• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wave Scattering by Porous Bottom Undulation in a Two Layered Channel

    2014-07-24 14:57:08SandipPaulandSoumenDe

    Sandip Pauland Soumen De

    1. Department of Mathematics, Adamas Institute of Technology, Kolkata 700126, India

    2. Department of Applied Mathematics, University of Calcutta, Kolkata 700009, India

    Wave Scattering by Porous Bottom Undulation in a Two Layered Channel

    Sandip Paul1and Soumen De2*

    1. Department of Mathematics, Adamas Institute of Technology, Kolkata 700126, India

    2. Department of Applied Mathematics, University of Calcutta, Kolkata 700009, India

    The scattering of plane surface waves by bottom undulations in channel flow consisting of two layers is investigated by assuming that the bed of the channel is composed of porous material. The upper surface of the fluid is bounded by a rigid lid and the channel is unbounded in the horizontal directions. There exists only one wave mode corresponding to an internal wave. For small undulations, a simplified perturbation analysis is used to obtain first order reflection and transmission coefficients in terms of integrals involving the shape function describing the bottom. For sinusoidal bottom undulations and exponentially decaying bottom topography, the first order coefficients are computed. In the case of sinusoidal bottom the first order transmission coefficient is found to vanish identically. The numerical results are depicted graphically in a number of figures.

    bottom undulations; two-layer fluid; porous bed; reflection and transmission coefficients; wave scattering

    1 Introduction

    Wave scattering and generation problems in continuously stratified or multi-layered fluid have recently attracted a good deal of attention. Although, propagation of waves in a two-layer fluid was described by Stokes (1847) long back, till now the literature of two-layer fluid problems is rather limited. Linear wave motion in a two-layer fluid is described in the text books of Lamb (1932) and Landau and Lifshitz (1989). For normally incident waves, the corresponding problem of wave scattering by small bottom undulations in a two-layer fluid with the upper layer extending infinitely upwards and the lower layer having bottom undulations, was studied by Mandal and Basu (1993). The oblique interface wave scattering in such a two-layer fluid was also considered by Mandal and Basu (1994). A number of wave problems in such a two-layer fluid were studied by Dolai and Mandal (1994, 1995), Mandal and Chakrabarti (1995). A two-layer model of an ocean consisting of a layer of fresh water over a deep layer of saline water requires special attention as in this case there exist waves of two different wave numbers, one with lower wave number propagating along the free surface and the other with higher wave number propagating along the interface. Linton and McIver (1995) considered scattering of water waves by a horizontal cylinder in an infinitely deep two-layer fluid where in the upper layer has a free surface. Using linear theory, they examined the interaction of surface and interface waves with a horizontal circular cylinder. The motivation for their work came from a plan to build an underwater pipe-bridge across one of the Norweigian fjords, bodies of water which typically consist of a layer of fresh water on top of salt water. Cadby and Linton (2000) considered three-dimensional water wave scattering in such a two-layer fluid. They developed a general three-dimensional linear scattering theory and then illustrated it by solving problems involving submerged spheres.

    Much work has been done on wave/structure interactions in such fluid region approximating the free surface by a rigid lid. With the free surface approximated by rigid lid Sturova (1994), for example, has studied the radiation of wave by an oscillating cylinder which is also moving uniformly in a direction perpendicular to its axis. Sturova (1999) considered the radiation and scattering problem in a cylinder in both a two and a three layer fluid bounded above and below by rigid horizontal walls. Gavrilov et al. (1999) also investigated the effects of a smooth pycnocline on wave scattering, again for horizontal circular cylinder where the fluid is bounded above and below by rigid walls.

    Sherief et al. (2003) investigated the motion generated by a vertical wave-maker immersed in a two-layer fluid, the prescribed normal velocity on the wave-maker varying with depth and harmonically with time. The wave-maker was also assumed tobe porous. Sherief et al. (2004) also investigated a vertical cylindrical porouswave-maker immersed in a two layer fluid. Chamberlain and Porter (2005) considered two-layer fluid problem involving bottom variation while Ten and Kashiwagi (2004), Kashiwagi et al. (2006) studied hydrodynamics of a body floating in a two-layer fluid. Mase and Takeba (1994), Zhu (2001) and Silva et al. (2002) investigates the wave scattering problem involving porous bed. Martha et al. (2007) considered the problem of oblique water-wave scattering by small undulation on porous sea bed. They obtain the first order reflection and transmission coefficients. The problem ofoblique wave propagation over a small deformation in a channel flow consisting of two layers was considered by Mahapatra and Bora (2012).

