• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Coupled Analysis of the Floating Platform Using the Asynchronous Coupling Algorithm

    2014-07-30 09:50:26ShanMaandWenyangDuan

    Shan Ma and Wenyang Duan

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    1 Introduction1

    Deepwater floating systems consist of a floating platform,mooring and risers. As the oil and gas exploration continue to develop in deepwater areas, the interaction between floating platforms and mooring/risers become more pronounced. It has been long recognized that there is a need to develop the coupled analysis method to simultaneously solve the dynamic responses of the platform and mooring/risers. In this regard,Paullinget al.(1986) did the pioneering research. They extended the slender rod theory proposed by Garrett (1982) to simulate the tendons, as well as studied the dynamic response of the TLP platform coupled with the dynamics of extensible tendons. Ranet al. (1997, 2000) developed the coupled dynamic analysis program where the 3D second order potential flow theory is used to estimate the wave loads on floating platforms, the slender rod theory is used to model the mooring/risers, the flexible lines and the rigid body are connected together via springs and dampers and thus form a multiple DOF coupled dynamic system of equations. By solving the multiple DOF systems of equations, the coupled solution can be obtained. Lowet al.(2006) used the lumped mass method to simulate the dynamic response of the mooring. They used springs to connect the floating body and lines, established the fully coupled analysis method in time domain and frequency domain. The authors investigated the LF hydrodynamic damping effect from mooring and the applicability of linearization of the damping and mooring restoring force. Rhoet al.(2007) applied the Newmark method for the time marching scheme of the FEM equations of the mooring/riser and the vessel. In that paper the coupled equations of the mooring/riser segments and vessel are solved alternatively at each time step. The mooring/riser and the vessel motion affect to each other in a way that the components of the forces at the segment ends are determined as a function of displacements and slopes of the vessel. On the contrary, the vessel motions are determined again by the nodal force at the segment ends of the mooring/risers. By iteration solution of the mooring/risers and vessel using the updated information of displacement from the vessel and nodal loads from mooring/risers, the displacement of the vessel and the nodal force from the mooring/riser can be matched to each other. In other words the coupled dynamic solution of the vessel and the mooring can be achieved by iteration of the two dynamic systems. Using this method, each of these lines can be solved separately. The computational efficiency could be improved by solving the dynamics of all the lines using a parallel algorithm.

    In this paper, we use the idea of the asynchronous coupled algorithm proposed by Jinget al. (2011) to perform the simultaneous solution of the floating platform and mooring/risers. Via this method, the dynamic response of the platform and mooring/risers is solved in a separate module.They are coupled together by matching the information at the connection point. The final goal is to optimize the time step of the two dynamic systems with a different time scale and the computational efficiency of the coupled analysis is improved further using parallel computation of the mooring/risers.

    The main focus of this paper is on the dynamic modeling of the floating vessel using the Euler angle to consider the nonlinear effects of motion on the rigid body equations.Additionally, we introduce how the vessel and mooring are coupled together using the idea of asynchronous coupling.The numerical results are checked and validated with the commercial software package.

    2 The dynamic modeling of platform motion under environmental loads and mooring/risers

    The platform is assumed to be undergoing 6DOF motions under the external environmental loads like wind, waves and currents forces. For a moored floating structure, the wave frequency oscillatory motions often exist together with the low frequency slow drift motions and they are also coupled to each other. In our numerical model these two types of motions are modeled and solved together.

    In order to evaluate the motions of the platform, the translational momentum theorem is used at the mass center of the platform in the Earth fixed coordinate systemO?XYZ:

    where the mass of the platform ism.U,VandWare the velocity components of the body at the center of gravity.FcX,FcYandFcZare the global external forces on the body at the center of gravity.

    In order to evaluate the rotations of the body, the angular momentum theorem is used at the center of the mass in the body fixed coordinate systemG?xb ybzb.

    whereIij,i,j=1,3,2 represents the inertial moment matrix of the platform about the center of the mass in the body fixed coordinate system.j?is the angular velocity component,Mcx,McyandMczare the external moments on the platform, respectively.

    In order to express the platform displacement, the translational displacement of the body at the center of gravity areXo,YoandZoin the Earth fixed coordinate system. The Euler anglesα,βandγare introduced to express the rotation displacement of the rigid body which represents the roll, pitch and yaw motions, respectively. It can be demonstrated that the displacement vector satisfies the following motion differential equations:

    In Equations 1-6, the external force on the right hand side includes all the environmental loads from wind/wave/current and the structural loads from mooring/risers.Once we know these external forces, the six DOF responses of the platform can be determined using equations 1-12.

    The hydrodynamic loads on the floating structures in waves include the radiation wave forces, wave exciting forces (incident wave forces plus diffraction wave forces together), hydrostatic restoring forces, and damping forces.

