• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical and Experimental Study of Free Vibration of Beams Carrying Multiple Masses and Springs

    2014-07-30 09:48:58ZhuangWangMingHongJunchenXuandHongyuCui

    Zhuang Wang , Ming Hong*, Junchen Xu and Hongyu Cui

    School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024

    1 Introduction1

    Some structures in engineering can be simplified into elastic beams carrying multiple concentrated masses and elastic supports with linear springs. It is very significant to design the parameters and arrange the locations of the lumped masses and springs to obtain excellent vibration characteristics of the beams such as the mast on the ship, the outboard frames in the stern and the outfitting pipelines,etc.The designs are mainly related to the effects of the layout of the concentrated stiffness and mass on the vibration system.

    There has been extensive research on the vibration analysis of beams carrying concentrated masses or springs at arbitrary locations. Rossitet al.(2001) derived the frequency equation of a cantilever beam with a spring–mass system attached to the free end by the analytical method.Banerjee (2012) solved the same problem by a dynamic stiffness approach. Chang (2000) considered the rotational inertia of the lumped mass, and analyzed the free vibration of a simply supported beam with a constant cross-sectional area carrying a concentrated rigid mass at the mid-point of the beam. Low (2003) derived the frequency equation of an Euler-Bernoulli type beam carrying multiple concentrated masses at an arbitrary location by using two methods:frequency determinant and Rayleigh quotient. The results of using the two methods were compared and discussed as well.Then Low (2001) used the Laplace transform method to solve the same problem again. Xiaet al. (1999) deduced the analytical expressions of the lateral vibration characteristics of a beam with arbitrary lumped masses and elastic spring supports by using the Laplace transform. However, the expressions were too complex so that they were only applicable to the calculation of the beam carrying few masses and springs. Based on the work of Low’s, a new analytical expression of the frequency equation and the modal function of the lateral vibration of a beam with lumped masses was derived by means of symbol operation,but the case of springs was neglected (Penget al., 2002).Wuet al.(1998) determined the natural frequencies and the corresponding mode shapes of a uniform cantilever beam carrying any number of elastically mounted point masses by means of the analytical and numerical combined method(ANCM). Liet al.(2012) obtained the natural frequencies and the modal mode of a flexible beam attaching multiple absorbers by use of the Ritz method. All these research efforts were focused on solving the eigenvalue problems of the beams without considering the influence of concentrated parameters such as the locations of the lumped elements, the stiffness of the springs and the weight of masses. But these studies represent great importance to help with the guidance of the design and to avoid resonance in engineering.

    Based on the Laplace transform method, this paper derives the mode shape functions and the frequency equations of the beams carrying multiple lumped masses and elastic spring supports in the typical boundary conditions. A cantilever beam with one concentrated mass and one spring is selected to obtain its natural frequencies and corresponding mode shapes. In order to verify the correctness of the analytical results, an experiment is carried out to get the modal parameters of the beam based on the NExT-ERA method (Jianget al., 2011). By comparing the analytical and experimental results, the influence of the concentrated parameters like the locations of the lumped elements, the stiffness of the springs and the weight of masses on natural frequencies are discussed. This data provides a reference for the vibration analysis methods and lumped parameters layout design of the elastic beams in engineering.

    2 Mode shape functions and the frequency equations of the beam

    Concerning the uniform elastic beam, the mass and stiffness distribution in the structure is uniformly continuous.The vibration differential equation can be determined through the stress analysis of a micro-section of the beam.And the natural frequencies and mode shape can be obtained by the method of separation of variables. If the beam carries any concentrated masses and concentrated stiffness, its mass and stiffness distribution will no longer be continuous.Therefore, the Dirac delta function (δ) can be introduced to represent the effect of the concentrated masses and stiffness along the beam with various boundary conditions. Due to the existence of the Dirac delta function (δ), the solution of the differential equation becomes complicated.

    2.1 Mode shape functions

    Fig.1 Elastic beam with lumped masses and springs

    Referring to Fig.1, consider it as a uniform elastic beam with a length ofLcarryingrconcentrated masses andslinear springs. WhereMiandKjare the spatial coordinates of theith mass andjth spring along the beam. The differential equation for the lateral vibration of the beam can be given in the following form:

    whereEis the Young’s modulus,Ithe moment of inertia of the beam’s cross-sectional area,Aρthe mass per unit length of the beam,w(x,t) the transverse deflection of the beam at positionand timet,Mithe mass of theith lumped mass,Kjthe stiffness of thejth spring, andδ(?) the Dirac delta function.Eq.

