• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Smarandachely Adjacent-vertex-distinguishing Proper Edge Coloring of K4∨Kn

    2014-07-24 15:29:28CHENXiangenYAOBing

    CHEN Xiang-en,YAO Bing

    (College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)

    Smarandachely Adjacent-vertex-distinguishing Proper Edge Coloring of K4∨Kn

    CHEN Xiang-en,YAO Bing

    (College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)

    Let f be a proper edge coloring of G using k colors.For each x∈V(G),the set of the colors appearing on the edges incident with x is denoted by Sf(x)or simply S(x)if no confusion arise.Ifandfor any two adjacent vertices u and v,then f is called a Smarandachely adjacent vertex distinguishing proper edge coloring using k colors,or k-SA-edge coloring.The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number,or SA-edge chromatic number for short,and denoted byχ′sa(G).In this paper,we have discussed the SA-edge chromatic number of K4∨Kn.

    complete graphs;join of graphs;Smarandachely adjacent-vertex-distinguishing proper edge coloring;Smarandachely adjacent-vertex-distinguishing proper edge chromatic number

    §1. Introduction

    Let G be a fi nite,undirected simple graph and denote byΔ(G)the maximum degree of G. Let C={1,2,···,k}be a finite set of colors and let f:E(G)?→C be a k-proper edge coloring of G.The color set ofa vertex x∈V(G)with respect to f,in symbols Sf(x)or simply S(x)if no confusion arise,is the set of colors of edges incident with x,i.e.,Sf(x)={f(e)|e∈ E(G),e is incident with x}.Letis written by S(x)if no confusion arise and S(x)is called the complementary color set of vertex x.

    The k-proper edge coloring f of G is called k-adjacent-vertex-distinguishing(k-AVDPEC for short)if it distinguishes any two adjacent vertices by their color sets,i.e.,Sf(u)/=Sf(v)for?u,v∈V(G),uv∈E(G).Let=min{k|G has a k-AVDPEC}.is called the adjacent-vertex-distinguishing proper edge chromatic number of G.

    A graph G(which has at least one edge)has an adjacent-vertex-distinguishing proper edge coloring if and only if G has no isolated edges.

    Adjacent-vertex-distinguishing proper edge coloring is considered in[1,3-4].The following conjecture was proposed by the authors of[4]. Conjecture 1 Let G be a simple connected graph with order at least 6,thenΔ(G)+2.

    The k-proper edge coloring f of G is called a Smarandachely adjacent vertex distinguishing proper edge coloring or simply k-SA-edge coloring(or SA-edge coloring using k colors),ifandfor any two adjacent vertices u and v.The minimum number k for which G has an SA-edge coloring using k colors is called the Smarandachely adjacent-vertexdistinguishing proper edge chromatic number or SA-edge chromatic number for short,and denoted by

    The SA-edge chromatic number ofdouble graph ofpaths,cycles,stars and fans are discussed in[5].

    A graph G(which has at least one edge)has an SA-edge coloring if and only if G has no vertices of degree one.

    In this paper,the vertices of K4(a graph with order 4 and no edges)are denoted by u1,u2,u3,u4,while the vertices of Kn(the complete graph with order n)are denoted by v1,v2,···,vnifno specialinstruction.The join of K4and Knis denoted by K4∨Kn.In this paper,we have discussed the SA-edge chromatic number of K4∨Knand obtained the following theorem.

    The following lemma is obviously true.

    Lemma 1.1 If G has at least one edge and no vertices ofdegree one,then

    For vertex-distinguishing VE-total colorings of cycle and complete graphs,we can see[6]. For vertex-distinguishing totalcolorings of 2Cn,we can see[7].

    Other terminologies and notations will follow that of[2].

    §2.Main Results

    Proof The maximum degree of K4∨Knis n+3,so≥n+4,by Lemma 1.1.

    Case 1 n is an even integer number.

    Suppose K4∨Knhas(n+4)-SA-edge coloring,the unique color which is not in S(v1)should be in color sets of all other n+4?1 vertices.But n+3 is an odd number,the set of edges with one given color is a matching.This is a contradiction.So K4∨Knhas no(n+4)-SA-edge coloring.

    Case 2 n is an odd integer number.

    Suppose K4∨Knhas(n+4)-SA-edge coloring.Let the colors we have used be 1,2,···,n+ 4.There is only one color which is not in S(vj),j=1,2,···,n+4,let S(vj)={j}, j=1,2,···,n.Then{1,2,···,n}?S(ui),i=1,2,3,4.So S(ui)={1,2,···,n}, i=1,2,3,4.Thus the edges colored by n+1 are the edges which connected two vertices in {v1,v2,···,vn}.The set of the edges colored by n+1 is a matching,n is an odd number, so n+1 is not in some S(vj).This is a contradiction.So K4∨Knhas no(n+4)-SA-edge coloring.

    The proof is completed.

    Firstly we prove that K4∨K2has no 8-SA-edge coloring.

    Suppose K4∨K2has an 8-SA-edge coloring.Then under this coloring there exists one color,say 1,which has colored two edges.So 1∈S(vj),j=1,2.There exists one S(ui)which contain 1.Without loss of generality we assume S(u1)={1,k},k/=1.Obviously there exists l∈{1,2}such that k∈S(vl).So S(u1)?S(vl).A contradiction.

    As for K4∨K2has 9-SA-edge coloring,this is obvious because the 9 edges of K4∨K2may receive 9 diff erent colors.

    The proof is completed.

    Firstly we prove that K4∨K3has no 8-SA-edge coloring.

    Suppose that K4∨K3has an 8-SA-edge coloring and the colors used in this coloring are 1,2,···,8.Then each S(ui)is a 3-subset of{1,2,···,8}.

