• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Quasi-Jacobi Bialgebroid and Its Dirac-Jacobi Structure

    2014-07-24 15:29:21LIULingSUNong

    LIU Ling,SU Nong

    (School of Applied Science,Beijing Information Science and Technology University,Beijing 100192, China)

    On Quasi-Jacobi Bialgebroid and Its Dirac-Jacobi Structure

    LIU Ling,SU Nong

    (School of Applied Science,Beijing Information Science and Technology University,Beijing 100192, China)

    Notions of quasi-Jacobibialgebroid and its Dirac-Jacobistructure are introduced. The necessary and suffi cient conditions for a maximal isotropic subbundle L to be a Dirac-Jacobi structure are proved.Meanwhile several special examples are presented.

    quasi-Jacobi bialgebroid;Jacobi-quasi bialgebroid;Dirac-Jacobi structure;triangular Jacobi bialgebroid

    §1. Introduction

    A Dirac structure on a diff erentiable manifold M is a subbundle L?T M⊕T?M that is maximal isotropic with respect to the symmetric bilinear form on T M ⊕T?M and satisfies an integrability condition.Then this notion was extended to subbundles L?E,where E is a vector bundle over M[7].Moreover,Liu characterized a Dirac structure in terms of its characteristic pair(D,π)[8].

    Dirac structures were also used to study a simple interpretation of Jacobi manifolds and Jacobi reduction,such as E∞(M)-Dirac structure associated to a generalized Lie bialgebroid (T M×?,T?M×?)[23];the notions of generalized Courant algebroid and Dirac-Jacobi structure in[12],where several connections between Dirac structures for generalized Courant algebroids and Jacobi manifolds were also given.In[9],the authors gave two kinds of reductionrelating Jacobimanifolds through Dirac theories,without assuming the existence of momentum mappings or introducing admissible functions.

    The notions of quasi-Jacobi and Jacobi-quasi bialgebroid are generalizations of quasi-Lie bialgebroid and Lie-quasi bialgebroid which were introduced in[6,14-16].In this paper,we study Dirac structures for quasi-Jacobiand Jacobi-quasibialgebroid and related properties.In Section 2,we review the notion of Dirac structure on vector space or Jacobi bialgebroid and some properties.In Section 3,we get the conditions for a subbundle L of the double of a quasi-Jacobi bialgebroid to be a Dirac structure and present some examples.

    §2. Basic Defi nitions and Results

    Let V be a vector space and V?its dual space.There exists a natural nondegenerate symmetric bilinear form(·,·)+on V⊕V?defined by

    A subbundle L?V⊕V?which is maximalisotropic with respect to(·,·)+is called a Dirac subspace of V⊕V?.Set D=L∩(V+0)?L∩V.It is easy to prove that there exists a unique linear map

    ?πcan be seen as a bivector on V/D.Let p:V→V/D be the projection andπa bivector on V such that p(π)=?π,then

    whereπ#:V?→V is the bundle map associate toπ.Therefore L=D⊕graph(π#|D⊥).(D,π) is called a characteristic pair[8]of L.

    Let’s consider Dirac structures for Jacobi bialgebroids.It is well known that with each Lie algebroid(A,[·,·],a)a differential d on the graded space of sections of∧A?is associated, where A?is the dual vector bundle of A.Also the Lie bracket onΓ(A)can be extended to the algebra of sections of∧A,Γ(∧A)=⊕k∈ZΓ(∧kA).Let(A,[·,·],a)be a Lie algebroid over M andφ∈Γ(A?)a 1-cocycle for the Lie algebroid cohomology complex with trivial coeffi cients, i.e.,for all X,Y∈Γ(A),

    Using the 1-cocycleφ,one can define a new representation aφof the Lie algebra(Γ(A),[·,·]) on C∞(M,?),by setting

    Therefore,we obtain a new cohomology complex,whose diff erential cohomology operator is given by

    Also,for any X∈Γ(A),the new Lie derivative operator with respect to X is given by

    where LXis the usual Lie derivative LX=d?iX+iX?d.Usingφ,it is also possible to modify the Schouten bracket[·,·]onΓ(∧A)to theφ-Schouten bracket onΓ(∧A)defined,for any P∈Γ(ΛpA),Q∈Γ(ΛqA),by

    where iφQ and iφP can be interpreted as the usual contraction of a multivector field with a 1-form.It is easy to see that when p=q=1,[P,Q]φ=[P,Q].

    Defi nition 2.1[1]A Jacobialgebroid on a vector bundle A→M is a pair(A,φ),where (A,[·,·],a)is a Lie algebroid over M andφ∈Γ(A?)is a 1-cocycle.

    Let((A,[·,·],a),φ)and((A?,[·,·]?,a?),W)be Jacobi algebroids over M,in duality, with differentials d and d?,respectively.Then

    Defi nition 2.2[4]The dual pair((A,φ),(A?,W))is said to be a Jacobi bialgebroid or a generalized Lie bialgebroid over M,if

    Example 2.1 Let(M,Λ,E)be a Jacobi manifold.Then((T M×?,(0,1)),(T?M×?,(?E,0)))is a Jacobibialgebroid over M.