    The transverse deflection of the beam may be assumed to bew(x,t)=Y(x) sinωt, wherex=x L, so the differential (1) can be written as:

    By taking the Laplace transform of Eq. (2), we can have:

    Then taking the inverse Laplace transform of Eq.(3), one obtains:

    whereH(x?xMi)andH(x?xKj)are the unit step functions atx=xMiandx=xKj, respectively.

    For convenience, we use the symbol substitution in the forms:

    Then they satisfy the following relations:

    To substitute Eq.(5) with Eq.(4), one obtains the mode shape function:

    2.2 The frequency equation of the beam with a mass and a spring in the middle

    To derive the frequency equation, let us assume there are only one concentrated mass and a spring in the middle of the beam, hence in Eq.(1), we haver= 1,s= 1,xM1=1 2 andxK1=1 2.

    Consider the clamped-free boundary condition as defined byY(0)=Y′(0) = 0,Y′(1)=Y′(1) = 0,and substitutexM1andxK1into the derived functions of Eq.(7), respectively,one can obtain:

    The Eq.(10) and Eq.(11) can be written in matrix form:

    where

    From the determinant of the matrix in Eq.(12) we can get the transcendental expression of the frequency equation:

    If the beam is simply supported, the frequency equation can be derived with the following form:

    We can get the frequency equations when the beam is in other boundary conditions by the same approach. It is unnecessary to go into details any more.

    2.3 The frequency equation of the beam with a mass and a spring at an arbitrary location

    In fact, the concentrated mass and spring in the structure can be in any position. So it is necessary to know the variation of the modal parameters of the beam when the masses and springs are in different positions. Consider a cantilever beam, where1Lξandξ2Lare the coordinates of the mass and spring inxdirection, respectively, as shown in Fig.2.

    Fig.2 Beam with lumped masses and lumped springs in random position

    From Eq.(7) and the boundary condition of the cantilever beam, we have the mode shape function:

    Whenξ1>gt;ξ2, according to the derivation in the previous section one can obtain the determinant of the frequency equation:

    where,

    where,

    3 Modal parameters identification by the natural excitation technique

    The natural excitation technique-eigensystem realization algorithm (NExT-ERA) is taken to get the modal parameters of the beam in the experiment in this paper.

    3.1 Natural excitation technique(NExT)

    NExT is a technique used to identify modal parameters under ambient excitation in time domain. This method is based on the assumption that when the system is excited by stationary white noise, the auto- or cross-correlation function of response signals and the impulse response function of the structure have a similar expression.Therefore, the impulse response functions can be replaced by the auto- or cross-correlation function of response signals(Jameset al., 1995).

    3.2 Eigensystem realization algorithm (ERA)

    The ERA method utilizes the impulse response signals to build the generalized Hankel matrix. The minimal realization of the system is obtained by the singular value decomposition of the Hankel matrix. Based on the minimal order system matrix, one can identify the modal parameters of the system (Xuet al., 2012).

    The state space expression of a linear and time discrete system at instant timetk+1is given by:

    wherekrepresents the discrete time,x(k)is the state vector,u(k) =u(kΔt) andy(k) =y(kΔt) are input and output vectors, respectively.A,BandCare the system, input and output matrices, respectively.

    Assuming that the number of impulse inputs on the system isS, and the number of output sensors isM, the mathematical model of ERA can be described as:

    whereh(k) is the impulse response matrix. Forming the Hankel matrix:

    whereαandβare arbitrary integers. Whenk=1 , one obtains the singular value decomposition (SVD) of Hankel matrixH(0):

    The eigenvalue decomposition (EVD) of the discrete time system matrixAcan be written as:

    whereZandψare the eigenvalue matrix and eigenvector matrix ofA, respectively.

    The eigenvectors of the continuous-time system matrixC Aare the same as those ofA. And the eigenvalue of them satisfies the relationship:

    whereziis the diagonal element of the eigenvalue matrixZ, andiλthe eigenvalue ofcA.

    According to the modal theory, the modal frequency, the modal damping ratio and the modal shape matrix are in the following forms:

    4 Comparisons of numerical and experimental results and discussions

    4.1 Effects of the mass coefficient and stiffness coefficient on natural frequencies

    In order to study the influences of the size of mass and the stiffness of the spring on natural frequency, using the above theory, numerical results are obtained from a cantilever beam with a lumped mass at the tip and a spring in the middle, as shown in Fig.4. The mass coefficientαand stiffness coefficientβhave three different values,respectively. To make a comparison between the analytical and experimental results, the material parameters of the beam are all given the same values as that in the experiment,as shown in Table 1 and Table 2. The first four natural frequenciesanωcomputed analytically for different values ofαandβare shown in Tables 3 - 5.An experiment is carried out to identify the modal parameters of the cantilever beam based on the above NExT-ERA method as shown in Fig.3 and Fig.4. The material properties of the beam are shown in Table 1. The three different values of mass and stiffness used are shown in Table 2. In the experiment, the mass and the spring can be fixed in the beam at arbitrary positions. A white noise excitation is applied to the beam near the clamped end. The response of acceleration can be obtained by the sensors. The first four natural frequenciesexωidentified in the experiment for different values ofαandβare also listed in Tables 3 - 5.