    Case 1 |S(u1)∪S(u2)∪S(u3)∪S(u4)|=3,i.e.,S(u1)=S(u2)=S(u3)=S(u4).

    Without loss of generality we assume S(ui)={1,2,3},i=1,2,3,4.Then the number of edges colored by 1 is four and the set of edges colored by 1 is a matching.But K4∨K3has exactly 7 vertices.This is a contradiction.

    Case 2 |S(u1)∪S(u2)∪S(u3)∪S(u4)|=4.

    Without loss of generality we assume S(u1)∪S(u2)∪S(u3)∪S(u4)={1,2,3,4}.The colors of u1v1,u2v1,u3v1,u4v1are different and contained in{1,2,3,4},so{1,2,3,4}?S(v1).As S(u1)?{1,2,3,4},therefore S(u1)?S(v1).This is a contradiction.

    Case 3 |S(u1)∪S(u2)∪S(u3)∪S(u4)|=5.

    Without loss of generality we assume S(u1)∪S(u2)∪S(u3)∪S(u4)={1,2,3,4,5}.The set of the colors of v1v2,v3v2,v1v3is{6,7,8}.So each S(vi)contains exactly two colors in {6,7,8}and exactly four colors in{1,2,3,4,5}.Thus each Fi=S(vi)∩{1,2,3,4,5}is one of the following 5 sets:

    {1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}.

    As F1∪F2∪F3=S(u1)∪S(u2)∪S(u3)∪S(u4)={1,2,3,4,5},therefore there exist two subsets in F1,F2,F3which are not equal.Without loss of generality we assume F1/=F2.

    If there exist two subsets among S(u1),S(u2),S(u3),S(u4)such that the intersection of these two subsets has exact one color,we may assume S(u1)={1,2,3},S(u2)={3,4,5},then one of these two sets is a subset of F1or F2.This is a contradiction.

    If the intersection of arbitrary two sets among S(u1),S(u2),S(u3),S(u4)has at least two colors,then at least 3 sets among S(u1),S(u2),S(u3),S(u4)are diff erent each other.Without loss of generality we assume S(u1)={1,2,3},S(u2)={2,3,4}.The set S(ui)(i=3 or 4) which contain 5 is not the sets{5,1,2},{5,1,3},{5,2,4},{5,3,4},{5,1,4}.We may assume S(u3)={5,2,3}.This illustrate that the number of edges colored by i is 3,i=2,3.Thus 2,3/∈S(u4),so S(u4)={1,4,5}.In this time|S(u1)∩S(u4)|=1,a contradiction.

    Case 4 |S(u1)∪S(u2)∪S(u3)∪S(u4)|=6.

    Without loss of generality we assume S(u1)∪S(u2)∪S(u3)∪S(u4)={1,2,3,4,5,6}.In this time each color in{7,8}has colored only one edge in{v1v2,v1v3,v2v3}.We may assume that the color of the edge in{v1v2,v1v3,v2v3}which is not colored by 7 or 8 is 6.Then the number ofedges connecting the vertices in{u1,u2,u3,u4}and the vertices in{v1,v2,v3}and colored by 6 is one.This illustrate that there are 3 sets in S(u1),S(u2),S(u3),S(u4)which do not contain color 6.Without loss of generality we assume 6∈S(u1),6/∈S(u2)∪S(u3)∪S(u4) and|S(v3)∩{7,8}|=2.Note that each Fj=S(vj)∩{1,2,3,4,5}is one ofthe following 5 sets: {1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},j=1,2.

    If F1=F2,without loss of generality we assume F1=F2={1,2,3,4}and S(v3)= {1,2,5,6,7,8},then 1,2∈S(vj),j=1,2,3.Thus there exists i∈{1,2,3,4},such that S(ui)={1,2,c}.There exists j∈{1,2,3},such that c∈S(vj).Then we have S(ui)?S(vj). This is a contradiction.

    We willsuppose that F1/=F2in the following.

    Fact 1 If the intersection of some S(ui)and some S(uj)is an empty set,then S(ui)or S(uj)is contained in some S(vk),where|S(vk)∩{7,8}|=1.

    If the intersection of two sets in S(u2),S(u3),S(u4)has exactly one color,we may assume S(u2)={1,2,3},S(u3)={1,4,5},then there exist i∈{2,3},there exists j∈{1,2},such that S(ui)?Fj?S(vj),a contradiction.

    If the intersection of any two sets in S(u2),S(u3),S(u4)has at least 2 colors and|S(u2)∪S(u3)∪S(u4)|=3,then S(u1)∩S(u2)=?.A contradiction may arise by Fact 1.

    If the intersection of any two sets in S(u2),S(u3),S(u4)has at least 2 colors and|S(u2)∪S(u3)∪S(u4)|=4,we may assume that S(u2)∪S(u3)∪S(u4)={1,2,3,4},then S(u1)= {5,6,x},x∈{1,2,3,4}.Without loss of generality we assume that S(u2)={1,2,3}, S(u3)={2,3,4}.This illustrate that the number of edges colored by 2(or 3)is 3 and the number of edges colored by 3(or 2)is 2 or the number of edges colored by i is 3,i=2,3. Because the maximum matching has only 3 edges.The number ofedges connecting the vertices in{u1,u2,u3,u4}and the vertices in{v1,v2,v3}and colored by 6 is one.

    When x=1,S(u1)={5,6,1},S(u3)={2,3,4},S(u1)∩S(u3)=?.A contradiction may arise by Fact 1.When x=2,S(u1)={5,6,2},S(u4)={1,3,4},S(u1)∩S(u4)?. A contradiction may arise by Fact 1.When x=3,S(u1)={5,6,3},S(u4)={1,2,4}, S(u1)∩S(u4)=?.A contradiction may arise by Fact 1.When x=4,S(u1)={5,6,4}, S(u2)={1,2,3}.A contradiction may arise by Fact 1.

