男鬼变身卡| 亚洲精品乱码久久久v下载方式| 欧美性猛交╳xxx乱大交人| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 男女边摸边吃奶| 精品国产乱码久久久久久小说| 香蕉精品网在线| 精华霜和精华液先用哪个| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 国产成人一区二区在线| 男人爽女人下面视频在线观看| 草草在线视频免费看| 高清视频免费观看一区二区| 亚洲欧美中文字幕日韩二区| www.色视频.com| 伦精品一区二区三区| 水蜜桃什么品种好| 中国三级夫妇交换| 成人免费观看视频高清| 三级国产精品片| 国产av不卡久久|