    In the present paper scattering by porous bottom undulation in a two layered channel is investigated. Using linear theory, the problem is formulated as a coupled boundary value problem for the two potential functions describing the fluid motion in each of two layers. A simplified perturbation technique is employed to reduce the original boundary value problem coupled one upto first order. This problem is solved here by a method, based on the Fourier transform technique, to obtain the first order reflection and transmission coefficients in terms of integrals involving the shape function describing the bottom undulations. The first-order coefficients are depicted graphically against the wave number for two different shape functions. The effect of porosity is observed in the numerical results.

    2 Mathematical formulations

    We consider a two-layer invicide, incompressible fluid flowing through a channel with upper layer bounded by a rigid lid, while the lower layer has small cylindrical undulations at the porous bottom. Here a two dimensional co-ordinate system is chosen in such a way that 'y h=-denotes the position of the rigid plate and 0y= denotes the undisturbed interface while y-axis directed vertically downwards. The bottom of the lower layer can be represented by, where ε is a dimensionless small quantity, measures the smallness of the deformation and ()cx is a bounded and continuously differentiable function describing the shape of the undulating bottom, such thatThus the lower layer is of uniform finite depth h below the mean interface far away from the undulations on either side. As the fluid motion is irrotational, the time dependent harmonic velocity potentials of the upper and lower layer can be described byand, where σ is the angular frequency of the incoming wave. The density of the upper fluid isand the lower fluid is. The functions (,)xyψ and (,)xyφ satisfy

    The linearized boundary conditions at the interface and the two boundaries of the channel are given by

    and

    The velocity potentials of the progressive interface wave train coming from the negative infinity areandin the lower and upper fluids, ? whereandhas the following forms:

    where k is real, positive and satisfies the dispersion relation

    where

    The dispersion equation has exactly one positive real root, m ( 0)m> , say; describing mode of the wave propagating through the interface. Since upper layer is bounded by a rigid lid, there is only one wave mode, corresponding to an internal wave. The explanation of roots of the dispersion equation has been given in the Appendix.

    The progressive waves of mode m in the upper and lower fluid are given by the velocity potentials

    and

    When a train of progressive wave with mode m incident upon the undulating porous sea bottom, it produces reflected wave train in the negative x direction for x→-∞and transmitted wave train in the positive x direction for x→+∞ mode m. These conditions can be mathematically expressed as far field conditions for ψ and φ by

    where rmand tmdenotes the reflection and transmission coefficients corresponding to the reflected wave andtransmitted wave of mode m respectively.

    Fig. 1 Sketch of the problem

    3 Method of solution

    The bottom condition (6) can be expressed approximately as

    The form of the approximate bottom condition (15) suggests thathave the following perturbational expansions, in terms of the small parameter ε as

    On substituting (16) in Eqs. (3)–(5), (15) and on equating the coefficients of ε from both sides, results the following coupled BVP for first order potential functions as:

    where,

    and

    The infinite requirements (13) and (14) give

    4 First order reflection and transmission coefficients

    Solutions of the problem described by Eq. (17) for the potentials ψ1(x,y ) and φ1(x,y) are obtained by using Fourier transform technique.

    Let us define the Fourier transform ofandby

    The above transformation exists whenanddecreases exponentially as |x|→∞ and it is possible if we assume that, k has a small positive imaginary part, i.e, we are replacing k by1ik k+ .

    To decouple the BVP (17) we write

    so that

    where ()px is an unknown function.

    We get the following boundary value problems

    and

    where,p(k) and V(k) respectively, given by

    The solution of the BVP (26)–(27) can be expressed as

    where p(k)is given by

    Using (30) and (31), we get

    By inverse Fourier transform, Eqs. (33) and (34) gives

    Therefore,

    Now, since Δ(k)=Δ(-k ), we can write

    The integrands on the right hand side of (39) and (40) has singularities at the zeros ofAsthe dispersion equation has only two real values of k and an infinite no of valuessatisfying the equation

    The first order reflection and transmission coefficientsandare obtained by making x→ ? ∞ in (39) and (40) and comparing with the infinite requirements (20) and (21) respectively.

    As x→∞ the transmission coefficient is obtained by rotating the contour of integration involving eikxinto a contour in the first quadrant by an angleso that the pole at k m= lies inside it and the contour of the integration involvinginto the fourth quadrant by the same angle θ. Then the integrand involvinghas no effect in calculating1(,)xyψ and1(,)xyφ . By complex integration technique we get

    where,

    Similarly, as ||x→-∞ the first order reflection coefficient is obtained from the analysis of the behavior ofandin Eqs. (39) and (40) by rotating the path of the second integrals into a contour in the first quadrant, so that we must include the residue term at k m= . In this case the term involving eikxhas no contribution in the expressions ofandand these are:

    where,

    Comparing (42) and (43), (45) and (46) with (20) and (21), we get the first order coefficients as:

    where ()mΔ and A are given by equations (10) and (19) respectively.