    If the intersection of any two sets in S(u2),S(u3),S(u4)has at least 2 colors,and|S(u2)∪S(u3)∪S(u4)|=5,then S(u2)∪S(u3)∪S(u4)={1,2,3,4,5}.Without loss of generality we assume S(u2)={1,2,3},S(u3)={2,3,4},then S(u4)={2,3,5}.In this time S(u1)={1,4,6}or{1,5,6}or{4,5,6}.Thus S(u1)∩S(u4)=?or S(u1)∩S(u3)=?or S(u1)∩S(u2)=?.We can deduce contradiction by Fact 1.

    Case 5 |S(u1)∪S(u2)∪S(u3)∪S(u4)|=7.

    Without loss of generality we assume S(u1)∪S(u2)∪S(u3)∪S(u4)={1,2,···,7}. While 8 is assigned to only one edge which is in{v1v2,v1v3,v2v1},we may assume that v1v2is colored by 6,v2v3is colored by 7,v1v3is colored by 8.Then{6,7,8}?S(v1)∩S(v3), {6,7}?S(v2),8/∈S(v2).Only one edge which connects the vertices in{u1,u2,u3,u4}and the vertices in{v1,v2,v3}is colored by i,i=6,7.Suppose that the number of edges which is colored by i is xi,1≤i≤5.Since x1+x2+x3+x4+x5=10,1≤xi≤3,i=1,2,3,4,5, we have{x1,x2,x3,x4,x5}={2,2,2,2,2}or{1,2,2,2,3}or{1,1,2,3,3}.

    As S(v2)={1,2,3,4,5,6,7}{i0},i0∈{1,2,3,4,5},we have

    Fact 2 S(ui)?S(v2)or S(uj)?S(v2),when the intersection of some S(ui)and some S(uj)is empty.

    There are at least two sets in S(u1),S(u2),S(u3),S(u4)which do not contain 6 or 7. Without loss of generality we assume 6,7/∈S(u1)and 6,7/∈S(u2).

    Case 5.1 x1=x2=x3=x4=x5=2.

    If S(u1)=S(u2),without loss of generality we assume S(u1)=S(u2)={1,2,3}. Then S(u3)={4,5,6},S(u4)={4,5,7}or S(u3)={4,5,7},S(u4)={4,5,6}.Thus S(u1)∩S(u3)=?or S(u1)∩S(u4)=?.A contradiction arise by Fact 2.

    If S(u1)and S(u2)have 2 common colors,without loss of generality we assume S(u1)=

    {1,2,3},S(u2)={2,3,4},then we will consider the following 3 conditions only in view of the symmetry of S(u3)and S(u4)In the above 3 conditions S(u1)∩S(u2)=?.So a contradiction may arise by Fact 2.

    Conditions 123 S(u3){5,1,4} {5,1,6} {5,1,7} S(u4){5,6,7} {5,4,7} {5,4,6}

    If S(u1)and S(u2)have only one common color,without loss of generality we assume S(u1)={1,2,3},S(u2)={3,4,5}.Then S(u3)∪S(u4)={1,2,4,5,6,7}.Thus S(u3)∩S(u4)=?.A contradiction may arise by Fact 2.

    Of course S(u1)and S(u2)must have at least one common color,for S(u1)∪S(u2)?{1,2,3,4,5}and|S(u1)|=|S(u2)|=3.

    Case 5.2 {x1,x2,x3,x4,x5}={1,2,2,2,3}(As multi-sets).

    1)If S(u1)=S(u2),without loss of generality we assume S(u1)=S(u2)={1,2,3}.When S(u3)∩S(u1)=?or S(u4)∩S(u1)=?we may obtain contradiction by Fact 2.When S(u3)∩S(u1)/=?and S(u4)∩S(u1)/=?,each color is assigned to at most 3 edges which are incident with u1,u2,u3,or u4,so without loss of generality we assume 1∈S(u3),2∈S(u4). In this time x1=3,x2=3.This is a contradiction.

    2)If S(u1)and S(u2)have exactly two common colors,without loss ofgenerality we assume S(u1)={1,2,3},S(u2)={2,3,4}.Noting the symmetry of color 2 and 3,1 and 4,while x5≤2,we may assume x1=1 or x5=1.

    When x1=1,x2=3,by noting the symmetry of S(u3)and S(u4),we consider the following 3 conditions only.

    Conditions 1 2 3 S(u3){5,2,4} {5,2,6} {5,2,7} S(u4) {5,6,7} {5,4,7} {5,4,6}

    We have S(u4)∩S(u1)=?,a contradiction may arise by Fact 2.

    When x1=1,x4=3,noting the symmetry of S(u3)and S(u4),we may assume that S(u3)={4,5,6},S(u4)={4,5,7}.So S(u3)∩S(u1)=?,a contradiction may arise by Fact 2.

    When x5=1,x2=3,we have S(u3)∪S(u4)={1,2,4,5,6,7}and then S(u3)∩S(u4)=?. A contradiction may arise by Fact 2.

    When x5=1,x1=3,we will consider the following 3 conditions only in view of the symmetry of S(u3)and S(u4).

    In all above conditions we have S(u2)∩S(u4)=?.A contradiction may arise by Fact 2.

    3)If S(u1)and S(u2)have exactly one common color,without loss of generality we assume S(u1)={1,2,3},S(u2)={3,4,5}.In this time,colors 1,2,4,5 are symmetric.So we may assume x1=1 and consider two cases x2=3 and x3=3.