    On the Whitney sum bundle A⊕A?,for any e1=X1+α1,e2=X2+α2∈Γ(A⊕A?),we consider two nondegenerate canonical bilinear forms(·,·)±

    On the spaceΓ(A⊕A?)~=Γ(A)⊕Γ(A?)we have bracket[·,·]by setting

    Letρ:A⊕A?→T M be the bundle map given byρ=a+a?,i.e.,

    Defi nition 2.3 A Courant-Jacobi algebroid or a generalized Courant algebroid over a diff erential manifold M is a vector bundle E over M equipped with

    (i)a nondegenerate symmetric bilinear form(·,·)+on the bundle;

    (ii)a skew-symmetric bracket[·,·]onΓ(E);

    (iii)a bundle mapρθ:E→T M×?and(iv)an E-1-formθsuch that,for any e1,e2,e3∈Γ(E),the condition〈θ,[e1,e2]〉=ρ(e1)〈θ,e2〉?ρ(e2)〈θ,e1〉holds,ρbeing the bundle map from E onto T M induced byρθ,satisfying the following relations

    1)[[e1,e2],e3]+c.p.=DθT(e1,e2,e3),where T(e1,e2,e3)is the function on the base M defined byis the first-order differential operator defined by

    2)ρθ([e1,e2])=[ρθ(e1),ρθ(e2)],where the bracket on the right-hand side is the Lie bracket (2.7)onΓ(T M×?);

    3)ρθ(e)(e1,e2)+=([e,e1]+Dθ(e,e1),e2)++(e1,[e,e2]+Dθ(e,e2))+;

    4)For any f,g∈C∞(M,?),(Dθf,Dθg)+=0.

    Whenθ=0,we recover the definition of Courant algebroid,introduced in[8]or the equivalent version presented in[5].

    Theorem 2.1[12]Let((A,φ),(A?,W))be a Jacobi bialgebroid over M,then the pair (E=A⊕A?,θ),withθ=φ+W∈Γ(E)is a Courant-Jacobialgebroid over M,equipped with ([·,·],(·,·)+,ρ),where the Lie bracket[·,·]onΓ(A⊕A?)is given by(2.8),the symmetric bilinear form(·,·)+is given by(2.7),the vector bundle mapρis given by(2.9)and the operator Dθis Dθ=(dφ+dW?)|C∞(M,?).

    Defi nition 2.2 A Dirac-Jacobi structure for a Courant-Jacobi algebroid(E,θ)over M is a subbundle L?E which is maximal isotropic under(·,·)+and integrable,i.e.,Γ(E)is closed under the bracket[·,·].

    Theorem 2.3[12]Let((A,φ),(A?,W))be a Jacobi bialgebroid and L?A⊕A?a maximal isotropic subbundle defined by a characteristic pair(D,π).Then L is a Dirac-Jacobi structure for((A,φ),(A?,W))if and only if

    (1)Γ(D)is closed under the Lie algebroid bracket[·,·]of A;

    (3)Γ(D⊥)is closed under the sum bracket[·,·]?+[·,·]π,where[,]πis the bracket defi ned, for anyα,β∈Γ(A?),by

    In particular,when((A,φ),(A?,W))is a triangular Jacobibialgebroid,the above theorem takes the following form:

    Corollary 2.1 Let((A,φ),(A?,W),P)be a triangular Jacobi bialgebroid and L?A⊕A?a maximal isotropic subbundle defined by a characteristic pair(D,π).Then L is a Dirac-Jacobi structure if and only if

    (1)Γ(D)is closed under the Lie algebroid bracket[·,·]of A;

    (2)[P+π,P+π]φ=0(mod D);

    Example 2.2 In particular,when L=D⊕D⊥,the two conditions for L to be integrable are equivalent and both as follows:

    (1)Γ(D)is closed under the Lie algebroid bracket[·,·]of A;

    (2)Γ(D⊥)is closed under the Lie bracket[·,·]?of A?.

    Example 2.3 Let(A,φ)be a Jacobi algebroid and(A?,0)a trivial Jacobi algebroid. Then((A,φ),(A?,0))is a Jacobibialgebroid.Suppose that L?A⊕A?is a maximalisotropic subbundle with a characteristic pair(D,π).Then L is integrable if and only if

    (1)Γ(D)is closed under[·,·];

    (2)[π,π]φ=0(mod D);

    (3)Γ(D⊥)is closed under[·,·]π.

    §3. Generalization from Jacobi Bialgebroids to Quasi-Jacobi Bialgebroids

    We know that a Jacobi algebroid structure on a vector bundle A→ M consists of a Lie algebroid structure([·,·],a)and a 1-cocycleφof A.While if[·,·]is not a Lie bracket, a:A→T M is not necessarily a homomorphism andφ∈Γ(A?)is not necessarily a cocycle, but allofthese conditions are quasisatisfied by a certain 3-form?∈Γ(∧3A?)which isφ-closed, we say that there is a quasi Jacobi structure on A.