    5 Numerical results

    Example1: For sinusoidal undulations at the bottom of the two-layer fluid, the shape function ()cx as

    where n is a positive integer. a and μ are the amplitude of the sinusoidal ripple on the bottom surface and the ripple wave number respectively.

    Substitute (50) in the expressions (48)–(49), the first order reflection coefficients and the transmission coefficients are given as follows:

    where ()mΔ and A are given as in expressions (10) and (19) respectively.

    Fig. 2 Sinusoidal undulationsis plotted against Ka for different Ga

    The Fig. 2 depicted here is the first order reflection coefficient against Ka. The graph plotted for ρ=0.05,and three different values of Ga, viz. 0.0, 0.04, 0.08. The results obtained here agree with the known results when the bed has no porous effect (Ga=0.0). We have considered a very small density ratio for sake of batter interfacial effect, but it can take any value less than one. In the expression (51),is unbounded when μ~2m, i.e.. The graph showing that, the energy reflection increases with the porous effect. Fig. 3 showing the reflection coefficients for different values of the bottom ripple number (n=1, 3, 5) and forwhen Ga=0.05 and it is clearly seen that the peak values of the coefficients increases. Which shows that, if the ripple number increases indefinitely, the first order coefficients become unbounded for certain value of Ka .

    Fig. 3 Sinusoidal undulationsis plotted against Ka for different n

    Fig. 4 Sinusoidal undulationsis plotted against Ka for different ρ

    Example 2: We consider the shape function c(x) in the form of an exponentially decaying bottom as

    where a and μ are the amplitude of the ripple on the bottom surface and the ripple wave number respectively. On substitution (54) in the expressions (48)–(49), the first order reflection and transmission coefficients are given as follows:

    where ()mΔ and A are given by the expressions (10) and (19).

    The graphs depicts in Figs. 5 and 6 areandas a function of Ka for three different values of Ga (viz. 0.0, 0.04, 0.08) andIneach of these figures the peak value increases as with porous effect parameter.

    Fig. 5 Exponentially decaying bottomis plotted against Ka for different Ga

    Fig. 6 Exponentially decaying bottomis plotted against Ka for different Ga

    Fig. 7 Exponentially decaying bottomis plotted against Ka for different ρ

    Fig. 8 Exponentially decaying bottomis plotted against Ka for different ρ

    In Figs. 7 and 8, reflection and transmission coefficientsandare depicted against Ka for different values of the density ratio ρ for Ga=0.04, h=5a, '5,h a= aμ =0.47. In each of these two figures it is observed that as ρ increases the peak value ofanddecreases. Thus the first order coefficients are quite sensitive to the density ratio.

    6 Conclusions

    Scattering of surface waves by porous bottom undulation in a two layered channel is investigated. Using a simplified perturbation analysis, the problem is reduced upto first order to a coupled boundary value problem. The boundary value problem is solved by Fourier transform technique. First order reflection and transmission coefficients are obtained in terms of integrals involving the shape function representing the bottom undulations. The bottom undulations are described by sinusoidal ripples on an otherwise flat bed and also by an exponentially decaying profile. For the important case of sinusoidal bottom undulations, the first-order correction for the reflection coefficient is depicted graphically against the wave number, while the same for transmission coefficient vanishes identically. For the case of exponentially decaying bottom topography the first order corrections to reflection and transmission coefficients are also depicted graphically. It is observed that the reflection coefficient increases with increasing porous effect. Also for the sinusoidal bottom the wave reflection increases as the ripple number increases.

    Cadby JR, Linton CM (2000). Three dimensional water-waves scattering in two-layer fluid. Journal of Fluid Mechanics, 423, 155-173.

    Chamberlain PG, Porter D (2005). Wave scattering in a two-layer fluid of varying depth. Journal of Fluid Mechanics, 524, 207-228. Das D, Mandal BN (2005). A note on solution of the dispersion equation for small-amplitude internal waves. Archives of Mechanics, 57(6), 493-501.

    Dolai DP, Mandal BN (1994). Interface waves due to a vertical cylindrical wavemaker in the presence of interfacial tension. Revue Roumaine des Sciences Techniques-Series de Mecanique Appliquee, 39, 659-665.

    Dolai DP, Mandal BN (1995), Oblique interface waves against a nearly vertical cliff in two superposed fluids. Proceedings of the Indian National Science Academy, 61(1), 53-72.

    Gavrilov N, Ermanyuk E, Sturova I (1999). Scattering of internal waves by a circular cylinder submerged in a stratified fluid. Proceedings 22nd Symposium on Naval Hydrodynamics, Washington DC, USA, 907-919.

    Kashiwagi M, Ten I, Yasunaga M (2006). Hydrodynamics of a body floating in a two-layer fluid of finite depth. Part 2. Diffraction problem and wave-induced motions. Journal of Marine Science and Technology, 11(3), 150-164.