    In addition, in order to verify the correctness of the analytical and experimental results further, the frequenciesωFEMobtained by ANSYS are also shown in the Tables.

    Fig.3 Testing ground

    Fig.4 The experimental model

    Table 1 Material properties of the beam

    Table 2 Properties of the masses and springs

    From Table 3, Table 4 and Table 5, it can be seen that the analytical results agree well with the experimental ones. And the numerical ones obtained by ANSYS further prove the correctness of the analytical approach in this paper.

    Referring to the results shown in the Tabs, it is clear that when the positions of the mass and spring are fixed and the value ofαis kept constant, the natural frequencies increase as the value ofβincreases. If the value ofβis kept constant, the natural frequencies decrease as the value ofαincreases. As we know, according to the single degree of freedom system (SDOF), its natural frequency is proportional to the stiffness of the system, and inversely proportional to the mass. And the variations of the natural frequencies of the beam also comply with this rule.

    It should be noted that the experimental results of the natural frequencies will be a little less than the analytical ones due to the effect of the mass of the sensors.

    Table 3 The first four natural frequencies when α=0.07568,β has different values Hz

    Table 4 The first four natural frequencies when α=0.12339,β has different values Hz

    Table 5 The first four natural frequencies when α=0.18509,β has different values Hz

    From Eq.(15), with the condition ofr=1,s=1,xM1=1 andxK1=1 2, the mode shape function can be written as:

    where theY′(0) andY′(0) can be obtained from Eq.(12).

    Whenα=0.12339 andβ=21.7612, one can have the first four mode shapes as shown in Fig.5. And the identified ones by experiment are shown in Fig.6. It is clear that the results agree well with each other.

    Fig.5 The analytical first four mode shapes

    Fig.6 The first four mode shapes obtained from experiment

    4.2 Effects of the locations of the mass and spring on natural frequencies

    To study the effects of the locations of the spring on natural frequencies, we have the beam with a mass fixed in the end and the spring in nine different positions along the beam. This means that we haveξ1=1 andξ2= 0.1, 0 .2, . ... ,0 .9 in the Eq.(16) and Eq.(17). The mass and spring coefficient areα1=0.12339andβ1=21.7612,respectively. The first four natural frequencies for different values ofβare computed analytically. Moreover, the results are also obtained by experiment so as to be compared with the analytical ones.

    For presentational purposes, the curves are plotted which indicates the variation of each order of natural frequencyiωwith the spring moving from one end to the other as shown in Fig.7.

    Similarly, whenξ2=1 andξ1=0.1, 0 .2, . ... ,0 .9 in the Eq.(16) and Eq.(17), the changing of each order natural frequencyiωwith the mass moving from the clamped end to another are also obtained as shown in Fig.8.

    Referring to the curves illustrated in Fig.7 and Fig.8, it is clear that the analytical results agree well with the experimental ones. And it has been found that when the spring moves from the clamped end to the free end along the beam, the variation trends ofiωin both sets of results are particularly regular. When comparing the curves with the mode shapes in Fig.5 or Fig.6, it is seen that theω1?ξ2curve is similar to the first order mode shape and theω2?ξ2curve is similar to the second order mode shape.Furthermore, theω3?ξ2curve andω4?ξ2curve comply with the same laws.

    Fig.7 The variation of the first four natural frequencies with the spring in different positions

    Fig.8 The variation of the first four natural frequencieswith the mass in different positions

    These change laws ofiωare not coincidental but predictable. To the first order mode shape of the cantilever beam, its nodal displacement is gradually increasing from the fixed end to the free end. As we know, to a multiple degree of freedom system(MDOF), theith natural frequency is, whereKiis theith modal stiffness,Miis theith modal mass. When the spring moves from the fixed end to the free end, theKiof the beam is changing. Take the first mode of the beam shown in Fig.9(a) and Fig.9(b) as an example. In the condition of (b), the spring located at the position having a larger nodal displacement,leads to the spring having a stronger constraint to the beam than that of in the condition of (a). So the first modal stiffnessK1aof the beam in condition (a) is smaller than the ones atK1bin condition (b). According to the equation above, the first order natural frequency1ωin condition (a) is smaller than the ones in condition (b). The first order modal stiffness 1Kof the beam increases gradually when the spring moves from the fixed end to the free end. So the first order natural frequency1ωis increasing as the2ξis changing. For the second order mode shape, the peak displacement is in the middle of the beam, so the constraint on the beam first increases and then decreases which leads to the result that the second order modal stiffnessK2increases first and then decreases. As a result, the second order natural frequency2ωincreases firstly and then decreases, so these are the variations of the third and fourth order natural frequencies.