    Conditions 1 2 3 S(u3){1,4,5} {1,4,6} {1,4,7} S(u4) {1,6,7} {1,5,7} {1,5,6}

    When x2=3,x3=x4=x5=2.We only consider the following 3 conditions in view of the symmetry of S(u3)and S(u4).

    Conditions 1 2 3 S(u3){2,4,5} {2,4,6} {2,4,7} S(u4) {2,6,7} {2,5,7} {2,5,6}

    For the above first condition,S(u2)∩S(u4)=?,a contradiction may arise.

    For the above second and third condition,S(u1)?S(v2)if i0∈{4,5},S(u2)?S(v2)if i0=2,S(u4)?S(v2)if i0∈{1,3},where S(v2)={1,2,3,4,5,6,7}{i0}.A contradiction may arise.

    If x3=3,then x2=x4=x5=2.we have S(u3)∪S(u4)={2,3,4,5,6,7}and then S(u3)∩S(u4)=?.A contradiction may arise by Fact 2.

    4)If the intersection of S(u1)and S(u2)is empty set,then S(u1)?S(v2)or S(u2)?S(v2), a contradiction.

    Case 5.3 {x1,x2,x3,x4,x5}={1,1,2,3,3}.

    1)If S(u1)=S(u2),without loss of generality we assume that S(u1)=S(u2)={1,2,3}. Then x4=x5=1.We may assume that x2=x3=3.we have S(u3)∪S(u4)={2,3,4,5,6,7} and then S(u3)∩S(u4)=?.A contradiction may arise by Fact 2.

    2)If S(u1)and S(u2)have exactly two common colors,without loss ofgenerality we assume that S(u1)={1,2,3},S(u2)={2,3,4}.Then x5≤2.Noting the symmetry of 1 and 4,2 and 3,we may assume x1=x4=1 or x1=x5=1.

    When x1=x4=1,then x5=2,x2=x3=3,we only consider the following conditions only.

    Conditions 1 2 3 S(u3){5,2,3} {5,2,6} {5,2,7} S(u4) {5,6,7} {5,3,7} {5,3,6}

    In the first condition,S(u4)?S(v2),a contradiction.

    In the second and third conditions,S(u4)?S(v2)if i0∈{1,2,4};S(u3)?S(v2)if i0=3;S(u1)?S(v2)if i0=5.We can deduce contradiction.

    When x1=x5=1,x4=2,we have x2=x3=3 and S(u3)∪S(u4)={2,3,4,5,6,7}. Thus S(u3)∩S(u4)=?.A contradiction may arise by Fact 2.

    When x1=x5=1,x2=2,we have x3=x4=3.We consider the following conditions only. Obviously we have S(u4)∩S(u1)=?.This is a contradiction.

    Conditions 1 2 3 S(u3){4,3,5} {4,3,6} {4,3,7} S(u4) {4,6,7} {4,5,7} {4,5,6}

    3)If S(u1)and S(u2)have exactly one color,without loss of generality we assume S(u1)= {1,2,3},S(u2)={3,4,5}.Noting the symmetry of 1,2,4,5,we may assume x1=x2=1. As 1,2/∈S(u3)∪S(u4)and S(u3)or S(u4)does not contain 3,therefore there exist i∈{3,4}, such that S(u1)∩S(ui)=?.A contradiction arise.

    4)If S(u1)∩S(u2)=?,then a contradiction arise by Fact 2.

    Case 6 If|S(u1)∪S(u2)∪S(u3)∪S(u4)|=8,we may assume that the colors of edge v1v2,v2v3,v3v1are 6,7 and 8 respectively.Then i belongs to exactly one of the sets S(u1),S(u2),S(u3),S(u4),where i∈{6,7,8}.Therefore{6,7,8}?S(v1)∩S(v2)∩S(v3).

    Case 6.1 When 6,7,8 belong to the same S(ui),without loss of generality we assume that 6,7,8∈S(u1),then the colors of edges u1v1,u1v2,u1v3are 7,8 and 6 respectively.So S(u1)={6,7,8}?S(vj),j=1,2,3.A contradiction.

    Case 6.2 When there are exactly two colors in{6,7,8}which belong to the same S(ui), without loss of generality we assume that 6,7∈S(u1),then the colors of edges u1v3and u1v1are 6 and 7 respectively.Let S(u1)={6,7,x},x∈{1,2,3,4,5}.There exists j∈{1,2,3}, such that S(u1)?S(vj).This is a contradiction.

    Case 6.3 Colors 6,7,8 belong to diff erent sets S(ui).

    Suppose the number of the edges colored by i is xi,i∈{1,2,3,4,5},then x1+x2+x3+ x4+x5=9 and 1≤ xi≤ 3.Thus{x1,x2,x3,x4,x5}={1,2,2,2,2}or{1,1,2,2,3}or {1,1,1,3,3}.Without loss of generality we assume that 6∈S(u1),7∈S(u2),8∈S(u3).Let Fj=S(uj){6,7,8};Qj=S(vj){6,7,8},j=1,2,3.

    If each of two colors in some Fihas been assigned to at least two edges,without loss of generality we assume that F1={1,2}and x1≥2,x2≥2,then there exists j0∈{1,2,3},such that 1,2∈Qj0,i.e.,F1?Qj0.So S(u1)?S(vj0),a contradiction.

    If at least one color in each Fihas been assigned to exactly one edge,without loss of generality we assume i∈Fiand i has been assigned to exactly one edge,i∈{1,2,3}.This illustrate that the number of edges colored by k is three,where k∈{4,5}.In this time 6,7,8/∈S(u4)and 1,2,3/∈S(u4),so S(u4)?{4,5}.A contradiction.

    Thus K4∨K3has no 8-SA-edge coloring.We will give a 9-SA-edge coloring as follows.