    Let(A,A?)be a pair of dual vector bundles over differential manifold M endowed with a 1-form φand W,respectively.The quasi Jacobi algebroid structure on(A,φ)consists of a bundle map a:A→T M,a skew-symmetric operation[·,·]onΓ(A)and a 3-form?of A satisfying,for X,Y,Z∈Γ(A)and f∈C∞(M,?),the following conditions:

    Defi nition 3.1[11]A quasi-Jacobi bialgebroid structure on(A,A?)consists of structure ([·,·],a,φ,?)on A and a Jacobi algebroid structure([·,·]?,a?,W)on A?satisfying,for X,Y,Z∈Γ(A)and f∈C∞(M,?),the following conditions

    2)[X,f Y]=f[X,Y]+(a(X)f)Y;

    3)a([X,Y])=[a(X),a(Y)]?a?(?(X,Y,·)),where a?:A?→T M is a bundle map;

    4)dφ=?(W,·,·),where d is the quasi-differential operator onΓ(∧A?)determined by the structure([·,·],a)on A;

    5)dφ?=d?+φ∧?=0,where the quasi-differentialoperator d onΓ(∧A?)is extended to the graded spaceΓ(∧A?).

    We denote the quasi-Jacobi bialgebroid by((A,φ),(A?,W),?).

    By interchanging the roles of(A,φ)and(A?,W)in the above definition,we obtain the notion of Jacobi-quasi bialgebroid over a differential manifold M.

    Proposition 3.1[11]If((A,φ),(A?,W),?)is a quasi-Jacobi bialgebroid over a differential manifold M,then((A?,W),(A,φ),?)is a Jacobi-quasi bialgebroid over M and conversely.

    In the case when bothφ=0 and W=0,we get the notion ofquasi-Lie bialgebroid.On the other hand,if?=0,then((A,φ),(A?,W),0)=((A,φ),(A?,W))is a Jacobi bialgebroid over M.

    Let((A,φ),(A?,W),?)be a quasi-Jacobibialgebroid over M.Lφand LW?the quasi-Lie and Lie derivative operators defined,respectively,by dφandOn the Whitney sum bundle A⊕A?,for any e1=X1+α1,e2=X2+α2∈Γ(A⊕A?),we consider the two nondegenerate canonical bilinear forms(·,·)±defined by(2.7)and on the spaceΓ(A⊕A?)~=Γ(A)⊕Γ(A?) the bracket[·,·]?by setting

    where[·,·]is the bracket(2.8).

    Theorem 3.1[13]Let((A,φ),(A?,W),?)be a quasi-Jacobibialgebroid over M.Then the vector bundle A⊕A?over M endowed with([·,·]?,(·,·)+,ρθ,Dθ),whereθ=φ+W ∈andis a Courant-Jacobibialgebroid over M.

    Defi niton 3.2 A Dirac structure for a quasi-Jacobi bialgebroid((A,φ),(A?,W),?) is a subbundle L of A⊕A?which is closed under the bracket[·,·]?and is maximal isotropic with respect to the symmetric bilinear form(·,·)+.

    If L is a Dirac structure,then(L,ρθ|L,[·,·]?|L)is a Lie algebroid over M.

    Similar to those of Jacobi bialgebroid,any Dirac structure L of a quasi-Jacobi bialgebroid also has characteristic pair(D,π)given by

    On spacesΓ(A)andΓ(A?)we define brackets[·,·]′andrespectively,by

    and

    where[·,·]πbeing the Koszulbracket defined by(2.10).

    Theorem 3.2 Let((A,φ),(A?,W),?)be a quasi-Jacobi bialgebroid and L?A⊕A?a subbundle defined by a characteristic pair(D,π).Then L is a Dirac structure if and only if

    i)Γ(D)is closed under the bracket[·,·]′;

    iii)Γ(D⊥)is closed under the sum bracket

    iv)?≡0(mod D⊥).

    Proof It is easy to check that L is a maximalisotropic subbundle of A⊕A?with respect to the symmetric bilinear form(·,·)+.So we only have to verify that the closedness of L under the bracket[·,·]?is equivalent to conditions i)-iv).

    For any sections X+π#α+α,Y+π#β+βof L=D⊕graph(π#|D⊥),we have

    Γ(L)is integrable if and only if terms(I)~(IV)are allinΓ(L).For term(I),

    is inΓ(L)if and only if?(X,Y,·)∈Γ(D⊥)and[X,Y]?π#(?(X,Y,·))=[X,Y]′∈Γ(D). So term(I)is inΓ(L)if and only ifΓ(D)is closed under the bracket[·,·]′(condition i))and ?≡0(mod D⊥)(condition iv)).

    We compute term(II)as following

    For any Z∈Γ(D),

    thus,LφXβ+?(X,π#β,·)∈Γ(D⊥)ifand only ifΓ(D)is closed under the bracket[·,·]′(condition i)).Consequently,from(3.4)we deduce that

    Forξ∈Γ(D⊥),we compute

    By formulae

    and

    we know that(3.6)holds if and only ifπ=(∧3π#)(?)(mod D)(condition ii)).