    Fig.9 The modal stiffness when the spring is in different positions

    Fig.10 The modal mass when the mass is in different positions

    However, when the mass moves along the beam, the changing trends of the frequencies are just the opposite to the ones moving the spring. As shown in Fig.10(a) and Fig.10(b), the first order modal massM1aof the beam in condition (a) is smaller thanM1bin condition (b), so the first natural frequency1ωin condition (a) is bigger than the ones in condition (b). With an analogy of this, the mass moving from the fixed end to the free end increases the first order modal massM1, which decreases the first order natural frequency1ω. For the second mode, the second order modal massM2increases first and then decreases. So the second order natural frequency2ωfirst decreases and then increases.

    5 Conclusion

    The structures in engineering can be simplified into elastic beams with concentrated masses and lumped elastic supports. Studying the law of vibration of these beams can help guide their design and avoid resonance. In this paper,an analytical approach and a modal identification experiment were taken at the same time to obtain the mode shape functions and frequency equations of the beams carrying multiple concentrated masses and springs. And the modal analysis experiment was carried out by use of the NExT-ERA method to identify the modal parameters of the beam.

    The variation of the natural frequencies of the beam is discussed by comparing the analytical results with the experimental results. The two sets of results are consistent with each other. This proves the correctness of the analytical approach and the validity of the NExT-ERA method.Concerning the cantilever beam with one mass and a single spring, the effects of the mass coefficient and stiffness coefficient on the natural frequencies is similar to those of the single degree of freedom system. The effects of the locations of the mass and springs on the natural frequencies are related to the orders of the mode shapes.

    Banerjee JR (2012). Free vibration of beams carrying spring-mass systems: a dynamic stiffness approach.Computers and Structures, 21(26), 104-105.

    Chang CH (2000). Free vibration of a simply supported beam carrying A rigid mass at the middle.Journal of Sound and Vibration, 237, 733-744.

    Gurgoze M (1996). On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass system.Journal of Sound and Vibration, 190, 149-162.

    Jiang DZ, Hong M, Zhou L (2011). Study on operational modal parameters identification of ship structures.Journal of Ship Mechanics, 15(3), 313-324.

    James GH, Carne JPL (1995). The natural excitation technique(NExT) for modal parameter extraction from operating Structures.Journal of Analytical and Experimental Modal Analysis, 10(4), 260-277.

    Li J, Liu CS, Li F (2012). Modal analysis of a flexible beam attaching multiple absorbers.Applied Mechanics and Materials,226-228, 154-157.

    Lin HY, Tsai YC (2007). Free vibration analysis of a uniform multi-span beam carrying multiple spring–mass systems.

    Journal of Sound and Vibration, 302, 442-456.

    Low KH (2003). Frequencies of beams carrying multiple masses:Rayleigh estimation versus eigen-analysis solutions.Journal of Sound and Vibration, 268, 843-853.

    Low KH (2001). On the methods to derive frequency equations of beams carrying multiple masses.International Journal of Mechanical Sciences, 43, 871-881.

    Mohanty P, Rixen DJ (2006). Modified ERA method for operational modal analysis in the presence of harmonic excitations.Mechanical Systems and Signal Processing, 20,114-130.

    Peng X, Peng F (2002). New analytical expressions of lateral vibration characteristics of a beam with lumped masses.

    Journal of Hunan University, 29, 44-48. (in Chinese)

    Rossit CA, Laura PAA (2001). Free vibrations of a cantilever beam with a spring–mass system attached to the free end.Ocean Engineering, 28, 933-939.

    Wu JS, Chou HM (1998). Free vibration analysis of a cantilever beam carrying any number of elastically mounted point masses with the analytical and numerical combined method.Journal of Sound and Vibration, 213, 317-332.

    Wu JS, Chou HM (1999). A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses.Journal of Sound and Vibration, 200, 451-468.

    Xia J, Zhu MC, Ma DY (1999). Analysis of lateral natural vibration of beams with lumped masses and elastic supports.Journal of Southwest Institute of Technology, 14, 1-4. (in Chinese)

    Xu JC,Hong M, Cui HY (2012). The Contrast Experimental Study on Operational Modal Analysis of Ship Structural Model.