    As for the radiation wave forces on the floating structure,based on the linear radiation analysis theory in time domain,they can be expressed in terms of the impulse response function:

    whereμjiis the added mass matrix of the platform at infinite high frequency,ivthe 6 DOF velocity component of the platform, andKjithe radiation force retardation function due to the impulse motion of the body in theith direction. The integration includingKjireflects the accumulated effects of the radiation wave force due to the generated waves by the platform motions at previous time before the current time momentt.

    The retardation functionKjican be converted from the hydrodynamic coefficient in frequency domain as follows:

    whereμji(ω),λji(ω) are added mass and wave damping coefficients in frequency domain, respectively.Kjican be numerically evaluated using Eq. 14. The key factor for proper estimation is how to approximate the value of the radiation damping coefficient at high frequency in Eq. 14.Through the use of numerical investigation we obtain a stable method which can be used to estimate theKjieffectively.

    As for the wave exciting forces on the floating structures,the second order potential flow theory is used. The total wave forces in irregular wave can be decomposed into first order wave forces and second wave forces as follows.

    The first order wave force in irregular wave is expressed as:

    whereζaj,k0j,ωjandεjrepresent the wave amplitude, wave number, circular wave frequency and random phase angle of thejthregular wave component, respectively.fja,jαare the amplitude and phase transfer function of the first order wave exciting force on the floating body due tojthregular wave component.XandYare the platform displacement along theOXandOYaxes at the center of gravity in the earth coordinate system.βis the wave heading of the incident wave relative to the yaw motion of the platform,β=180°is defined as the heading seas.

    The second order low frequency (LF) wave force in the irregular wave can be expressed as:

    whereTa jkandαjkare the amplitude and phase quadratic transfer function (QTF) of the difference frequency wave loads due to the interaction of the two wave components with the circular wave frequencyωjandωk, respectively.EspeciallyTa jjrepresents the mean drift force transfer function due to the interaction of the regular wave component with the circular frequencyjω.ajis the free surface wave elevation at the center of gravity in the Earth coordinate system which can be expressed using Eq. (18).

    Due to the numerical complexity of calculating the second order low frequency wave loadsTa jk, Newman’s Approximation (Newman, 1974) is often used which can give a satisfactory estimation of LF wave loads when the water depth is deep and the horizontal resonant frequency of the moored structure is relatively low. Newman’s Approximation means that the LF wave loads QTF can be estimated using the mean drift loads. Based on the deviation in Chen et al. (2009), the Newman’s Approximation formula can be expressed as:

    At higher sea states, the wave drift damping is the dominant hull damping component (Faltinsen, 1990), it is needed to consider this contribution. Presently the empirical formula originally derived on a 2D floating body at infinite water depth by Aranha (1991, 1994) and extened to 3D floating body by Clarket al. (1993) is applied.

    With the current numerical model, the added mass and wave damping coefficients, first order and second order wave force transfer function in frequency domain are pre-calculated using three dimensional potential flow panel code Hydrostar (2010) and imported into the developed time domain simulation module.

    3 The dynamic modeling of mooring lines and risers

    There are multiple mooring lines and risers connecting to the platform. As stated previously each of these slender flexible members is solved separately. The slender rod theory (Pauling and Webster, 1986) is used here to simulate the dynamic response of mooring lines/risers. Based on this theory the FEM method is used to form the dynamic partial differential equations of mooring/risers in terms of unknown nodal displacement and axial force vector. A numerical module developed by Ma (2009) is applied here to solve the dynamic differential equations of the single lines/risers using some explicit integration algorithm once we know the boundary displacement time series of the platform at the connection point.

    4 Asynchronous coupling algorithm between the platform and mooring/risers

    In order to solve the platform motion and the mooring line/risers dynamic response together, several different methods have been proposed.

    In this paper, we adopt the asynchronous coupled analysis,proposed by Jinget al.(2011). This method can be performed based on the separation of the platform motion and the motion of mooring/risers into two simulation modules. At the connection point between the platform and mooring lines/risers, the nodal forces and displacement has to be consistent in order to achieve the coupled solution. The main idea is introduced as follows.

    As for the platform motion module, the dynamic response of the platform is solved based on the equations (1-12). We can write the motion equation in the following forms:

    wherex(t) represents the displacement of the body at the center of gravity,

    V(t)represents the translational velocity and angular velocity of the body respectively.