    Example 3.1

    1)Null Dirac structures:The subbundle L={X+α|X∈D,α∈D⊥}=D⊕D⊥?A⊕A?is a Dirac structure if and only if

    i)Γ(D)is closed under the bracket[·,·];

    ii)Γ(D⊥)is closed under the sum bracket[·,·]?;

    iii)?≡0(mod D⊥).

    2)When?=0,we obtain conditions for L to be a Dirac structure for Jacobi bialgebroid in Theorem 2.7.

    3)Ifφ=0 and W=0,we recover the conclusions obtained in[17]which were called Dirac structures of proto bialgebroids.

    4)Dirac structure for triangular quasi-Jacobibialgebroid

    Let(A,[·,·],a,φ)be a Jacobi algebroid over a diff erential manifold M,P a section ofΛ2A andψa trivector on A such that

    From[11],we know that the triple((A,[·,·],a,φ),(A?,[·,·]P,a?,W),ψ)is a Jacobi-quasi bialgebroid over M,which is called a triangular Jacobi-quasi bialgebroid,where[·,·]Pis the Koszulbracket(2.10),a?=a?P#:A?→T M,P#:Γ(∧kA?)→Γ(∧kA)being the bundle map associate to P and W=?P#(φ).

    Ifψ=P#(?),with?a dφ-closed 3-form on A and the spacesΓ(A?)andΓ(A)are equipped, respectively,with the bracketsand[·,·]′.Then the triplea?,W),?)is a triangular quasi-Jacobi bialgebroid over M.

    Theorem 3.3 For a triangular quasi-JacobibialgebroidW),?),L=D⊕graph(π|D⊥)?A⊕A?is a Dirac structure if and only if

    i)Γ(D)is closed under the bracket[·,·]+[·,·](P+π)#?,where[·,·](P+π)#?is the bracket (2.10);

    iv)?≡0(mod D⊥).

    Proof Using Theorem 3.6,conditions i)and iv)are easy to check.We prove ii)and iii).

    In the case of triangular quasi-Jacobibialgebroid,we have dW?π=[P,π]φand[P+π,P+ π]φ=[P,P]φ+2[P,π]φ+[π,π]φ.By condition ii)in Theorem 3.6,in case of modulo D,we have

    By condition iii)in Theorem 3.6,for anyα,γ∈Γ(D⊥),

    As a result,for any X∈Γ(D),we have

    In particular,if?=0,then we get Corollary 2.8.

    [1]GRABOWSKI J,MARMO G.The graded Jacobialgebras and(co)homology[J].J Phys A:Math Gen,2003, 36:161-81.

    [2]IGLESIAS Ponte D.E∞(M)-Dirac structures and Jacobi Structures.Diff erential geometry and its applications[J].Proc Conf Opava 2001,Silesian Univ.Opava.275-283.

    [3]IGLESIAS D,MARRERO J C.Lie algebroid foliations and E∞(M)-Dirac structures[J].J Phys A:Math Gen,2002,35:4085-4104.

    [4]IGLESIAS D,MARRERO J C.Generalized Lie bialgebroids and Jacobi structures[J].J Geom Phys,2001, 40:176-200.

    [5]UCHINO K.Remarks on the definition of a Courant algebroid[J].Lett Math Phys,2002,60:171-175.

    [6]Kosmann-Schwarzbach Y.Quasi,twisted and all that···in Poisson geometry and Lie algebroid theory[J]. The Breadth of Symplectic and Poisson Geometry,2005,232:363-389.

    [7]LIU Zhang-ju,WEINSTEIN A,XU P.Manin triples for Libialgebroids[J].J Diff Geom,1997,45:547-574.

    [8]LIU Zhang-ju.Some remarks on dirac structures and poisson reductions[J].Banach Center Publ,2000,51: 165-173.

    [9]LIU Ling,HE Long-guang.Reductions of Poisson manifolds and Jacobi manifolds via Dirac theories[J]. Adv Math(CHN),2011,40:103-118.

    [10]MACKENZIE K.Lie Groupoids and Lie Algebroids in Diff erential Geometry[M].London:Cambridge University Press,1987.

    [11]NUNES J M,COSTA Da,PETALIDOU F.On quasi-Jacobi and Jacobi-quasi bialgebroids[J].Letters in Math Phys,2007,80:155-169.

    [12]NUNES J M,COSTA Da,Clemente-Gallardo J.Dirac structures for generalized Lie bialgebroids[J].J Phys A:Math Gen,2004,37:2671-2692.

    [13]NUNES J M,COSTA Da,PETALIDOU F.Twisted Jacobi manifolds,twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids[J].J Phys a Math Gen,2006,39:10449-10475.

    [14]ROYTENBERG D.Courant algebroids,derived brackets and even symplectic supermanifolds[D].Ph.D. Thesis(1999),UC Berkeley,1999,arXiv:math.DG/9910078.eprint.

    [15]ROYTENBERG D.Quasi-Lie bialgebroids and twisted Poisson manifolds[J].Lett Math Phys,2002,61: 123-137.