    The edges u1v1,u1v2,u1v3are colored by 1,2,3 respectively;The edges u2v1,u2v2,u2v3are colored by 3,4,5 respectively;The edges u3v1,u3v2,u3v3are colored by 4,5,6 respectively; The edges u4v1,u4v2,u4v3are colored by 6,1,2 respectively;The edges v1v2,v2v3,v3v1are colored by 7,8,9 respectively.

    For the above proper edge coloring,we have S(u1)={1,2,3},S(u2)={3,4,5},S(u3)= {4,5,6},S(u4)={6,1,2}.S(v1)={1,3,4,6,7,9},S(v2)={2,4,5,1,7,8},S(v3)={3,5,6,2,8, 9}.Arbitrary two sets above don’t contain each other.Thus the above edge coloring is 9-SA-edge coloring of K4∨K3.

    The proof is completed.

    The proof is completed,

    For the above edge coloring,we have S(ui)={6,7,8,9,10},i=1,2,3,4.S(v1)={5,6}, S(v2)={1,7},S(v3)={2,8},S(v4)={3,9},S(v5)={4,10}.Arbitrary two sets above don’t contain each other.Thus the above edge coloring is 10-SA-edge coloring of K4∨K5.

    Theorem 2.5 If n≥6 and n is an even integer number,then

    Consider the complete graph Kn+4with vertices w1,w2,···,wn+4.Arrange w1,w2,···, wn+3,x,y on the vertices ofa regular(n+5)-gon clockwise and wn+4on the center ofthis regular (n+5)-gon.Note that x and y are not the vertices ofgraph Kn+4.We draw each edge of Kn+4in this regular(n+5)-gon by a line segment.We first color the edges of Kn+4using colors 1,2,···,n+5.The edge wiwn+4and edges which are perpendicular to line segment wiwn+4are colored by i,i=1,2,···,n+3.The edges which are perpendicular to line segment xwn+4are colored by n+4.The edges which are perpendicular to line segment ywn+4are colored by n+5.The resulting coloring is proper.

    Based on the above coloring of Kn+4,we can obtain K4∨Knand its edge coloring g by deleting the six edges(their colors arerespectively under original coloring).The com -plementary color sets of all vertices of K4∨Knare given as follows.

    In the following we verify that g is an(n+5)-SA-edge coloring of K4∨Kn.

    1)If both i and j are odd number,thenThus i=j.

    2)If both i and j are even number,thenThus i=j.

    3)If i is an odd number,j is an even number,Thus i?1= j,i+1=j,a contradiction.

    4)If i is an even number,j is an odd number,Thus i=

    j?1,i=j+1,again a contradiction.

    So S(wi)and S(wj)do not contain each other when i/=j.

    Assume

    We have the following 8 cases.

    tion:05C15

    1002–0462(2014)01–0076–12

    Chin.Quart.J.of Math. 2014,29(1):76—87

    date:2012-10-08

    Supported by NNSF of China(61163037,61163054,61363060)

    Biography:CHEN Xiang-en(1965-),male,native of Tianshui,Gansu,a professor of Northwest Normal University,M.S.D.,engages in graph theory with applications.