    In order to implement the asynchronous coupling between the platform and mooring/risers, the Runge-Kutta (RK)fourth-order scheme is used to solve Equations 20-21. The displacement and velocity of the body can be predicted using the following formulas:

    wherehis the time step to obtain the platform motions. In order to get the solution attn+h, one needs to know the vectorgat time momenttn,andtn+hwhich is related to the fluid forces on the body and the structural end loads from the mooring /risers. The fluid forces can be obtained based on the known or predicted displacement and velocity at these time moments like the wave forces given in equations 13-18. The structural loads have to be determined by solving the dynamic response of the mooring/risers using the slender rod theory. In the numerical model, the displacement and velocity at the connection point at time momentstn,and tn+ h on the platform is provided in order to be the boundary condition of mooring/riser dynamic analysis. By solving the mooring lines, the nodal reaction loads on the platform from mooring lines/risers can be obtained. In order to assure the simultaneous solution of the coupled dynamic response between the floating body and the flexible lines. The displacement of the body and the nodal structural loads at the connection point from the lines should be repeatedly convergent and matched to each other. By using the Runge-Kutta algorithm, the displacement and nodal force can be iterated, updated and corrected which can lead to the matched information exchange between the platform and mooring lines.

    When using the RK algorithm to solve the dynamic response of the floating body, the nodal loads from the mooring/risers attn,and tn+ h need to be received. It is natural to choose the corresponding time step in the rod dynamic analysis module with the same floating body. Because of the dynamic response characteristics of the mooring/risers, the necessary time step of the lines is usually one order smaller than the necessary time step of the platform. So the time step of the coupled dynamic system between the platform and lines has to be determined as the minimum between the floating body and the mooring line. It means the synchronous coupling solution makes the time step of the platform module unnecessarily smaller for itself which causes the dynamic analysis of the platform motions to be unnecessarily longer.

    Then the asynchronous coupling algorithm is used to improve the computational efficiency of the dynamic system.This algorithm platform and mooring/risers use their own optimized time step. It means that the dynamic response of the floating platform use the time stephwhile the rod dynamics use the smaller time stepdtapplicable to the response characteristics of the rod. Because the dynamic solution of the mooring/risers needs the input displacement at the top connection to the platform at its own time step, it is necessary to know the rod displacement time series at time intervaltn+kdtbetween the time step fromtntotn+h/2 and fromtntotn+h. In order to get the input displacement from the platform at these time intervals, the cubic interpolation polynomial is constructed using the platform displacement information attn,andtn+htime moment. Using the obtained interpolation function, the nodal displacement attn+kdttime moment is computed. Through this method, the nodal loads from the mooring/riser force on the floating body can be determined using the dynamic solution of the lines module at time momenttn+kdtwhich includes the moment attn,andtn+ .

    During the numerical implementation of the dynamic coupling analysis using the asynchronous algorithm, it is found that the time step for the dynamic analysis of the mooring/risers should be limited in order to avoid the instability of the dynamic response.The maximum allowable time step is dependant on many factors such as the type of mooring system, the response amplitude of the platform motions,etc.andth

    5 Numerical results

    Based on the asynchronous coupling algorithm, we have developed a dynamic coupling program to solve the global motion response of the floating platform in wind, waves and currents.

    In order to check our numerical model, the response of a classical SPAR platform (Steenet al., 2004) in irregular waves is simulated and compared with the commercial software AQWA. The main dimensions of the SPAR are listed in Table 1.

    Table 1 The dimensions of the SPAR platform

    The Spar platform is moored with 14 mooring lines. The mooring lines are uniformly spread and each of them is composed of three components of chain-wire-chain. Fig. 1 shows the layout configuration of the whole mooring system.Table 2 presents the parameters of the mooring lines.

    Table 2 Parameters of the mooring lines

    The asynchronous coupling algorithm developed in our numerical model is used to simulate the dynamic coupled response of SPAR with mooring lines. The water depth is 914.4 m. The numerical simulation time is three hours, the time step of the dynamic solution of the platform is 0.3 s,while the time step of the dynamic solution of the mooring lines is 0.05 s. Each mooring line is divided into 25 elements in the dynamic analysis using the FEM numerical method.The simulation is performed at heading seas. The JONSWAP sea spectrum is used with a significant wave height of 12.19 m, a spectral peak period of 14.0 s and a peakedness factor ofγ=2.5. The response of the SPAR in head irregular waves is compared with the commercial software AQWA. During the comparison the irregular wave time history is generated in our numerical model and imported to the AQWA software in order to ensure both of the numerical models have the same incident wave time history.

    Figs.2-3 show the time history comparison of longitudinal and vertical radiation forces. In both our developed code and AQWA software, the radiation forces are calculated using the impulse response function as shown in Eq. 13. The results agree quite well, which shows that the radiation force in our program has been estimated properly using the impulse response function method.

    Figs. 4-5 show the longitudinal first order and second order low frequency wave forces of the SPAR. The second order wave forces are estimated using Newman’s Approximation according to Eq. (19). It is demonstrated from the comparison that we have correctly modeled the wave forces.

    Figs. 6-8 present the surge, heave and pitch motions. At the present case it should be noted that the effects of the second order low frequency wave force are not considered on for the heave and pitch motion in both our programs and the AQWA software for the convenience of the comparison.Generally, the results of our developed code agree quite well with the results from AQWA. The only exception is that the peak value of the surge motion in our code is a little larger than that of the AQWA software. The reason is probably that the hydrodynamic damping of the LF SPAR platform is relatively small and the damping level is a little different from the contribution of the wave drift damping effect between these two codes.