    Lamb H (1932). Hydrodynamics. Cambridge University Press, Cambridge, 18-62.

    Landau LD, Lifshitz EM (1989). Fluid mechanics. Pergamon Press, Oxford, UK.

    Linton CM, McIver M (1995). The interaction of waves with horizontal cylinders in two-layer fluids. Journal of Fluid Mechanics, 304, 213-229.

    Mandal BN, Basu U (1993). Diffraction of interface waves by a bottom deformation. Archives of Mechanics, 45, 271-277.

    Mandal BN, Basu U (1994). Oblique interface wave diffraction bya small bottom deformation in the presence of interfacial tension. Revue Roumaine des Sciences Techniques-Series de Mecanique Appliquee, 39, 525-531.

    Mandal BN, Chakrabarti RN (1995). Potential due to a horizontal ring sources in a two-fluid medium. Proceedings of the Indian National Science Academy, 61, 433-439.

    Martha SC, Bora SN, Chakrabarti A (2007). Oblique water-wave scattering by small undulation on a porous sea-bed. Applied Ocean Research, 29(1-2), 86-90.

    Mase H, Takeba K (1994). Bragg scattering of waves over porous rippled bed. Proceedings of the 24th International Conference on Coastal Engineering (ICCE ’94), Kobe, Japan, 635-649.

    Mohapatra S, Bora SN (2012). Oblique water wave scattering by bottom undulation in a two-layer fluid flowing through a channel. Journal of Marine Science and Application, 11(3), 276-285.

    Sherief HH, Faltas MS, Saad EI (2003). Forced gravity waves in two layered fluids with the upper fluid having a free surface. Canadian Journal of Physics, 81(4), 675-689.

    Sherief HH, Faltas MS, Saad EI (2004). Axisymmetric gravity waves in two-layered fluids with the upper fluid having a free surface. Wave Motion, 40(2), 143-161.

    Silva R, Salles P, Palacio A (2002). Linear wave propagating over a rapidly varying finite porous bed. Coastal Engineering, 44(3), 239-260.

    Stokes GG (1847). On the theory of oscillatory waves. Transactions of Cambridge Philosophical Society, 8, 441-455 (Reprinted in Mathematical and Physical Papers, 1, 314-326.)

    Sturova IV (1994). Plane problem of hydrodynamic rocking of a body submerged in a two layer fluid without forward speed. Fluid Dynamics, 29(3), 414-423.

    Sturova IV (1999). Problems of radiation and diffraction for a circular cylinder in a stratified fluid. Fluid Dynamics, 34(4), 521-533.

    Ten J, Kashiwagi M (2004). Hydrodynamics of a body floating in a two layer fluid of finite depth. Journal of Marine Science and Technnology, 9(3), 127-141.

    Zhu S (2001). Water waves within a porous medium on an undulating bed. Coastal Engineering, 42(1), 87-101.

    Author biographies

    Sandip Paul was born in 1983. He is a assistant professor at Department Mathematics, Adamas Institute Technology, Kolkata, India. His current research interests include water wave problems.

    Soumen De was born in 1981. He is a assistant professor at the Department Applied Mathematics, University of Calcutta, India. His current research interests include water wave problems, integral equations, etc.

    Appendix: roots of the dispersion equations

    Here we find the roots of the dispersion equations in a fluid of finite depth with porous bottom when the upper surface of the fluid is bounded by a rigid lid.

    The dispersion equation given by (9) is

    The plot (Fig. A1) of the functions Kh(cothkh+ρcothkh')-and (1 )khρ- intersect exactly at one point for Kh>0 for Kh=0.2,Gh =0.05,ρ=0.05. Similarly when we plot for μ<or>1, the result will be the same. Since each of these functions is odd in kh, there are always exactly two real roots occurring as plus and minus of some positive quantity which we denote as m.

    When k is purely imaginary, ik κ= for some real κ, the Eq. (A1) becomes

    Thus the purely imaginary roots of the Eq. (A2) are obtained from the plots (Fig. A2) of -Kh(cotκh+ρcotκh ')-and (1 )hρκ- against hκ .

    It is obvious that there exists an infinite no of purely imaginary roots of the Eq. (A2) given byn=1,2,3…(say).

    Fig. A1y=Kh(cothkh+ρcothkh′)-

    Fig. A2y=-Kh(cotκh+ρcotκh′)-

    By Rauche’s theorem of complex variable theory, we can show that the dispersion Eq. (A1) has two real roots, infinite no of purely imaginary roots and there is no other roots (Das and Mandal, 2005).

    1671-9433(2014)04-0355-07

    J. Marine. Sci. Appl. (2014) 13: 355-361

    10.1007/s11804-014-1276-4

    date: 2013-11-26.

    Accepted date: 2014-07-31.