    [16]SEVERA P,WEINSTEIN A.Poisson geometry with a 3-form background[J].Prog Theor Phys Suppl,2001, 144:145-154.

    [17]YIN Yan-bin,HE Long-guang.Dirac structures of proto bialgebroids[J].Science in China Ser A Mathematics,2006,36(8):841-852.

    tion:53D17,58H05,17B62,17B66

    1002–0462(2014)01–0097–10

    Chin.Quart.J.of Math. 2014,29(1):97—106

    date:2012-10-09

    Supported by the Scientifi c Research Common Program of Beijing Municipal Commission of Education(SQKM201211232017);Supported by the Beijing Excellent Training Grant(2012D005007000005); Supported by the Funding Program for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(11530500015)

    Biography:LIU Ling(1976-),female,native of Jinzhai,Anhui,an associate professor of Beijing Information Science and Technology University,Ph.D.,engages in Poisson geometry.

    CLC number:O186.1 Document code:A

    一区二区av电影网| 亚洲一区中文字幕在线| 免费黄网站久久成人精品| 亚洲,欧美,日韩| 精品免费久久久久久久清纯 | 国产黄色免费在线视频| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 少妇精品久久久久久久| 成人亚洲欧美一区二区av| 99精品久久久久人妻精品| 久久久久精品国产欧美久久久 | 各种免费的搞黄视频| 热re99久久国产66热| 婷婷成人精品国产| 啦啦啦 在线观看视频| 国产成人精品久久二区二区91 | 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区| 男女午夜视频在线观看| av有码第一页| 免费在线观看黄色视频的| 久久青草综合色| 免费看不卡的av| 色94色欧美一区二区| 一区在线观看完整版| 9色porny在线观看| 久久精品久久久久久久性| 国产av一区二区精品久久| 肉色欧美久久久久久久蜜桃| 啦啦啦在线观看免费高清www| 美国免费a级毛片| www.自偷自拍.com| 国产高清不卡午夜福利| 精品免费久久久久久久清纯 | 在线天堂最新版资源| www.av在线官网国产| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看 | 9色porny在线观看| 久久韩国三级中文字幕| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 少妇的丰满在线观看| 午夜福利影视在线免费观看| 波多野结衣av一区二区av| 99国产综合亚洲精品| 色婷婷av一区二区三区视频| 久久久精品94久久精品| a 毛片基地| 美女中出高潮动态图| 国产免费福利视频在线观看| 久久久久精品国产欧美久久久 | 国产精品三级大全| 韩国高清视频一区二区三区| 欧美激情极品国产一区二区三区| 精品国产一区二区久久| 午夜久久久在线观看| 国产精品人妻久久久影院| 一本一本久久a久久精品综合妖精| 精品人妻在线不人妻| 久久精品国产亚洲av涩爱| 国产成人精品在线电影| 午夜福利网站1000一区二区三区| 久久99精品国语久久久| 色婷婷av一区二区三区视频| 欧美另类一区| 嫩草影院入口| 少妇人妻精品综合一区二区| 如何舔出高潮| 午夜福利视频在线观看免费| 中文字幕制服av| 大片电影免费在线观看免费| 在线 av 中文字幕| 欧美激情 高清一区二区三区| 又大又爽又粗| 日本爱情动作片www.在线观看| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精| 黄片无遮挡物在线观看| 中文字幕高清在线视频| 99久久人妻综合| 国产成人精品在线电影| 亚洲精品国产一区二区精华液| 五月天丁香电影| 秋霞伦理黄片| 欧美日韩视频精品一区| 午夜福利影视在线免费观看| 精品国产一区二区三区四区第35| 国产极品天堂在线| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| 国产成人精品在线电影| www.精华液| 免费黄色在线免费观看| 国产精品.