    Figs. 9-11 give the mooring tensions of the No. 1, 4 and 8 mooring lines at fairleads. Our numerical results show quite consistent time history with that of the AQWA software.From the results it is seen that the dynamic responses of the mooring system in our program has been modeled properly and the asynchronous algorithm has been performed with a good precision on both platform motions and mooring line tensions.

    Fig. 1 The layout configuration of the SPM system

    Fig. 2 The longitudinal radiation force comparison

    Fig. 3 The vertical radiation force comparison

    Fig. 4 The longitudinal first order wave force comparison

    Fig. 5 The longitudinal second order low frequency waveforce comparison using Newman’s Approximation

    Fig. 6 Surge motion of SPAR platform in head seas

    Fig. 7 Heave motion of SPAR platform in head seas

    Fig. 8 Pitch motion of SPAR platform in head seas

    Fig. 9 #1 mooring line tension of SPAR platform at fairlead in head seas

    Fig. 10 #4 mooring line tension of SPAR platform at fairlead in head seas

    Fig.11 #8 mooring line tensions of SPAR platform at fairlead in head seas

    6 Conclusion

    This paper discusses a numerical model for performing the dynamic coupled analysis of the moored floating platform and mooring/risers. The emphasis is on the modeling of platform motions in waves. How the asynchronous coupling algorithm is achieved is also introduced. Through the use of a numerical comparison with the AQWA software package, it can be concluded that the dynamic modeling of the platform motion and mooring tensions, as well as the asynchronous coupling algorithm between the platform and mooring/risers has been properly established.

    Acknowledgements

    In the current research work, Prof. Webster W.C., Prof.Ma Q.W., Dr. Chen X.B. gave the authors a lot of beneficial help and advice, their contributions to this research work is greatly appreciated.

    This work is part of the research project “coupled motion and external environmental loads analysis of deepwater floating structures,” which is sponsored by the Ministry of Industry and Information Technology of China. The financial support from the National Natural Science Foundation (Grant No.51109040), Young Faculty Academic Supporting Program of Heilongjiang Province (Grant No.1252G017), “111 project” foundation (Grant No.B07019) is also gratefully acknowledged.

    Aranha JAP (1991). Wave groups and slow motion of an ocean structure.6th International Workshop on Water Waves and Floating Bodies, Woods Hole, MA, USA, 5-8.

    Aranha JAP (1994). A formula for “Wave damping” in the drift of a floating body.J. Fluid Mechanics, 275, 147-155.

    Bureau Veritas (2010). Hydrostar for experts user manual.

    Chen XB, Rezende F (2009). Efficient computations of second order low frequency wave load.Proceedings of OMAE 2009,Honolulu, USA.

    Clark PJ, Malenica S, Molin B (1993). An heuristic approach to wave drift damping.Applied Ocean Research, 15, 53-55.

    Faltinsen OM (1990).Sea loads on ships and offshore structures.Cambridge University Press.

    Garrett DL (1982). Dynamic analysis of slender rods.Journal of Energy resources technology.Transactions of ASME, 104,302-307.

    Jing X, Webster WC, Xu Q, Lambrakos K (2011). Coupled dynamic modeling of a moored floating platform with risers.

    Proceedings of the ASME 30th Inter. Conference on Ocean,Offshore and Arctic Engineering, Rotterdam, Netherlands,OMAE2011-49553.

    Low YM, Langley RS (2006). Time and frequency domain coupled analysis of deepwater floating production systems.Applied Ocean Research, 28, 371-385.

    Ma G (2009). Dynamic research of deepwater mooring line and riser based on elastic rod theory. Master Thesis, Harbin Engineering University, Harbin.

    Newman JN (1974). Second-order, slowly varying forces on vessels in irregular waves.International Symposium on the Dynamics of Marine Vehicles and Structures in Waves, London,Mechanical Engineering Publications Ltd, UK, 182-186.

    Pauling JR, Webster WC (1986). A consistent large-amplitude analysis of the coupled response of a TLP and tendon system.Proc. 5th OMAE Conf., Tokyo, Japan, 3, 126-133.

    Ran Z, Kim MH (1997). Nonlinear coupled responses of a tethered spar platform in waves.International Journal of Offshore Polar Engineering, 7(2), 111–8.

    Ran Z (2000).Coupled dynamic analysis of floating structures in waves and current. PhD Thesis, Texas A>amp;M University,College Station.

    Rho JB, Korobkin AA, Jung JJ, Shin HS, Lee WS (2007). Coupled analysis of deepwater floating system including VIV in time domain.Proceedings of the 26th Inter. Conf. on Offshore Mechanics and Arctic Engineering, San Diego, California, USA,OMAE2007-29523.Steen A, Kim MH, Irani M (2004). Prediction of Spar responses:model tests vs. analysis.Offshore Technology Conference,Houston, TX, USA, OTC16583.