    CLC number:O157.5 Document code:A

    美女国产高潮福利片在线看| 99久久精品国产亚洲精品| 黑人欧美特级aaaaaa片| 97人妻天天添夜夜摸| videos熟女内射| 国产亚洲欧美在线一区二区| 欧美人与性动交α欧美精品济南到| 国产精品 欧美亚洲| 欧美激情久久久久久爽电影 | 国产精品国产高清国产av | 亚洲精品国产色婷婷电影| 又黄又粗又硬又大视频| 久久久国产欧美日韩av| 天天添夜夜摸| 美国免费a级毛片| 日韩免费av在线播放| 亚洲av美国av| 国产色视频综合| 高清在线国产一区| 欧美日韩精品网址| 免费少妇av软件| 国产一区二区激情短视频| 亚洲精品美女久久久久99蜜臀| 美国免费a级毛片| 成年人午夜在线观看视频| 午夜激情av网站| 国产精品免费视频内射| 国产精品免费视频内射| ponron亚洲| 亚洲成人免费av在线播放| 国产精品香港三级国产av潘金莲| 日韩欧美三级三区| 露出奶头的视频| 精品福利永久在线观看| 成人手机av| 亚洲成a人片在线一区二区| svipshipincom国产片| 精品国内亚洲2022精品成人 | 午夜精品国产一区二区电影| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费 | 黄色毛片三级朝国网站| 好男人电影高清在线观看| 国产欧美亚洲国产| 亚洲熟女精品中文字幕| 亚洲精品av麻豆狂野| 少妇粗大呻吟视频| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻熟女乱码| 色播在线永久视频| 亚洲美女黄片视频| 大型av网站在线播放| 色综合欧美亚洲国产小说| 色婷婷久久久亚洲欧美| 国产主播在线观看一区二区| 国产精品久久久久久人妻精品电影| 91麻豆av在线| av免费在线观看网站| 久久精品aⅴ一区二区三区四区| 欧美精品人与动牲交sv欧美| 久久影院123| 在线观看www视频免费| 欧美黄色片欧美黄色片| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 欧美 日韩 精品 国产| 在线天堂中文资源库| 99香蕉大伊视频| 久久 成人 亚洲| 91字幕亚洲| 午夜福利免费观看在线| 色婷婷av一区二区三区视频| 不卡av一区二区三区| 天天影视国产精品| 久久精品91无色码中文字幕| 黄片播放在线免费| 久久久久久久国产电影| 久久久久久久午夜电影 | 王馨瑶露胸无遮挡在线观看| 欧美精品高潮呻吟av久久| 亚洲七黄色美女视频| 国产亚洲欧美精品永久| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 欧美成人免费av一区二区三区 | 天天添夜夜摸| 校园春色视频在线观看| 亚洲欧美日韩另类电影网站| 国产欧美亚洲国产| 国产精品亚洲av一区麻豆| 亚洲自偷自拍图片 自拍| 国产在线观看jvid| 久久精品成人免费网站| 午夜免费鲁丝| 精品人妻1区二区| 免费观看人在逋| 成人三级做爰电影| 亚洲欧美激情在线| 久久精品国产清高在天天线| 国产免费av片在线观看野外av| 亚洲色图综合在线观看| 亚洲av成人一区二区三| 亚洲av成人不卡在线观看播放网| videosex国产| 视频区图区小说| 男男h啪啪无遮挡| 韩国精品一区二区三区| 国产成人精品在线电影| 两人在一起打扑克的视频| 欧美乱色亚洲激情| 国产成人系列免费观看| 亚洲七黄色美女视频| 校园春色视频在线观看| 欧美日韩精品网址| 巨乳人妻的诱惑在线观看| 一a级毛片在线观看| 少妇裸体淫交视频免费看高清 | 一二三四在线观看免费中文在| 国产野战对白在线观看| 国产有黄有色有爽视频| 免费人成视频x8x8入口观看| 午夜老司机福利片| 成人18禁高潮啪啪吃奶动态图| 久久香蕉精品热| 亚洲国产精品sss在线观看 | 国产欧美日韩精品亚洲av| 亚洲精华国产精华精| 色在线成人网| 午夜福利在线免费观看网站| 亚洲国产欧美一区二区综合| 亚洲免费av在线视频| 国产1区2区3区精品| 伊人久久大香线蕉亚洲五| 一进一出好大好爽视频| 中文字幕另类日韩欧美亚洲嫩草| 国产麻豆69| 男男h啪啪无遮挡| 人人妻,人人澡人人爽秒播| 精品国产一区二区三区久久久樱花| 亚洲欧美激情综合另类| 国产亚洲精品一区二区www | aaaaa片日本免费| 免费一级毛片在线播放高清视频 | 首页视频小说图片口味搜索| 久久ye,这里只有精品| 又黄又粗又硬又大视频| 日韩成人在线观看一区二区三区| 国产一区二区三区在线臀色熟女 | 伦理电影免费视频| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 老司机影院毛片| 热99re8久久精品国产| 欧美大码av| av电影中文网址| 国产一区在线观看成人免费| 俄罗斯特黄特色一大片| 两人在一起打扑克的视频| 亚洲情色 制服丝袜| 成年人午夜在线观看视频| 国产在线观看jvid| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 欧美在线黄色| 国产有黄有色有爽视频| 欧美日韩亚洲国产一区二区在线观看 | 桃红色精品国产亚洲av| 国产精品亚洲av一区麻豆| 咕卡用的链子| 999久久久国产精品视频| 国产欧美日韩精品亚洲av| 亚洲五月婷婷丁香| 丰满迷人的少妇在线观看| 激情在线观看视频在线高清 | 母亲3免费完整高清在线观看| 国产极品粉嫩免费观看在线| 别揉我奶头~嗯~啊~动态视频| 大码成人一级视频| 国产亚洲精品一区二区www | 中文字幕高清在线视频| 精品人妻在线不人妻| 亚洲色图 男人天堂 中文字幕| 香蕉久久夜色| 99re6热这里在线精品视频| 三级毛片av免费| 一边摸一边抽搐一进一出视频| 亚洲成av片中文字幕在线观看| 最新在线观看一区二区三区| 热re99久久精品国产66热6| 99精国产麻豆久久婷婷| 黑人欧美特级aaaaaa片| 精品一区二区三卡| 99久久国产精品久久久| 亚洲五月色婷婷综合| 女人久久www免费人成看片| av网站在线播放免费| 亚洲精品中文字幕在线视频| 免费观看人在逋| 两个人看的免费小视频| 一级a爱片免费观看的视频| 久久精品亚洲av国产电影网| 