    *Corresponding author Email: soumenisi@gmail.com

    ? Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2014

    嘟嘟电影网在线观看| 亚洲av成人精品一区久久| 三级国产精品片| 久久午夜综合久久蜜桃| 街头女战士在线观看网站| 成人亚洲精品一区在线观看| 两个人免费观看高清视频 | 午夜日本视频在线| 精品一品国产午夜福利视频| 精品一区二区三卡| 老女人水多毛片| 涩涩av久久男人的天堂| 免费黄网站久久成人精品| 男人狂女人下面高潮的视频| 人妻少妇偷人精品九色| 热99国产精品久久久久久7| 国产免费一区二区三区四区乱码| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频 | 日本91视频免费播放| av黄色大香蕉| 精品少妇内射三级| 国产精品免费大片| 亚洲国产精品一区二区三区在线| 久久精品国产a三级三级三级| 国产av国产精品国产| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区黑人 | 国产精品国产av在线观看| 精品亚洲成国产av| 久热久热在线精品观看| 国产无遮挡羞羞视频在线观看| 久久人人爽人人片av| 黄色毛片三级朝国网站 | 亚洲不卡免费看| av国产久精品久网站免费入址| 五月玫瑰六月丁香| 国产av码专区亚洲av| 少妇被粗大的猛进出69影院 | kizo精华| 日日啪夜夜爽| 久久精品国产亚洲网站| 午夜久久久在线观看| 尾随美女入室| 一级黄片播放器| 国产免费一区二区三区四区乱码| 18禁在线播放成人免费| 日本与韩国留学比较| www.av在线官网国产| 久久av网站| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品aⅴ在线观看| 国产精品一区二区性色av| 人妻夜夜爽99麻豆av| 一级,二级,三级黄色视频| av天堂中文字幕网| 午夜视频国产福利| 丁香六月天网| 蜜桃久久精品国产亚洲av| 狠狠精品人妻久久久久久综合| 国产 精品1| 王馨瑶露胸无遮挡在线观看| 亚洲va在线va天堂va国产| 午夜91福利影院| 人妻人人澡人人爽人人| 中文乱码字字幕精品一区二区三区| 老司机亚洲免费影院| 欧美xxxx性猛交bbbb| 天堂俺去俺来也www色官网| 国产黄色视频一区二区在线观看| 一本大道久久a久久精品| 欧美另类一区| 又大又黄又爽视频免费| 国产成人精品福利久久| av线在线观看网站| 国产精品一二三区在线看| av国产精品久久久久影院| 免费观看a级毛片全部| 91aial.com中文字幕在线观看| 国产成人精品无人区| 国产成人精品无人区| 婷婷色麻豆天堂久久| 久久久亚洲精品成人影院| 国产亚洲5aaaaa淫片| 26uuu在线亚洲综合色| 美女国产视频在线观看| 爱豆传媒免费全集在线观看| 日本vs欧美在线观看视频 | videossex国产| av国产久精品久网站免费入址| 丰满乱子伦码专区| 午夜激情久久久久久久| 汤姆久久久久久久影院中文字幕| 色94色欧美一区二区| 麻豆成人av视频| 国产精品一二三区在线看| 天堂8中文在线网| 亚洲精品国产色婷婷电影| 国产极品天堂在线| 欧美三级亚洲精品| 亚洲中文av在线| 黄色一级大片看看| 欧美人与善性xxx| 国产成人freesex在线| 老司机影院毛片| 久久人妻熟女aⅴ| 亚洲人成网站在线观看播放| 午夜精品国产一区二区电影| 成年女人在线观看亚洲视频| 久久久欧美国产精品| 黄色一级大片看看| 久久女婷五月综合色啪小说| 街头女战士在线观看网站| www.色视频.com| 亚洲欧洲日产国产| 99久国产av精品国产电影| 如何舔出高潮| 日韩视频在线欧美| 尾随美女入室| 欧美最新免费一区二区三区| 欧美精品人与动牲交sv欧美| 欧美日韩在线观看h| 欧美bdsm另类| 精品久久久久久电影网| av免费在线看不卡| 国产欧美另类精品又又久久亚洲欧美| 夫妻午夜视频| 亚洲色图综合在线观看| 欧美 亚洲 国产 日韩一| 在线观看www视频免费| 国产 精品1| 99久国产av精品国产电影| 亚洲国产精品一区三区| 性色avwww在线观看| 精品午夜福利在线看| 97超视频在线观看视频| 国产精品成人在线| av福利片在线观看| 你懂的网址亚洲精品在线观看| 尾随美女入室| 欧美最新免费一区二区三区| 亚洲欧美精品自产自拍| 国产精品国产三级专区第一集| 成人黄色视频免费在线看| 七月丁香在线播放| 夫妻午夜视频| 精品少妇内射三级| 一级黄片播放器| 蜜桃久久精品国产亚洲av| 夜夜爽夜夜爽视频| 国产欧美亚洲国产| 交换朋友夫妻互换小说| 成人毛片60女人毛片免费| 