    在线观看免费日韩欧美大片| 在线观看www视频免费| 精品国产一区二区久久| 国产 一区精品| 日本一区二区免费在线视频| 男女免费视频国产| 欧美xxⅹ黑人| 天天操日日干夜夜撸| 久久天躁狠狠躁夜夜2o2o | 国产av一区二区精品久久| 大香蕉久久网| 亚洲美女视频黄频| 久久国产亚洲av麻豆专区| 热re99久久精品国产66热6| 久久久精品免费免费高清| 免费观看av网站的网址| 日韩中文字幕视频在线看片| 中文字幕精品免费在线观看视频| 亚洲欧美色中文字幕在线| 日本黄色日本黄色录像| 日本一区二区免费在线视频| 精品少妇内射三级| 97在线人人人人妻| 女性生殖器流出的白浆| 日韩一卡2卡3卡4卡2021年| 国产99久久九九免费精品| 日韩 亚洲 欧美在线| 国产又爽黄色视频| 成年美女黄网站色视频大全免费| 午夜激情久久久久久久| 欧美精品亚洲一区二区| 国产av一区二区精品久久| 精品福利永久在线观看| 丰满乱子伦码专区| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 亚洲 欧美一区二区三区| 亚洲三区欧美一区| 久久久久精品人妻al黑| 少妇人妻久久综合中文| 人妻人人澡人人爽人人| 国产色婷婷99| 电影成人av| 一级片'在线观看视频| 欧美人与性动交α欧美软件| 日韩电影二区| 国产黄频视频在线观看| 久久久久久久精品精品| 丝袜脚勾引网站| 国产色婷婷99| 欧美亚洲 丝袜 人妻 在线| 中国国产av一级| 一级a爱视频在线免费观看| 亚洲国产看品久久| 老鸭窝网址在线观看| 国产亚洲欧美精品永久| 9热在线视频观看99| 欧美97在线视频| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 国产精品嫩草影院av在线观看| tube8黄色片| 最近中文字幕2019免费版| 亚洲伊人久久精品综合| 热99国产精品久久久久久7| 亚洲国产毛片av蜜桃av| 日韩人妻精品一区2区三区| 国产男女内射视频| 青春草国产在线视频| 国产不卡av网站在线观看| 亚洲精品视频女| 国产视频首页在线观看| 老司机靠b影院| 老汉色av国产亚洲站长工具| 久久精品久久久久久噜噜老黄| 久久97久久精品| 中文字幕亚洲精品专区| 在线天堂中文资源库| 亚洲精品,欧美精品| 操出白浆在线播放| 久久久久精品人妻al黑| 亚洲国产看品久久| 99国产精品免费福利视频| 另类亚洲欧美激情| 伊人久久大香线蕉亚洲五| 国产亚洲av高清不卡| 老司机靠b影院| 日韩 欧美 亚洲 中文字幕| 亚洲精华国产精华液的使用体验| 国产欧美亚洲国产| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久久大奶| 又大又黄又爽视频免费| 亚洲av成人精品一二三区| 欧美国产精品一级二级三级| 黄色怎么调成土黄色| 高清欧美精品videossex| 蜜桃国产av成人99| 亚洲国产毛片av蜜桃av| 精品少妇黑人巨大在线播放| 日韩大码丰满熟妇| 大片电影免费在线观看免费| 久久精品亚洲熟妇少妇任你| 免费黄网站久久成人精品| 亚洲成人国产一区在线观看 | 国产精品 欧美亚洲| 丁香六月欧美| 亚洲精品中文字幕在线视频| 考比视频在线观看| 亚洲欧美精品自产自拍| 亚洲免费av在线视频| 色吧在线观看| 国产精品久久久久成人av| 韩国精品一区二区三区| 成人免费观看视频高清| 丝袜人妻中文字幕| 一本—道久久a久久精品蜜桃钙片| 两个人看的免费小视频| 国产片特级美女逼逼视频| 97在线人人人人妻| 午夜福利,免费看| 波野结衣二区三区在线| 国产免费福利视频在线观看| 在线观看三级黄色| 午夜日韩欧美国产| 免费日韩欧美在线观看| 热re99久久精品国产66热6| √禁漫天堂资源中文www| 国产一区二区三区av在线| 国产男女内射视频| 天美传媒精品一区二区| 午夜福利影视在线免费观看| videos熟女内射| 日韩熟女老妇一区二区性免费视频| 国产男女超爽视频在线观看| 国产男女超爽视频在线观看| 亚洲av成人精品一二三区| 99久久99久久久精品蜜桃| 亚洲伊人色综图| 天堂中文最新版在线下载| 男女国产视频网站| www.