久久久| 国产精品秋霞免费鲁丝片| 国产免费一区二区三区四区乱码| 亚洲国产毛片av蜜桃av| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 男人舔女人的私密视频| 国产成人精品无人区| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 欧美激情高清一区二区三区 | 亚洲图色成人| av.在线天堂| 又粗又硬又长又爽又黄的视频| 水蜜桃什么品种好| www.av在线官网国产| 极品人妻少妇av视频| 最近手机中文字幕大全| 国产不卡av网站在线观看| 欧美日韩视频精品一区| 超碰成人久久| 亚洲国产精品999| 免费观看a级毛片全部| 91精品伊人久久大香线蕉| 丁香六月天网| 18在线观看网站| 久久99热这里只频精品6学生| 九九爱精品视频在线观看| 精品国产乱码久久久久久男人| 啦啦啦在线观看免费高清www| 亚洲五月色婷婷综合| 深夜精品福利| 在线观看免费午夜福利视频| 亚洲一区中文字幕在线| 国产一区二区激情短视频 | 看非洲黑人一级黄片| 9191精品国产免费久久| 80岁老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 男男h啪啪无遮挡| 日本91视频免费播放| 电影成人av| 飞空精品影院首页| 国产av码专区亚洲av| 2018国产大陆天天弄谢| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频 | 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 欧美精品av麻豆av| 婷婷色av中文字幕| 色94色欧美一区二区| 可以免费在线观看a视频的电影网站 | 女人高潮潮喷娇喘18禁视频| 又大又爽又粗| 最近手机中文字幕大全| 国产探花极品一区二区| 一级片'在线观看视频| 午夜日韩欧美国产| 亚洲欧美色中文字幕在线| 亚洲国产欧美一区二区综合| 午夜福利视频精品| 国产精品国产av在线观看| 哪个播放器可以免费观看大片| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 操出白浆在线播放| 久热爱精品视频在线9| 日本黄色日本黄色录像| 国产精品免费大片| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 在线观看三级黄色| 亚洲精品国产av蜜桃| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 国产日韩欧美在线精品| 又大又黄又爽视频免费| 男人爽女人下面视频在线观看| 亚洲国产精品999| 精品一区二区三区四区五区乱码 | 女人被躁到高潮嗷嗷叫费观| 日韩一本色道免费dvd| 啦啦啦中文免费视频观看日本| 国产亚洲精品第一综合不卡| 国产精品一国产av| 曰老女人黄片| 看十八女毛片水多多多| 国产精品欧美亚洲77777| 老司机在亚洲福利影院| 久久久国产欧美日韩av| 十八禁网站网址无遮挡| 国产成人精品无人区| 久久精品久久久久久噜噜老黄| 两个人看的免费小视频| 中文乱码字字幕精品一区二区三区| 波多野结衣av一区二区av| 免费高清在线观看日韩| 亚洲美女视频黄频| 91精品国产国语对白视频| 亚洲精品国产区一区二| 亚洲男人天堂网一区| 久久天躁狠狠躁夜夜2o2o | 亚洲av电影在线观看一区二区三区| 国产 精品1| 欧美日本中文国产一区发布| 欧美精品av麻豆av| 欧美在线黄色| 午夜老司机福利片| 青春草国产在线视频| 夫妻性生交免费视频一级片| 亚洲情色 制服丝袜| 国产亚洲av片在线观看秒播厂| 亚洲av中文av极速乱| 国产成人免费无遮挡视频| avwww免费| 在线观看免费午夜福利视频| 麻豆精品久久久久久蜜桃| 国产高清不卡午夜福利| 久久人人爽av亚洲精品天堂| 午夜福利乱码中文字幕| 操美女的视频在线观看| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 好男人视频免费观看在线| 免费看不卡的av| e午夜精品久久久久久久| 一级黄片播放器| 99精国产麻豆久久婷婷| 免费观看a级毛片全部| 免费日韩欧美在线观看| 成人亚洲欧美一区二区av| 青春草亚洲视频在线观看| 丝袜喷水一区| 亚洲美女视频黄频| 激情视频va一区二区三区| 一级毛片黄色毛片免费观看视频| 啦啦啦视频在线资源免费观看| 精品一区二区三卡| 国产成人91sexporn| 狂野欧美激情性bbbbbb| 国产av精品麻豆| 人人澡人人妻人| 天天影视国产精品| 国产成人91sexporn| 性色av一级| 免费女性裸体啪啪无遮挡网站| xxxhd国产人妻xxx| 黄片小视频在线播放| 亚洲精品乱久久久久久| 乱人伦中国视频| 婷婷色麻豆天堂久久| 日韩免费高清中文字幕av| 一本一本久久a久久精品综合妖精| av又黄又爽大尺度在线免费看| 中文字幕亚洲精品专区| 中文欧美无线码| a级毛片黄视频| 亚洲av电影在线进入| 久久人人爽av亚洲精品天堂| 成年动漫av网址| 精品一区二区免费观看| 18禁动态无遮挡网站| 一级,二级,三级黄色视频| 日韩欧美精品免费久久| 19禁男女啪啪无遮挡网站| √禁漫天堂资源中文www| 老熟女久久久| 99精品久久久久人妻精品| 97精品久久久久久久久久精品| 