    Applied Mechanics and Materials, 226-228, 241-246.

    国产高清videossex| 中亚洲国语对白在线视频| 中国美女看黄片| 少妇人妻精品综合一区二区 | 天天躁日日操中文字幕| 欧美日韩福利视频一区二区| 久久人妻av系列| 国产在线精品亚洲第一网站| 一级黄色大片毛片| 在线观看av片永久免费下载| 天堂动漫精品| 国产成人影院久久av| 成人亚洲精品av一区二区| 国产伦在线观看视频一区| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡免费网站照片| 国产精品久久电影中文字幕| www日本在线高清视频| 日本与韩国留学比较| 亚洲精品国产精品久久久不卡| 俺也久久电影网| 蜜桃久久精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 成人国产一区最新在线观看| 女生性感内裤真人,穿戴方法视频| 午夜精品在线福利| 国产成人a区在线观看| av天堂中文字幕网| 热99在线观看视频| 欧美zozozo另类| 又爽又黄无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 久久久国产成人精品二区| 国产激情欧美一区二区| 日本黄大片高清| 日韩欧美一区二区三区在线观看| 天天躁日日操中文字幕| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 少妇人妻一区二区三区视频| 色综合站精品国产| 久久香蕉国产精品| 99久久九九国产精品国产免费| 欧美乱码精品一区二区三区| 精品福利观看| 国产精品久久久久久久电影 | 亚洲精品粉嫩美女一区| 国产伦人伦偷精品视频| 天天添夜夜摸| 啪啪无遮挡十八禁网站| 亚洲激情在线av| 久久久久免费精品人妻一区二区| 看免费av毛片| 亚洲中文日韩欧美视频| 小蜜桃在线观看免费完整版高清| 亚洲成av人片在线播放无| 99国产精品一区二区三区| 伊人久久精品亚洲午夜| 18禁黄网站禁片免费观看直播| 少妇裸体淫交视频免费看高清| 国产视频内射| 少妇的逼水好多| 日韩精品青青久久久久久| 丰满人妻一区二区三区视频av | 成人亚洲精品av一区二区| 国产又黄又爽又无遮挡在线| 老熟妇乱子伦视频在线观看| 亚洲片人在线观看| 天天躁日日操中文字幕| av黄色大香蕉| 亚洲人成网站在线播放欧美日韩| e午夜精品久久久久久久| 亚洲第一电影网av| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| 99在线视频只有这里精品首页| 亚洲在线观看片| 精品一区二区三区人妻视频| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 精品久久久久久久人妻蜜臀av| 好男人电影高清在线观看| 久久久久久久午夜电影| x7x7x7水蜜桃| 无限看片的www在线观看| 美女免费视频网站| 天天躁日日操中文字幕| 级片在线观看| 精品一区二区三区视频在线观看免费| 日韩欧美三级三区| 国产精华一区二区三区| 免费观看精品视频网站| 精品电影一区二区在线| 嫩草影院精品99| 男插女下体视频免费在线播放| 最后的刺客免费高清国语| 成人特级av手机在线观看| 女人十人毛片免费观看3o分钟| 国产淫片久久久久久久久 | 母亲3免费完整高清在线观看| 99国产综合亚洲精品| 91在线精品国自产拍蜜月 | 女人被狂操c到高潮| av片东京热男人的天堂| 蜜桃亚洲精品一区二区三区| 一级作爱视频免费观看| 国产精品亚洲av一区麻豆| 淫妇啪啪啪对白视频| 黄色日韩在线| 欧美日本亚洲视频在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 色吧在线观看| 日韩成人在线观看一区二区三区| 国产黄a三级三级三级人| 精品乱码久久久久久99久播| 香蕉av资源在线| 无限看片的www在线观看| 熟妇人妻久久中文字幕3abv| 欧美区成人在线视频| 国产野战对白在线观看| 在线视频色国产色| 我要搜黄色片| 丰满人妻熟妇乱又伦精品不卡| 久久精品91蜜桃| 亚洲精品色激情综合| 久久精品91无色码中文字幕| 日日干狠狠操夜夜爽| 亚洲国产色片| 日本三级黄在线观看| 亚洲国产欧美网| 97碰自拍视频| 成年女人永久免费观看视频| 女人十人毛片免费观看3o分钟| 叶爱在线成人免费视频播放| 手机成人av网站| 伊人久久精品亚洲午夜| 在线十欧美十亚洲十日本专区| 日本成人三级电影网站| 国产乱人伦免费视频| 精品久久久久久,| АⅤ资源中文在线天堂| 免费搜索国产男女视频| 欧美日韩一级在线毛片| 久久久国产成人精品二区| 18禁裸乳无遮挡免费网站照片| 狂野欧美白嫩少妇大欣赏| 男人和女人高潮做爰伦理| 少妇的丰满在线观看| 校园春色视频在线观看| 校园春色视频在线观看| 