自偷自拍.com| 电影成人av| 日本av手机在线免费观看| 自线自在国产av| 丝袜美腿诱惑在线| 精品一区二区三区av网在线观看 | 国产精品一区二区精品视频观看| 日韩一卡2卡3卡4卡2021年| 大码成人一级视频| 制服人妻中文乱码| 91老司机精品| 欧美日韩亚洲高清精品| 久久久精品免费免费高清| 交换朋友夫妻互换小说| 高清av免费在线| 中文乱码字字幕精品一区二区三区| 国产精品久久久av美女十八| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区黑人| 久久鲁丝午夜福利片| 黄频高清免费视频| 亚洲精品久久久久久婷婷小说| 成人国语在线视频| 男女高潮啪啪啪动态图| av国产久精品久网站免费入址| 一边摸一边抽搐一进一出视频| 亚洲精品在线美女| 1024香蕉在线观看| 男的添女的下面高潮视频| 视频区图区小说| 精品一区二区三区av网在线观看 | 我的亚洲天堂| 建设人人有责人人尽责人人享有的| 伊人久久国产一区二区| 国产精品久久久久久久久免| 老司机靠b影院| 国产精品久久久人人做人人爽| 亚洲欧美精品自产自拍| 亚洲一级一片aⅴ在线观看| 黄色视频在线播放观看不卡| 国产探花极品一区二区| 午夜激情久久久久久久| 女人被躁到高潮嗷嗷叫费观| 中文天堂在线官网| 久久精品久久精品一区二区三区| 亚洲第一av免费看| 欧美日韩一级在线毛片| 日韩 亚洲 欧美在线| 国产一区二区激情短视频 | 黑人巨大精品欧美一区二区蜜桃| 男的添女的下面高潮视频| 日韩一本色道免费dvd| 国产极品粉嫩免费观看在线| 9色porny在线观看| 9热在线视频观看99| av在线老鸭窝| 亚洲精品aⅴ在线观看| 一级毛片 在线播放| 精品少妇内射三级| 超碰97精品在线观看| 两个人免费观看高清视频| 国产伦人伦偷精品视频| 一区二区三区精品91| 成年女人毛片免费观看观看9 | 岛国毛片在线播放| 色吧在线观看| 国产精品蜜桃在线观看| av网站免费在线观看视频| 国产高清国产精品国产三级| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 99久久综合免费| 一区二区日韩欧美中文字幕| 日日撸夜夜添| 老司机靠b影院| 国产福利在线免费观看视频| 热re99久久国产66热| 国产 精品1| 成年av动漫网址| 人成视频在线观看免费观看| 精品国产国语对白av| 1024香蕉在线观看| 国产激情久久老熟女| 18禁动态无遮挡网站| 永久免费av网站大全| 中文字幕最新亚洲高清| avwww免费| 亚洲av国产av综合av卡| 中文乱码字字幕精品一区二区三区| 在线天堂中文资源库| 自拍欧美九色日韩亚洲蝌蚪91| 悠悠久久av| 亚洲一码二码三码区别大吗| 丝袜美足系列| 中文字幕人妻丝袜一区二区 | 熟女av电影| 最黄视频免费看| 国产精品久久久久久精品电影小说| h视频一区二区三区| 成人毛片60女人毛片免费| 久久99热这里只频精品6学生| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀 | 欧美日韩av久久| 波野结衣二区三区在线| 一区二区三区四区激情视频| 人妻一区二区av| 狂野欧美激情性xxxx| 国产成人欧美| 婷婷色麻豆天堂久久| 女人爽到高潮嗷嗷叫在线视频| 欧美激情 高清一区二区三区| av又黄又爽大尺度在线免费看| 三上悠亚av全集在线观看| 日韩av在线免费看完整版不卡| 9191精品国产免费久久| 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 久久久久久人妻| 老鸭窝网址在线观看| 9色porny在线观看| 另类精品久久| 在线观看免费视频网站a站| 九草在线视频观看| 伊人亚洲综合成人网| 18禁裸乳无遮挡动漫免费视频| 久久午夜综合久久蜜桃| 少妇 在线观看| 两个人免费观看高清视频| 母亲3免费完整高清在线观看| 多毛熟女@视频| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 亚洲精品视频女| 9色porny在线观看| 中文字幕制服av| 狠狠婷婷综合久久久久久88av| 一边亲一边摸免费视频| 下体分泌物呈黄色| 久久久精品免费免费高清| 欧美日韩视频精品一区| 午夜91福利影院| 在线观看人妻少妇| 亚洲七黄色美女视频| 色吧在线观看| 久久久久网色| 久久人妻熟女aⅴ| 91精品伊人久久大香线蕉| 亚洲国产精品999| 久久久国产一区二区| av在线app专区| 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 欧美激情极品国产一区二区三区| 国产99久久九九免费精品| 蜜桃在线观看..| 亚洲av福利一区| 乱人伦中国视频| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| av.