黑丝袜美女国产一区| 两个人看的免费小视频| kizo精华| 黑人猛操日本美女一级片| 男女午夜视频在线观看| 亚洲国产av影院在线观看| 性色av一级| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 免费久久久久久久精品成人欧美视频| 在线观看一区二区三区激情| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 狠狠精品人妻久久久久久综合| 又大又爽又粗| 侵犯人妻中文字幕一二三四区| 男女之事视频高清在线观看 | 亚洲精品日本国产第一区| 亚洲成色77777| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 夫妻午夜视频| 日韩电影二区| 午夜激情久久久久久久| 91成人精品电影| 别揉我奶头~嗯~啊~动态视频 | 国产老妇伦熟女老妇高清| 久久久国产精品麻豆| 欧美日韩视频高清一区二区三区二| 两个人免费观看高清视频| 国产精品人妻久久久影院| 亚洲伊人色综图| 哪个播放器可以免费观看大片| 99热全是精品| 十八禁人妻一区二区| a 毛片基地| 天堂中文最新版在线下载| netflix在线观看网站| 91精品三级在线观看| 成人影院久久| 国产精品国产av在线观看| 啦啦啦在线观看免费高清www| 新久久久久国产一级毛片| 久久久久精品久久久久真实原创| 男人舔女人的私密视频| 亚洲av成人精品一二三区| 飞空精品影院首页| 中文字幕人妻熟女乱码| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 韩国高清视频一区二区三区| 91国产中文字幕| 国产精品免费视频内射| 电影成人av| 亚洲精品日本国产第一区| 免费观看人在逋| 久久韩国三级中文字幕| 亚洲成色77777| 丁香六月欧美| 久久精品人人爽人人爽视色| 男男h啪啪无遮挡| 亚洲国产日韩一区二区| 青青草视频在线视频观看| kizo精华| 亚洲情色 制服丝袜| 国产不卡av网站在线观看| 黑人猛操日本美女一级片| 日韩电影二区| svipshipincom国产片| 国产精品香港三级国产av潘金莲 | 一边摸一边抽搐一进一出视频| 精品国产露脸久久av麻豆| 精品国产国语对白av| 美女高潮到喷水免费观看| 免费观看性生交大片5| 中文字幕人妻丝袜一区二区 | 丝袜美腿诱惑在线| av电影中文网址| 欧美日韩综合久久久久久| 在线观看免费高清a一片| 九草在线视频观看| 毛片一级片免费看久久久久| 日韩熟女老妇一区二区性免费视频| 一区二区三区四区激情视频| videosex国产| 国产视频首页在线观看| 免费黄频网站在线观看国产| 超色免费av| 精品一区二区三区av网在线观看 | 国产欧美日韩一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 午夜福利视频在线观看免费| 亚洲精品,欧美精品| 咕卡用的链子| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| 国产黄色视频一区二区在线观看| 亚洲精品美女久久久久99蜜臀 | 国产人伦9x9x在线观看| 日本91视频免费播放| 精品福利永久在线观看| 五月天丁香电影| 高清黄色对白视频在线免费看| 亚洲精品日本国产第一区| 男女下面插进去视频免费观看| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站| 亚洲精品日本国产第一区| 亚洲一码二码三码区别大吗| 国产精品嫩草影院av在线观看| 男女之事视频高清在线观看 | 在线观看www视频免费| 久久99精品国语久久久| 欧美 日韩 精品 国产| 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 在线观看免费午夜福利视频| 精品亚洲乱码少妇综合久久| 大码成人一级视频| 一区二区日韩欧美中文字幕| 精品第一国产精品| 成年人免费黄色播放视频| 亚洲色图综合在线观看| 国产高清不卡午夜福利| 久久精品亚洲熟妇少妇任你| 国产亚洲av片在线观看秒播厂| 久久久久视频综合| 精品人妻在线不人妻| 国产亚洲最大av| 热99久久久久精品小说推荐| 日韩成人av中文字幕在线观看| 亚洲成av片中文字幕在线观看| 91老司机精品| 国产在线视频一区二区| 少妇猛男粗大的猛烈进出视频| 亚洲三区欧美一区| 亚洲一区二区三区欧美精品| 国产免费福利视频在线观看| 成人国产av品久久久| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 十八禁高潮呻吟视频| 中文天堂在线官网| 国产高清国产精品国产三级| 亚洲av综合色区一区| 黄色视频不卡| 人人澡人人妻人| 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜| www.av在线官网国产| 啦啦啦中文免费视频观看日本| 亚洲国产日韩一区二区| 久久 成人 亚洲| 国产免费现黄频在线看| 国产免费一区二区三区四区乱码| av.