美女主播在线视频| 中文精品一卡2卡3卡4更新| 成人影院久久| 午夜91福利影院| 香蕉精品网在线| 日韩在线高清观看一区二区三区| 人妻夜夜爽99麻豆av| 成人国产av品久久久| 免费观看a级毛片全部| 精品国产乱码久久久久久小说| 日本色播在线视频| 一区在线观看完整版| 亚洲天堂av无毛| 99热国产这里只有精品6| 少妇被粗大猛烈的视频| 丰满人妻一区二区三区视频av| 久久6这里有精品| 中文乱码字字幕精品一区二区三区| 亚洲精品第二区| 乱人伦中国视频| 日韩电影二区| 日本黄色日本黄色录像| 久久久久久久久久久久大奶| 亚洲熟女精品中文字幕| 国产精品三级大全| 一区二区三区免费毛片| 色视频www国产| 国产深夜福利视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产男女超爽视频在线观看| 男女啪啪激烈高潮av片| 日本色播在线视频| 国产精品免费大片| 日韩成人av中文字幕在线观看| 曰老女人黄片| 亚洲美女搞黄在线观看| av视频免费观看在线观看| 精品人妻熟女毛片av久久网站| 成人毛片60女人毛片免费| 草草在线视频免费看| 中文精品一卡2卡3卡4更新| 9色porny在线观看| 一区二区三区免费毛片| videossex国产| 人妻系列 视频| a级毛色黄片| 久久国产精品男人的天堂亚洲 | 国产黄频视频在线观看| 久久精品久久久久久噜噜老黄| 九色成人免费人妻av| 久久青草综合色| 亚洲精品第二区| 秋霞伦理黄片| 少妇高潮的动态图| 国产极品天堂在线| 美女国产视频在线观看| 国产综合精华液| 精品人妻熟女av久视频| av在线app专区| 欧美人与善性xxx| 男女边摸边吃奶| 国产精品国产三级国产av玫瑰| 18禁在线无遮挡免费观看视频| 在线观看美女被高潮喷水网站| av卡一久久| 观看美女的网站| 欧美性感艳星| 日日爽夜夜爽网站| 校园人妻丝袜中文字幕| 久久久久人妻精品一区果冻| 成人18禁高潮啪啪吃奶动态图 | 亚洲一区二区三区欧美精品| 国产精品秋霞免费鲁丝片| 欧美日韩视频高清一区二区三区二| 下体分泌物呈黄色| 九九爱精品视频在线观看| 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| 七月丁香在线播放| 国产成人a∨麻豆精品| 欧美丝袜亚洲另类| 国产又色又爽无遮挡免| 三级国产精品欧美在线观看| www.色视频.com| 久久综合国产亚洲精品| 嫩草影院入口| videossex国产| 国产视频首页在线观看| 成人影院久久| 免费av中文字幕在线| 男女国产视频网站| 一二三四中文在线观看免费高清| 美女cb高潮喷水在线观看| 免费在线观看成人毛片| 国产在线一区二区三区精| 久热这里只有精品99| 岛国毛片在线播放| 国产免费福利视频在线观看| 深夜a级毛片| 日日撸夜夜添| 91在线精品国自产拍蜜月| 一级毛片我不卡| 久久久久久人妻| 高清视频免费观看一区二区| 亚洲精品久久久久久婷婷小说| 又粗又硬又长又爽又黄的视频| 夜夜骑夜夜射夜夜干| videos熟女内射| 中文字幕人妻丝袜制服| 七月丁香在线播放| 丰满少妇做爰视频| 性色av一级| av黄色大香蕉| 久久久久国产网址| 亚洲美女黄色视频免费看| 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 日韩精品免费视频一区二区三区 | 日韩一本色道免费dvd| 国产一区亚洲一区在线观看| 婷婷色综合www| 中文字幕人妻熟人妻熟丝袜美| 成年人免费黄色播放视频 | 久久精品国产自在天天线| 亚洲情色 制服丝袜| 日韩一区二区三区影片| 国产成人一区二区在线| 国产黄色免费在线视频| 3wmmmm亚洲av在线观看| 最近最新中文字幕免费大全7| √禁漫天堂资源中文www| 久久国产亚洲av麻豆专区| 国产成人aa在线观看| 特大巨黑吊av在线直播| 夜夜爽夜夜爽视频| 亚洲中文av在线| 在线观看免费日韩欧美大片 | 亚洲国产欧美在线一区| 国产亚洲精品久久久com| 91成人精品电影| 制服丝袜香蕉在线| 一区二区三区精品91| 免费不卡的大黄色大毛片视频在线观看| 黄色怎么调成土黄色| 久久99热6这里只有精品| 成人午夜精彩视频在线观看| 中文天堂在线官网| 午夜激情久久久久久久| 夜夜骑夜夜射夜夜干| 高清毛片免费看| 黄色一级大片看看| 少妇被粗大猛烈的视频| 国产黄片视频在线免费观看| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 99热国产这里只有精品6| 一二三四中文在线观看免费高清| 亚洲人成网站在线播| 精品国产一区二区三区久久久樱花| 七月丁香在线播放| 久久毛片免费看一区二区三区| 肉色欧美久久久久久久蜜桃| 精品久久久久久久久av| 