在线天堂| 久久久久久久精品精品| 十八禁网站网址无遮挡| 丰满迷人的少妇在线观看| 国产淫语在线视频| 日韩大片免费观看网站| 丝袜喷水一区| 成年女人毛片免费观看观看9 | 精品国产国语对白av| 丝袜脚勾引网站| 美女视频免费永久观看网站| 国产亚洲精品第一综合不卡| 天堂中文最新版在线下载| 日韩大片免费观看网站| 亚洲三区欧美一区| 男女床上黄色一级片免费看| 最黄视频免费看| 日本欧美国产在线视频| videos熟女内射| 久久99精品国语久久久| 亚洲精品av麻豆狂野| videos熟女内射| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 一边摸一边做爽爽视频免费| 亚洲精品美女久久久久99蜜臀 | 日韩大片免费观看网站| 久久人人爽人人片av| 成人免费观看视频高清| 免费久久久久久久精品成人欧美视频| 亚洲精品国产区一区二| 久久人妻熟女aⅴ| 我的亚洲天堂| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 国产免费一区二区三区四区乱码| 午夜福利一区二区在线看| 别揉我奶头~嗯~啊~动态视频 | 欧美激情极品国产一区二区三区| 欧美国产精品va在线观看不卡| 伊人久久国产一区二区| 人人妻人人爽人人添夜夜欢视频| 最黄视频免费看| 国产精品嫩草影院av在线观看| 亚洲精品美女久久久久99蜜臀 | 国产精品无大码| 老司机在亚洲福利影院| 女性生殖器流出的白浆| 成人漫画全彩无遮挡| 99久久人妻综合| 婷婷色麻豆天堂久久| 我要看黄色一级片免费的| 久久久久久久精品精品| 韩国精品一区二区三区| av在线老鸭窝| 女人精品久久久久毛片| 韩国精品一区二区三区| 五月天丁香电影| 久久久久久人妻| 黄片无遮挡物在线观看| 我要看黄色一级片免费的| 在线天堂中文资源库| 日韩av在线免费看完整版不卡| 一区二区三区乱码不卡18| 九草在线视频观看| 国产男女内射视频| 天天躁狠狠躁夜夜躁狠狠躁| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 可以免费在线观看a视频的电影网站 | 亚洲人成电影观看| 精品国产国语对白av| 在线天堂中文资源库| 国产亚洲午夜精品一区二区久久| 一边摸一边抽搐一进一出视频| 日韩,欧美,国产一区二区三区| 母亲3免费完整高清在线观看| 精品国产国语对白av| 国产淫语在线视频| 丝袜人妻中文字幕| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 国产日韩一区二区三区精品不卡| 波多野结衣av一区二区av| 亚洲熟女精品中文字幕| 欧美日韩综合久久久久久| av网站在线播放免费| 一级毛片我不卡| 老司机靠b影院| 国产精品 国内视频| 亚洲成人手机| 久久久精品免费免费高清| 国产一区二区在线观看av| 激情视频va一区二区三区| 亚洲中文av在线| 青春草亚洲视频在线观看| 日本91视频免费播放| 99精品久久久久人妻精品| a 毛片基地| 在线天堂最新版资源| 久久影院123| 美女午夜性视频免费| 欧美日韩一级在线毛片| 日韩一区二区三区影片| 国产成人精品久久久久久| 久久 成人 亚洲| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码 | 一区二区三区乱码不卡18| 另类亚洲欧美激情| 在线观看三级黄色| 人人妻,人人澡人人爽秒播 | 亚洲精品自拍成人| av不卡在线播放| 国产精品久久久人人做人人爽| 十分钟在线观看高清视频www| 一级爰片在线观看| 又粗又硬又长又爽又黄的视频| 一区二区日韩欧美中文字幕| 精品一区二区三区av网在线观看 | 黄片播放在线免费| 捣出白浆h1v1| 日韩欧美精品免费久久| 亚洲av日韩在线播放| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 久久人人爽人人片av| 男人操女人黄网站| 中文字幕制服av| 免费不卡黄色视频| videos熟女内射| 熟女少妇亚洲综合色aaa.| 热99久久久久精品小说推荐| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 又黄又粗又硬又大视频| 亚洲精品自拍成人| 亚洲国产成人一精品久久久| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 一级毛片电影观看| 啦啦啦 在线观看视频| 午夜91福利影院| 国产成人精品无人区| av女优亚洲男人天堂| 母亲3免费完整高清在线观看| 韩国高清视频一区二区三区| 最黄视频免费看| 国产亚洲精品第一综合不卡| 黑人猛操日本美女一级片| 99re6热这里在线精品视频| 大片免费播放器 马上看| 大陆偷拍与自拍| 亚洲一区中文字幕在线| 欧美精品一区二区免费开放| 亚洲国产欧美一区二区综合| 成人三级做爰电影| 新久久久久国产一级毛片| 国产精品秋霞免费鲁丝片| 晚上一个人看的免费电影| 免费观看a级毛片全部| 