999久久久精品免费观看国产| 九九热线精品视视频播放| 少妇的丰满在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品美女久久久久99蜜臀| 老司机午夜十八禁免费视频| 成年版毛片免费区| 九色成人免费人妻av| 国产亚洲欧美98| 一个人看的www免费观看视频| 在线免费观看的www视频| 黄色片一级片一级黄色片| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 99在线视频只有这里精品首页| 亚洲一区二区三区不卡视频| 丰满的人妻完整版| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 宅男免费午夜| 亚洲人成伊人成综合网2020| h日本视频在线播放| 亚洲av成人av| 久久草成人影院| 日本成人三级电影网站| 淫秽高清视频在线观看| 久久草成人影院| 亚洲欧美日韩东京热| 亚洲最大成人中文| 69av精品久久久久久| 综合色av麻豆| 国产成人影院久久av| 亚洲成av人片免费观看| 少妇的丰满在线观看| 啦啦啦韩国在线观看视频| 欧美日韩综合久久久久久 | 精品电影一区二区在线| www.色视频.com| 叶爱在线成人免费视频播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久久亚洲精品蜜臀av| www.999成人在线观看| 欧美成狂野欧美在线观看| 性欧美人与动物交配| 精品国内亚洲2022精品成人| 欧美不卡视频在线免费观看| 免费一级毛片在线播放高清视频| 久久久久久九九精品二区国产| 深爱激情五月婷婷| 蜜桃久久精品国产亚洲av| 亚洲国产高清在线一区二区三| 成年女人永久免费观看视频| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 国产欧美日韩精品亚洲av| 一本一本综合久久| av黄色大香蕉| 国产高清视频在线播放一区| 欧美性感艳星| 色av中文字幕| 白带黄色成豆腐渣| 亚洲av免费在线观看| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 激情在线观看视频在线高清| 国产野战对白在线观看| 一个人观看的视频www高清免费观看| 成人18禁在线播放| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区三| 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 欧美午夜高清在线| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 国产精品久久久人人做人人爽| 精品熟女少妇八av免费久了| 9191精品国产免费久久| 亚洲美女视频黄频| 99在线视频只有这里精品首页| 91九色精品人成在线观看| 一a级毛片在线观看| 成人无遮挡网站| 国产欧美日韩精品一区二区| www日本黄色视频网| 久久久久久久精品吃奶| 观看免费一级毛片| 日韩精品青青久久久久久| 久久久久久久午夜电影| 91麻豆av在线| 精品不卡国产一区二区三区| 国产不卡一卡二| 俺也久久电影网| 99精品在免费线老司机午夜| 国产av在哪里看| 丝袜美腿在线中文| 亚洲欧美日韩高清在线视频| 国产精品影院久久| 国产精品 国内视频| 午夜福利成人在线免费观看| 成人国产综合亚洲| 日本与韩国留学比较| av在线天堂中文字幕| 日本撒尿小便嘘嘘汇集6| 在线播放无遮挡| 欧美又色又爽又黄视频| 午夜亚洲福利在线播放| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 亚洲五月婷婷丁香| 色老头精品视频在线观看| 久久久久久久午夜电影| 天堂网av新在线| 欧美日本亚洲视频在线播放| 欧美一区二区国产精品久久精品| 精品人妻1区二区| 久久久成人免费电影| av在线天堂中文字幕| 99热6这里只有精品| 欧美日韩国产亚洲二区| 欧美在线黄色| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 大型黄色视频在线免费观看| 久久久久久久久久黄片| 一个人观看的视频www高清免费观看| 精品日产1卡2卡| 亚洲国产欧美网| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 又黄又爽又免费观看的视频| 香蕉av资源在线| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 精品久久久久久,| 欧美日韩一级在线毛片| 在线观看免费视频日本深夜| 国产黄a三级三级三级人| 蜜桃亚洲精品一区二区三区| 日本三级黄在线观看| 国产色爽女视频免费观看| 亚洲乱码一区二区免费版| 男人的好看免费观看在线视频| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| 99在线人妻在线中文字幕| 熟女少妇亚洲综合色aaa.