一本大道久久a久久精品| 最近2019中文字幕mv第一页| 丁香六月天网| 纵有疾风起免费观看全集完整版| 在线观看三级黄色| 精品一区在线观看国产| 免费观看的影片在线观看| 麻豆乱淫一区二区| 高清在线视频一区二区三区| 精品视频人人做人人爽| 日日摸夜夜添夜夜添av毛片| 精品熟女少妇av免费看| 一区二区三区精品91| 黄色怎么调成土黄色| 99热这里只有是精品在线观看| 日韩电影二区| 男人舔奶头视频| 人人妻人人添人人爽欧美一区卜| 欧美成人精品欧美一级黄| 少妇高潮的动态图| 极品人妻少妇av视频| 免费观看的影片在线观看| 一个人免费看片子| 天天操日日干夜夜撸| 99九九线精品视频在线观看视频| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 哪个播放器可以免费观看大片| 久久99热这里只频精品6学生| 色视频www国产| 日韩成人伦理影院| 久久久久久久久久久久大奶| 有码 亚洲区| 熟女人妻精品中文字幕| 国产色婷婷99| av.在线天堂| 亚洲一级一片aⅴ在线观看| 国产成人a∨麻豆精品| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 久久99蜜桃精品久久| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 久久久欧美国产精品| 日韩人妻高清精品专区| 国产视频首页在线观看| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 国产免费福利视频在线观看| 少妇的逼好多水| 中文乱码字字幕精品一区二区三区| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 国产精品人妻久久久影院| 在线观看免费高清a一片| 高清在线视频一区二区三区| 大陆偷拍与自拍| 九色成人免费人妻av| 午夜激情福利司机影院| 看免费成人av毛片| 国产精品秋霞免费鲁丝片| 亚洲婷婷狠狠爱综合网| 免费少妇av软件| 黄片无遮挡物在线观看| 日韩强制内射视频| 亚洲精品日本国产第一区| av线在线观看网站| 亚洲经典国产精华液单| 中国三级夫妇交换| 国产精品嫩草影院av在线观看| 男女无遮挡免费网站观看| 在线观看免费日韩欧美大片 | 中国三级夫妇交换| 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 视频区图区小说| 国产成人aa在线观看| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 久热久热在线精品观看| 在线天堂最新版资源| 国产欧美另类精品又又久久亚洲欧美| 青春草国产在线视频| 国产高清不卡午夜福利| 国国产精品蜜臀av免费| 欧美成人精品欧美一级黄| 国产免费福利视频在线观看| 在线观看美女被高潮喷水网站| 成年av动漫网址| 日韩欧美 国产精品| 亚洲精品乱久久久久久| 六月丁香七月| 黑人巨大精品欧美一区二区蜜桃 | 亚州av有码| av国产久精品久网站免费入址| 99热这里只有精品一区| 免费看光身美女| 深夜a级毛片| 少妇裸体淫交视频免费看高清| 热re99久久精品国产66热6| 欧美日韩综合久久久久久| 日韩av免费高清视频| 国产一级毛片在线| 国产免费福利视频在线观看| 观看美女的网站| 日本欧美视频一区| 国产熟女午夜一区二区三区 | 色哟哟·www| 99热这里只有精品一区| a级毛片在线看网站| 亚洲成人手机| 国产伦精品一区二区三区四那| freevideosex欧美| videossex国产| 国产av一区二区精品久久| av福利片在线| 97精品久久久久久久久久精品| av福利片在线观看| 国产精品三级大全| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 国产精品欧美亚洲77777| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 大片免费播放器 马上看| 免费少妇av软件| 一区二区三区精品91| 乱系列少妇在线播放| 午夜福利在线观看免费完整高清在| 六月丁香七月| 国产毛片在线视频| 免费久久久久久久精品成人欧美视频 | 少妇裸体淫交视频免费看高清| 99久久人妻综合| 91aial.com中文字幕在线观看| 一本大道久久a久久精品| 免费看光身美女| 精品久久久久久久久亚洲| 中文字幕精品免费在线观看视频 | 夫妻午夜视频| 亚洲av在线观看美女高潮| 一级,二级,三级黄色视频| 精品国产国语对白av| 欧美高清成人免费视频www| 99热网站在线观看| 少妇熟女欧美另类| 精品酒店卫生间| 日韩av免费高清视频| 精品亚洲成国产av| 