激情视频va一区二区三区| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 午夜福利免费观看在线| 久久ye,这里只有精品| 两个人免费观看高清视频| 日本猛色少妇xxxxx猛交久久| 欧美在线黄色| 中文字幕人妻熟女乱码| 天堂俺去俺来也www色官网| 在线观看免费日韩欧美大片| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 久热爱精品视频在线9| 久久精品国产亚洲av高清一级| 夜夜骑夜夜射夜夜干| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 国产成人精品在线电影| 久久精品久久精品一区二区三区| 精品少妇黑人巨大在线播放| 自线自在国产av| 亚洲熟女精品中文字幕| 久热爱精品视频在线9| 一区二区三区精品91| 欧美日韩亚洲高清精品| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 国产精品成人在线| 亚洲成人一二三区av| 国产精品国产三级专区第一集| 国产精品久久久久久久久免| 日韩精品有码人妻一区| 韩国精品一区二区三区| 久久精品亚洲av国产电影网| 亚洲熟女毛片儿| 男女下面插进去视频免费观看| 亚洲欧美一区二区三区国产| 久久性视频一级片| 看非洲黑人一级黄片| 精品国产露脸久久av麻豆| 最近最新中文字幕大全免费视频 | 久久久久视频综合| 自线自在国产av| 国产精品秋霞免费鲁丝片| 黄色 视频免费看| 哪个播放器可以免费观看大片| 丝袜在线中文字幕| 欧美日韩视频精品一区| 精品少妇一区二区三区视频日本电影 | 国产成人一区二区在线| 各种免费的搞黄视频| 无遮挡黄片免费观看| 精品午夜福利在线看| 国产淫语在线视频| 免费不卡黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 久久 成人 亚洲| 大香蕉久久网| 国产男人的电影天堂91| 日韩 欧美 亚洲 中文字幕| 国产成人欧美在线观看 | 999精品在线视频| 免费在线观看黄色视频的| 99久久人妻综合| 各种免费的搞黄视频| 午夜影院在线不卡| xxx大片免费视频| 亚洲成人免费av在线播放| 桃花免费在线播放| 日本91视频免费播放| 国产成人啪精品午夜网站| 99热全是精品| 最近中文字幕2019免费版| 观看美女的网站| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 国产精品香港三级国产av潘金莲 | 国产精品秋霞免费鲁丝片| 午夜福利视频在线观看免费| 亚洲国产av新网站| 男人舔女人的私密视频| 91aial.com中文字幕在线观看| 久久久久久免费高清国产稀缺| av免费观看日本| 亚洲图色成人| 欧美人与性动交α欧美精品济南到| 一二三四在线观看免费中文在| 大话2 男鬼变身卡| 国产精品免费视频内射| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 成人毛片60女人毛片免费| 国产日韩欧美视频二区| 国产极品天堂在线| 97精品久久久久久久久久精品| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影| 亚洲av男天堂| 国产日韩欧美在线精品| 伦理电影免费视频| 久久婷婷青草| 国产人伦9x9x在线观看| 18禁国产床啪视频网站| xxx大片免费视频| 美女中出高潮动态图| 大码成人一级视频| 在线观看免费视频网站a站| 精品一区在线观看国产| 日韩 欧美 亚洲 中文字幕| av网站在线播放免费| 欧美黄色片欧美黄色片| 久久久久久久精品精品| 看十八女毛片水多多多| 欧美乱码精品一区二区三区| 国产av精品麻豆| www日本在线高清视频| 日韩一本色道免费dvd| 黄色 视频免费看| 午夜老司机福利片| 精品人妻一区二区三区麻豆| √禁漫天堂资源中文www| 男人添女人高潮全过程视频| 久久久久人妻精品一区果冻| 国产av一区二区精品久久| 一边亲一边摸免费视频| 欧美黑人欧美精品刺激| 我的亚洲天堂| 叶爱在线成人免费视频播放| 免费黄色在线免费观看| 91aial.com中文字幕在线观看| 三上悠亚av全集在线观看| 亚洲成国产人片在线观看| 男人添女人高潮全过程视频| 国产片内射在线| 久久久国产精品麻豆| 超碰成人久久| 久久性视频一级片| 精品亚洲成国产av| 日本猛色少妇xxxxx猛交久久| 亚洲精品美女久久久久99蜜臀 | 在现免费观看毛片| 两性夫妻黄色片| 国产一区有黄有色的免费视频| 男女边吃奶边做爰视频| 宅男免费午夜| 91精品国产国语对白视频| 国产福利在线免费观看视频| 久久久久久免费高清国产稀缺| 午夜老司机福利片|