| 日本黄大片高清| 性色av乱码一区二区三区2| 男女那种视频在线观看| 村上凉子中文字幕在线| 午夜免费激情av| 日日摸夜夜添夜夜添小说| 国产伦精品一区二区三区视频9 | 99热6这里只有精品| 在线十欧美十亚洲十日本专区| 午夜福利在线在线| 99riav亚洲国产免费| 欧美乱码精品一区二区三区| 国产真实伦视频高清在线观看 | 国产在视频线在精品| 波野结衣二区三区在线 | 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 久久中文看片网| 啦啦啦韩国在线观看视频| 丰满的人妻完整版| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 色综合欧美亚洲国产小说| 午夜福利18| 午夜激情欧美在线| 伊人久久大香线蕉亚洲五| 国产精品嫩草影院av在线观看 | 一级毛片女人18水好多| 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 九九久久精品国产亚洲av麻豆| 欧美一级毛片孕妇| 欧美在线黄色| 亚洲av不卡在线观看| 人人妻人人澡欧美一区二区| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 一级作爱视频免费观看| 91久久精品电影网| 久99久视频精品免费| 国产免费一级a男人的天堂| a在线观看视频网站| 一个人看的www免费观看视频| 久久6这里有精品| 日本熟妇午夜| 91在线精品国自产拍蜜月 | 亚洲熟妇熟女久久| 国产av不卡久久| 日韩欧美精品免费久久 | 久9热在线精品视频| 日韩欧美在线二视频| 成人特级黄色片久久久久久久| 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 亚洲一区二区三区不卡视频| 精品乱码久久久久久99久播| 色视频www国产| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 天堂影院成人在线观看| 久久人人精品亚洲av| 亚洲国产欧美人成| 午夜福利成人在线免费观看| 亚洲精品在线观看二区| 桃红色精品国产亚洲av| 国产精品国产高清国产av| 五月玫瑰六月丁香| 99久久综合精品五月天人人| 三级国产精品欧美在线观看| 黄色日韩在线| 99在线人妻在线中文字幕| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 久久精品综合一区二区三区| 亚洲av成人精品一区久久| 亚洲国产精品999在线| 男女视频在线观看网站免费| 欧美绝顶高潮抽搐喷水| 九九热线精品视视频播放| 天堂影院成人在线观看| 国产午夜精品久久久久久一区二区三区 | 成年免费大片在线观看| 精品国产超薄肉色丝袜足j| 女人十人毛片免费观看3o分钟| 99久久精品一区二区三区| 国产精品久久久人人做人人爽| 老司机午夜十八禁免费视频| 亚洲中文字幕一区二区三区有码在线看| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 99国产综合亚洲精品| 又黄又粗又硬又大视频| 国产高清有码在线观看视频| 激情在线观看视频在线高清| 中国美女看黄片| 亚洲电影在线观看av| 精品欧美国产一区二区三| 国产一级毛片七仙女欲春2| 精品一区二区三区视频在线 | 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件 | av欧美777| 国内久久婷婷六月综合欲色啪| www.色视频.com| 久久人妻av系列| 亚洲精品美女久久久久99蜜臀| 可以在线观看毛片的网站| 成年女人永久免费观看视频| 香蕉久久夜色| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| 国产精品美女特级片免费视频播放器| 日韩人妻高清精品专区| 国产97色在线日韩免费| 午夜福利欧美成人| 中文在线观看免费www的网站| 深夜精品福利| 国产伦精品一区二区三区四那| 一个人免费在线观看的高清视频| 国产精品亚洲美女久久久| av视频在线观看入口| 三级男女做爰猛烈吃奶摸视频| 禁无遮挡网站| 日韩精品青青久久久久久| 最新在线观看一区二区三区| 精品国产三级普通话版| av视频在线观看入口| 少妇的逼好多水| 成人亚洲精品av一区二区| 美女被艹到高潮喷水动态| 国产午夜福利久久久久久| 天天躁日日操中文字幕| 欧美日韩精品网址| 欧美在线一区亚洲| 中文字幕高清在线视频| www.999成人在线观看| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 女警被强在线播放| 人人妻人人看人人澡| 嫩草影视91久久| 