日本av免费视频播放| 国产淫片久久久久久久久| 久久鲁丝午夜福利片| 亚洲内射少妇av| 伊人久久国产一区二区| 亚洲,一卡二卡三卡| 超碰97精品在线观看| 大话2 男鬼变身卡| 久久韩国三级中文字幕| 国产在线男女| 18禁裸乳无遮挡动漫免费视频| 极品教师在线视频| 亚洲av日韩在线播放| 国产免费一区二区三区四区乱码| 国产精品99久久久久久久久| 黑人猛操日本美女一级片| 在线观看人妻少妇| 人人妻人人澡人人看| 妹子高潮喷水视频| 两个人的视频大全免费| 性色avwww在线观看| 看免费成人av毛片| 在线观看国产h片| 成人综合一区亚洲| 丰满人妻一区二区三区视频av| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| 亚洲欧美中文字幕日韩二区| 亚洲经典国产精华液单| 天堂8中文在线网| 国产av一区二区精品久久| 日韩三级伦理在线观看| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久小说| 色视频www国产| 最新的欧美精品一区二区| 亚洲欧美日韩卡通动漫| 国产日韩欧美在线精品| 国产 一区精品| 精品国产国语对白av| 人妻一区二区av| 美女国产视频在线观看| 久久久久国产精品人妻一区二区| 女性生殖器流出的白浆| 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 寂寞人妻少妇视频99o| 观看美女的网站| 精品久久久噜噜| 国产熟女午夜一区二区三区 | 精品少妇黑人巨大在线播放| 夫妻午夜视频| 成人综合一区亚洲| 久久人人爽人人爽人人片va| 免费黄频网站在线观看国产| 观看av在线不卡| 国产精品蜜桃在线观看| 国产精品偷伦视频观看了| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 又粗又硬又长又爽又黄的视频| 一级黄片播放器| 欧美日韩一区二区视频在线观看视频在线| 青青草视频在线视频观看| 青春草视频在线免费观看| 99热网站在线观看| 香蕉精品网在线| 国产极品天堂在线| 亚洲国产色片| 你懂的网址亚洲精品在线观看| 91精品国产国语对白视频| 国产精品99久久久久久久久| av天堂久久9| 国产淫语在线视频| av免费在线看不卡| 亚洲图色成人| 国产 一区精品| 啦啦啦啦在线视频资源| 婷婷色麻豆天堂久久| 欧美xxxx性猛交bbbb| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 国产免费一级a男人的天堂| 精品久久久精品久久久| 色94色欧美一区二区| 国产成人免费无遮挡视频| 久久鲁丝午夜福利片| 中文字幕av电影在线播放| 人妻制服诱惑在线中文字幕| 久久久久久久精品精品| 国产伦理片在线播放av一区| 欧美少妇被猛烈插入视频| 免费黄频网站在线观看国产| 日韩精品有码人妻一区| 青春草国产在线视频| 亚洲激情五月婷婷啪啪| 日韩 亚洲 欧美在线| 美女大奶头黄色视频| 亚洲精品日本国产第一区| 边亲边吃奶的免费视频| 亚洲精品日本国产第一区| 中文字幕人妻丝袜制服| 亚洲高清免费不卡视频| 欧美+日韩+精品| 精品少妇久久久久久888优播| 久久久久久久久久成人| 天美传媒精品一区二区| 99国产精品免费福利视频| a 毛片基地| 亚洲欧美精品自产自拍| 2021少妇久久久久久久久久久| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 永久网站在线| 国产精品久久久久久精品电影小说| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲网站| 午夜av观看不卡| 欧美成人精品欧美一级黄| 精品国产一区二区久久| videos熟女内射| 97超视频在线观看视频| 国产高清三级在线| 黑人高潮一二区| 国产淫语在线视频| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 亚洲国产精品一区三区| 高清视频免费观看一区二区| 久久97久久精品| 亚洲av二区三区四区| 插阴视频在线观看视频| 成人亚洲欧美一区二区av| 99久久综合免费| 久久久国产精品麻豆| 亚洲成人手机| 成人亚洲精品一区在线观看| 久久 成人 亚洲| 夫妻性生交免费视频一级片| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区免费观看| 王馨瑶露胸无遮挡在线观看| h日本视频在线播放| 国产精品久久久久久av不卡| h日本视频在线播放| 18禁在线无遮挡免费观看视频| 国产精品.久久久| 热re99久久国产66热| 99视频精品全部免费 在线| 能在线免费看毛片的网站|