欧美乱色亚洲激情| 19禁男女啪啪无遮挡网站| 91麻豆av在线| 黑人巨大精品欧美一区二区蜜桃| 亚洲五月婷婷丁香| 美女国产高潮福利片在线看| 老司机影院毛片| av天堂久久9| 十八禁高潮呻吟视频| 1024视频免费在线观看| 午夜福利影视在线免费观看| 天堂√8在线中文| 99久久综合精品五月天人人| 国产深夜福利视频在线观看| 久久精品亚洲av国产电影网| 老熟妇乱子伦视频在线观看| 99国产综合亚洲精品| 中文字幕最新亚洲高清| 国产日韩欧美亚洲二区| 国产熟女午夜一区二区三区| 一级a爱视频在线免费观看| 女人久久www免费人成看片| 欧洲精品卡2卡3卡4卡5卡区| 国产野战对白在线观看| 99热国产这里只有精品6| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 最新美女视频免费是黄的| 村上凉子中文字幕在线| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看. | 久久精品国产综合久久久| 亚洲精品一二三| 欧美丝袜亚洲另类 | 侵犯人妻中文字幕一二三四区| 久久香蕉国产精品| 国产精品一区二区在线不卡| 日韩 欧美 亚洲 中文字幕| 国产精品美女特级片免费视频播放器 | 国产97色在线日韩免费| 三上悠亚av全集在线观看| 一级,二级,三级黄色视频| 99久久99久久久精品蜜桃| 日韩欧美三级三区| 黑人猛操日本美女一级片| 亚洲精品在线观看二区| 一区在线观看完整版| 欧美日韩精品网址| 18禁美女被吸乳视频| 脱女人内裤的视频| 精品乱码久久久久久99久播| 老司机福利观看| 黑人巨大精品欧美一区二区蜜桃| 久久久国产成人免费| 国产精品1区2区在线观看. | 天天躁日日躁夜夜躁夜夜| 久久久久久人人人人人| 久久性视频一级片| 9热在线视频观看99| 露出奶头的视频| 黑人欧美特级aaaaaa片| 一进一出好大好爽视频| 国产精品久久电影中文字幕 | 免费观看a级毛片全部| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 亚洲成人手机| 亚洲精品美女久久av网站| 夫妻午夜视频| 精品一区二区三卡| 老司机午夜福利在线观看视频| 一进一出抽搐gif免费好疼 | 丁香六月欧美| 国产精品二区激情视频| 最近最新中文字幕大全电影3 | 成人免费观看视频高清| 精品欧美一区二区三区在线| 欧美日韩黄片免| 交换朋友夫妻互换小说| 免费在线观看视频国产中文字幕亚洲| 精品国产一区二区三区久久久樱花| 免费在线观看日本一区| 免费在线观看完整版高清| 国产激情久久老熟女| videos熟女内射| 99香蕉大伊视频| 国产亚洲精品久久久久久毛片 | 999精品在线视频| 母亲3免费完整高清在线观看| 久久精品亚洲精品国产色婷小说| 精品久久久久久久毛片微露脸| 精品少妇久久久久久888优播| 国产免费av片在线观看野外av| 中出人妻视频一区二区| 极品少妇高潮喷水抽搐| 视频区图区小说| 999久久久精品免费观看国产| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 男女下面插进去视频免费观看| 女人爽到高潮嗷嗷叫在线视频| 久久香蕉国产精品| 日日摸夜夜添夜夜添小说| 久久中文看片网| 亚洲国产中文字幕在线视频| 亚洲片人在线观看| 久久久国产一区二区| 国产亚洲精品第一综合不卡| 国产亚洲欧美98| 91字幕亚洲| 一区在线观看完整版| 亚洲成人免费电影在线观看| 超色免费av| 欧美精品亚洲一区二区| 中亚洲国语对白在线视频| 久久精品亚洲熟妇少妇任你| 性色av乱码一区二区三区2| 王馨瑶露胸无遮挡在线观看| 老司机影院毛片| 99国产精品99久久久久| 久久精品人人爽人人爽视色| 色播在线永久视频| 亚洲性夜色夜夜综合| 看片在线看免费视频| 欧美日本中文国产一区发布| 一级毛片女人18水好多| 老汉色av国产亚洲站长工具| 黄色a级毛片大全视频| 一进一出好大好爽视频| 国产精品一区二区在线不卡| 精品乱码久久久久久99久播| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| a级片在线免费高清观看视频| 色尼玛亚洲综合影院| 精品视频人人做人人爽| 法律面前人人平等表现在哪些方面| 国产精品久久久av美女十八| 精品午夜福利视频在线观看一区| 亚洲国产看品久久| 亚洲avbb在线观看| 日韩 欧美 亚洲 中文字幕| 99久久精品国产亚洲精品| 国产乱人伦免费视频| 岛国毛片在线播放| 国产激情久久老熟女| 精品一区二区三区视频在线观看免费 | 97人妻天天添夜夜摸| 18禁美女被吸乳视频| 国产成+人综合+亚洲专区| 日韩视频一区二区在线观看| 天天躁日日躁夜夜躁夜夜| 日韩视频一区二区在线观看| 国产成+人综合+亚洲专区| 丝袜美腿诱惑在线| 久久精品亚洲熟妇少妇任你| 精品福利永久在线观看| 又紧又爽又黄一区二区| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 99riav亚洲国产免费| 麻豆乱淫一区二区| 中文欧美无线码| 亚洲中文字幕日韩| 如日韩欧美国产精品一区二区三区| 亚洲三区欧美一区| tocl精华| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 日韩免费av在线播放| 亚洲人成电影免费在线| 日韩制服丝袜自拍偷拍| 性少妇av在线| 天天影视国产精品| 午夜久久久在线观看| 人妻 亚洲 视频| 在线播放国产精品三级| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 亚洲av电影在线进入| 色播在线永久视频| 免费观看人在逋| 99国产精品一区二区三区| 天堂中文最新版在线下载| 欧美人与性动交α欧美软件| 欧美在线一区亚洲| 九色亚洲精品在线播放| 一级片免费观看大全| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 欧美日韩亚洲高清精品| 99久久精品国产亚洲精品| 91成人精品电影| 久久久国产成人精品二区 | 欧美在线一区亚洲| 国产亚洲av高清不卡| 大香蕉久久成人网| 精品电影一区二区在线| 