日本a在线网址| 天堂影院成人在线观看| 12—13女人毛片做爰片一| 在线观看午夜福利视频| 欧美绝顶高潮抽搐喷水| 亚洲内射少妇av| 午夜久久久久精精品| 久久人人精品亚洲av| 欧美在线一区亚洲| 一个人看的www免费观看视频| 日本一二三区视频观看| 亚洲专区中文字幕在线| 欧美一级毛片孕妇| 日韩欧美三级三区| 99久久99久久久精品蜜桃| 欧美成人性av电影在线观看| 久久香蕉精品热| 成人av在线播放网站| 午夜免费成人在线视频| 亚洲avbb在线观看| 男女床上黄色一级片免费看| 亚洲国产日韩欧美精品在线观看 | 成人永久免费在线观看视频| 在线观看午夜福利视频| 好男人电影高清在线观看| www国产在线视频色| 精品国产美女av久久久久小说| 国内精品久久久久精免费| 听说在线观看完整版免费高清| 久久久久国产精品人妻aⅴ院| 亚洲五月婷婷丁香| 女人高潮潮喷娇喘18禁视频| 高清在线国产一区| 色综合站精品国产| www日本在线高清视频| 黄片大片在线免费观看| 此物有八面人人有两片| 熟女少妇亚洲综合色aaa.| 亚洲av美国av| 国产午夜精品论理片| 嫩草影院入口| 国内少妇人妻偷人精品xxx网站| www国产在线视频色| 国产精品一及| 在线播放无遮挡| 69av精品久久久久久| 不卡一级毛片| 女人被狂操c到高潮| 国产精品一及| 91在线观看av| 久久天躁狠狠躁夜夜2o2o| 国产高潮美女av| 久久草成人影院| 午夜免费观看网址| 18+在线观看网站| 色播亚洲综合网| 每晚都被弄得嗷嗷叫到高潮| 99久国产av精品| 美女黄网站色视频| 久久久久免费精品人妻一区二区| 成人无遮挡网站| 日本免费一区二区三区高清不卡| 老司机福利观看| 亚洲精品美女久久久久99蜜臀| 国产伦一二天堂av在线观看| 日韩高清综合在线| 人人妻人人澡欧美一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院| av视频在线观看入口| 日韩精品中文字幕看吧| 国产精品综合久久久久久久免费| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 欧美不卡视频在线免费观看| 午夜老司机福利剧场| 日韩中文字幕欧美一区二区| 可以在线观看的亚洲视频| 波多野结衣高清无吗| 亚洲第一欧美日韩一区二区三区| avwww免费| 免费看日本二区| av欧美777| 国产在线精品亚洲第一网站| 99热只有精品国产| 看免费av毛片| 成人特级av手机在线观看| 人人妻人人看人人澡| 久久久久久大精品| 99久久精品一区二区三区| 亚洲无线在线观看| 18+在线观看网站| 我要搜黄色片| 欧美激情久久久久久爽电影| 色播亚洲综合网| 中文亚洲av片在线观看爽| tocl精华| 婷婷精品国产亚洲av在线| 丰满人妻熟妇乱又伦精品不卡| 淫秽高清视频在线观看| 黄色成人免费大全| 97超级碰碰碰精品色视频在线观看| 久久久久久久久大av| 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 亚洲国产精品999在线| 日韩大尺度精品在线看网址| 亚洲七黄色美女视频| 日韩欧美 国产精品| 欧美极品一区二区三区四区| 久久精品综合一区二区三区| 三级男女做爰猛烈吃奶摸视频| 日本撒尿小便嘘嘘汇集6| 美女黄网站色视频| 伊人久久精品亚洲午夜| 午夜精品久久久久久毛片777| 最新中文字幕久久久久| 麻豆一二三区av精品| 欧美成人一区二区免费高清观看| 免费看a级黄色片| 国产在线精品亚洲第一网站| 欧美成人性av电影在线观看| 亚洲专区中文字幕在线| 精品人妻一区二区三区麻豆 | 午夜福利成人在线免费观看| 久久久久久国产a免费观看| 在线a可以看的网站| 国产69精品久久久久777片| 天堂动漫精品| 欧美日韩精品网址| 两人在一起打扑克的视频| 88av欧美| 亚洲av五月六月丁香网| 三级毛片av免费| 在线免费观看的www视频| 成人高潮视频无遮挡免费网站| 可以在线观看的亚洲视频| 欧美午夜高清在线| 老司机深夜福利视频在线观看| 精品一区二区三区视频在线 | 国产激情偷乱视频一区二区| 在线观看午夜福利视频| 亚洲国产精品sss在线观看| 啦啦啦韩国在线观看视频| 精品久久久久久久末码| 国产三级在线视频| 99精品在免费线老司机午夜| 一区二区三区免费毛片| 亚洲欧美日韩无卡精品| 国产精品野战在线观看| 久久久久九九精品影院| 国产一区在线观看成人免费| 人人妻人人看人人澡| 久久九九热精品免费| 久久精品夜夜夜夜夜久久蜜豆| 在线播放无遮挡| 欧美色视频一区免费| 草草在线视频免费看| 亚洲无线观看免费| 最近在线观看免费完整版| 黄色女人牲交| 欧美绝顶高潮抽搐喷水| 一进一出抽搐动态| 久久精品国产清高在天天线| 免费看光身美女| 午夜激情欧美在线| 男女床上黄色一级片免费看| h日本视频在线播放| 女人被狂操c到高潮| 国产精品日韩av在线免费观看|