在线天堂| 老司机影院成人| 交换朋友夫妻互换小说| 一边摸一边做爽爽视频免费| 一区二区三区精品91| 亚洲成人一二三区av| 哪个播放器可以免费观看大片| 亚洲国产成人一精品久久久| 又大又黄又爽视频免费| 国产亚洲精品第一综合不卡| 一级片'在线观看视频| 亚洲国产看品久久| svipshipincom国产片| kizo精华| av国产精品久久久久影院| 女性生殖器流出的白浆| 国产在视频线精品| 国产精品久久久久久人妻精品电影 | 最近2019中文字幕mv第一页| 亚洲人成电影观看| 欧美日韩亚洲高清精品| 操美女的视频在线观看| 久久久久网色| 黑丝袜美女国产一区| 美国免费a级毛片| 国产熟女欧美一区二区| 一边摸一边抽搐一进一出视频| 电影成人av| 日韩一区二区三区影片| 婷婷色综合大香蕉| 女人高潮潮喷娇喘18禁视频| 午夜激情久久久久久久| 两个人免费观看高清视频| 欧美少妇被猛烈插入视频| 一区二区日韩欧美中文字幕| 青青草视频在线视频观看| www.av在线官网国产| 一区二区三区乱码不卡18| 国产免费福利视频在线观看| 一级黄片播放器| 1024视频免费在线观看| 国产一级毛片在线| 少妇人妻久久综合中文| 青春草视频在线免费观看| 国产片内射在线| 99国产精品免费福利视频| 久久精品国产综合久久久| 亚洲欧美精品自产自拍| 少妇 在线观看| 日本av免费视频播放| 伊人久久大香线蕉亚洲五| 国产精品亚洲av一区麻豆 | 天堂8中文在线网| 精品酒店卫生间| 国语对白做爰xxxⅹ性视频网站| 久久99一区二区三区| 天堂俺去俺来也www色官网| 免费在线观看黄色视频的| 精品亚洲成国产av| 免费av中文字幕在线| 亚洲,欧美,日韩| 亚洲成人手机| 亚洲国产精品一区二区三区在线| 国产精品国产三级国产专区5o| 别揉我奶头~嗯~啊~动态视频 | 欧美成人精品欧美一级黄| 精品一区二区免费观看| 国产精品香港三级国产av潘金莲 | 免费看av在线观看网站| 日日撸夜夜添| av视频免费观看在线观看| xxxhd国产人妻xxx| 国产av码专区亚洲av| 一级a爱视频在线免费观看| 亚洲熟女精品中文字幕| 国产精品麻豆人妻色哟哟久久| 久久久精品94久久精品| 黄色视频不卡| a级毛片黄视频| 国产精品偷伦视频观看了| 日韩制服丝袜自拍偷拍| 2018国产大陆天天弄谢| 亚洲在久久综合| 咕卡用的链子| 1024视频免费在线观看| 在线亚洲精品国产二区图片欧美| 99热网站在线观看| 亚洲少妇的诱惑av| 99热网站在线观看| 蜜桃在线观看..| 精品少妇久久久久久888优播| 欧美黄色片欧美黄色片| 国产精品女同一区二区软件| 99精国产麻豆久久婷婷| 97精品久久久久久久久久精品| 少妇被粗大猛烈的视频| 国产日韩欧美在线精品| 久久久久久久久免费视频了| 最近中文字幕2019免费版| 国产精品一区二区精品视频观看| 别揉我奶头~嗯~啊~动态视频 | 精品人妻一区二区三区麻豆| 免费av中文字幕在线| av有码第一页| 曰老女人黄片| 美女主播在线视频| avwww免费| 久久精品久久精品一区二区三区| 黄频高清免费视频| 精品国产超薄肉色丝袜足j| 国产成人91sexporn| 人妻 亚洲 视频| 日日爽夜夜爽网站| 国产女主播在线喷水免费视频网站| 国产无遮挡羞羞视频在线观看| 七月丁香在线播放| 亚洲精品一二三| 99久久99久久久精品蜜桃| 老鸭窝网址在线观看| 女人被躁到高潮嗷嗷叫费观| xxx大片免费视频| 男女床上黄色一级片免费看| 婷婷色综合www| 制服诱惑二区| 免费少妇av软件| 观看美女的网站| 肉色欧美久久久久久久蜜桃| 久久久精品区二区三区| 中国三级夫妇交换| 午夜福利,免费看| 2021少妇久久久久久久久久久| 青草久久国产| 欧美av亚洲av综合av国产av | 大陆偷拍与自拍| 亚洲五月色婷婷综合| 国产成人免费观看mmmm| 欧美人与善性xxx| 无限看片的www在线观看| av在线观看视频网站免费| av在线app专区| 中国国产av一级| 美女脱内裤让男人舔精品视频| 久久人人爽人人片av| 少妇人妻久久综合中文| 人妻一区二区av| 高清欧美精品videossex| 久久精品亚洲av国产电影网| 午夜福利视频在线观看免费| 久久人人爽av亚洲精品天堂| 肉色欧美久久久久久久蜜桃| 如何舔出高潮| 免费久久久久久久精品成人欧美视频| 黄色一级大片看看| 97人妻天天添夜夜摸| 午夜老司机福利片| a级片在线免费高清观看视频| 丰满少妇做爰视频| 一区二区三区精品91| 天天影视国产精品| 国产免费视频播放在线视频| 日韩人妻精品一区2区三区| 丝瓜视频免费看黄片| 伦理电影免费视频| 黄频高清免费视频| 狠狠精品人妻久久久久久综合| 国产亚洲午夜精品一区二区久久| 久久精品人人爽人人爽视色| 日韩中文字幕欧美一区二区 | 色婷婷久久久亚洲欧美| 别揉我奶头~嗯~啊~动态视频 | 国产免费又黄又爽又色| 亚洲色图综合在线观看| av网站免费在线观看视频| 嫩草影视91久久| 成人影院久久| 大话2 男鬼变身卡| 国产欧美日韩一区二区三区在线| 免费av中文字幕在线| 在线天堂最新版资源| 999精品在线视频| 国产精品 欧美亚洲| 国产男女超爽视频在线观看| 国产亚洲一区二区精品| 在线观看三级黄色| 久久女婷五月综合色啪小说| 亚洲三区欧美一区| 欧美日韩亚洲国产一区二区在线观看 | 成年动漫av网址| 精品少妇内射三级| 久久99精品国语久久久| 搡老岳熟女国产| 国产免费视频播放在线视频|