日本vs欧美在线观看视频| 极品少妇高潮喷水抽搐| 国产亚洲欧美精品永久| 精品人妻在线不人妻| 中文字幕最新亚洲高清| 国产一区二区三区综合在线观看| 亚洲国产欧美网| 香蕉丝袜av| 亚洲国产精品合色在线| 中国美女看黄片| 一区二区三区激情视频| 国产极品粉嫩免费观看在线| 色在线成人网| 国产男女内射视频| 美女高潮喷水抽搐中文字幕| 窝窝影院91人妻| 久久精品人人爽人人爽视色| 欧美性长视频在线观看| 一级,二级,三级黄色视频| 午夜两性在线视频| 日本一区二区免费在线视频| 波多野结衣av一区二区av| 老司机福利观看| 另类亚洲欧美激情| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲| 91麻豆av在线| 1024香蕉在线观看| 看免费av毛片| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一出视频| 麻豆av在线久日| 激情视频va一区二区三区| 精品熟女少妇八av免费久了| 亚洲成人免费av在线播放| 亚洲精品国产一区二区精华液| 亚洲视频免费观看视频| 丁香六月欧美| 日本a在线网址| 黄色成人免费大全| 欧美人与性动交α欧美精品济南到| 老熟女久久久| 99久久综合精品五月天人人| 亚洲成人国产一区在线观看| 久久ye,这里只有精品| 国产av一区二区精品久久| 久久人妻av系列| 黄色视频不卡| 欧美乱色亚洲激情| 麻豆av在线久日| 美女视频免费永久观看网站| 国产亚洲欧美98| 亚洲片人在线观看| 一级毛片女人18水好多| 香蕉丝袜av| 国产精品一区二区精品视频观看| 欧美日韩视频精品一区| videos熟女内射| 国产成人啪精品午夜网站| 亚洲,欧美精品.| 99国产精品99久久久久| 亚洲一码二码三码区别大吗| 日本黄色视频三级网站网址 | 亚洲成人免费av在线播放| 国产激情久久老熟女| 99精品欧美一区二区三区四区| 中文字幕高清在线视频| cao死你这个sao货| 美女视频免费永久观看网站| 在线av久久热| 一进一出好大好爽视频| 少妇猛男粗大的猛烈进出视频| 午夜亚洲福利在线播放| 在线观看免费视频日本深夜| 18禁黄网站禁片午夜丰满| 国产在线观看jvid| 黑人欧美特级aaaaaa片| 99精国产麻豆久久婷婷| 变态另类成人亚洲欧美熟女 | 亚洲五月婷婷丁香| 国产精品影院久久| 亚洲国产中文字幕在线视频| 99re6热这里在线精品视频| 韩国av一区二区三区四区| av网站免费在线观看视频| 精品一区二区三区视频在线观看免费 | 夜夜爽天天搞| 免费在线观看影片大全网站| 国产成人欧美在线观看 | 啦啦啦视频在线资源免费观看| 免费观看人在逋| 国产亚洲av高清不卡| 视频区图区小说| 久久狼人影院| 亚洲 欧美一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女毛片儿| x7x7x7水蜜桃| 黄色女人牲交| 精品高清国产在线一区| 久久亚洲真实| 大型黄色视频在线免费观看| 亚洲avbb在线观看| 久久香蕉国产精品| 曰老女人黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香欧美五月| 黄色a级毛片大全视频| 日韩欧美免费精品| 精品国产亚洲在线| 两人在一起打扑克的视频| 国产精品国产av在线观看| 成人精品一区二区免费| 亚洲五月天丁香| 18禁观看日本| √禁漫天堂资源中文www| 国产一区二区激情短视频| 亚洲一区中文字幕在线| 99香蕉大伊视频| 精品一区二区三卡| 99精品在免费线老司机午夜| 大型av网站在线播放| 每晚都被弄得嗷嗷叫到高潮| av网站在线播放免费| 亚洲精品美女久久av网站| 国产精品乱码一区二三区的特点 | 亚洲一区二区三区欧美精品| www.自偷自拍.com| 免费av中文字幕在线| 久久久久久久午夜电影 | 精品国产美女av久久久久小说| 精品高清国产在线一区| 亚洲精品自拍成人| 国产日韩欧美亚洲二区| 9色porny在线观看| 欧美日韩乱码在线| 欧美日韩黄片免| 大码成人一级视频| 啦啦啦 在线观看视频| 成年人午夜在线观看视频| 别揉我奶头~嗯~啊~动态视频| 99re在线观看精品视频| 中文字幕av电影在线播放| 欧美精品人与动牲交sv欧美| 欧美+亚洲+日韩+国产| 夫妻午夜视频| 免费高清在线观看日韩| 国产精品亚洲一级av第二区| 99久久精品国产亚洲精品| 亚洲,欧美精品.| 无限看片的www在线观看| 午夜精品在线福利| 精品一区二区三卡| 99国产精品99久久久久| 在线观看午夜福利视频| 色在线成人网| 亚洲精品久久午夜乱码| 人成视频在线观看免费观看| 日韩制服丝袜自拍偷拍| 久久午夜综合久久蜜桃| 男女之事视频高清在线观看| 女人被躁到高潮嗷嗷叫费观| 熟女少妇亚洲综合色aaa.| 久久精品人人爽人人爽视色| 国产视频一区二区在线看| 女人精品久久久久毛片| 亚洲男人天堂网一区| av不卡在线播放| 波多野结衣一区麻豆| 在线观看免费视频网站a站| 丝袜美足系列| 欧美亚洲 丝袜 人妻 在线| 欧美av亚洲av综合av国产av| 国产精品电影一区二区三区 | 久久久久久人人人人人| 国内久久婷婷六月综合欲色啪| 国产精品一区二区在线观看99| 久久香蕉精品热| 亚洲第一欧美日韩一区二区三区| 在线天堂中文资源库| 一级a爱视频在线免费观看| 夜夜夜夜夜久久久久| 亚洲成av片中文字幕在线观看| 岛国在线观看网站| 精品国产一区二区久久| 18禁国产床啪视频网站| 欧美国产精品va在线观看不卡| 国产欧美日韩综合在线一区二区| 丰满的人妻完整版| 日韩免费高清中文字幕av| 成人黄色视频免费在线看| avwww免费| 亚洲午夜理论影院| tocl精华| av视频免费观看在线观看| 国产成+人综合+亚洲专区| 99香蕉大伊视频| 亚洲视频免费观看视频| 99国产精品一区二区三区| bbb黄色大片| 99热只有精品国产| 老熟妇乱子伦视频在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲av美国av| 9热在线视频观看99| 女人精品久久久久毛片| 国产欧美亚洲国产| 在线观看免费视频日本深夜| 婷婷丁香在线五月| 精品久久久久久久毛片微露脸| 不卡一级毛片|