• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    (∈γ,∈γ∨qδ)-intuitionistic Fuzzy(Soft)Filter of BL-algebras

    2014-07-24 15:29:22YANGYong-wei,XINXiao-long,HEPeng-fei

    (∈γ,∈γ∨qδ)-intuitionistic Fuzzy(Soft)Filter of BL-algebras

    §1. Introduction

    Since filter theory plays an important role in studying logic algebras,many researchers combine it with mathematical approaches to discuss its generalized properties.Liu and Li[1]applied the concept of fuzzy sets to filter theory and proposed the notions of fuzzy filters and fuzzy prime filters in BL-algebras.Using the notions of membership and quasicoincidence of fuzzy points related with fuzzy sets,Ma and Zhan[2]presented(∈,∈∨q)-fuzzy filters in BL-algebras.Farther more,Yin and Zhan[3]introduced(α,β)-fuzzy filters in BL-algebras where α,β∈(∈γ,qδ,∈γ∧qδ,∈γ∨qδ)andα/=∈γ∧qδ.Zhan and Jun[4]applied the notion of soft setsto the theory of BL-algebras and introduced the notions of soft BL-algebras based on fuzzy sets,then they investigated some characterizations of filteristic soft BL-algebras.

    In this paper,in order to study filter theory in BL-algebras more comprehensively,we introduce the notion of(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters in BL-algebras,then investigate some oftheir properties.Based on soft sets,we give the definition of(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters in BL-algebras and study the intuitionistic fuzzy soft image and intuitionistic fuzzy soft inverse image of(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters of BL-algebras.

    §2. Preliminaries

    In this section,we review some basic notions and results which will be needed in the sequel.

    Recall that an algebra L=(L,∧,∨,⊙,→,0,1)is a BL-algebra[5]if it is a bounded lattice such that

    (1)(L,⊙,1)is a commutative monoid;

    (2)⊙a(bǔ)nd→form an adjoin pair,i.e.,x≤y→z if and only if x⊙y≤z for all x,y,z∈L;

    (3)x∧y=x⊙(x→y);

    (4)(x→y)∨(y→x)=1.

    A non-empty subset A of L is called a filter of L if it satisfies the conditions

    (1)?x,y∈A?,x⊙y∈A;

    (2)?x∈A,x≤y?y∈A.

    A fuzzy set f of X is a function f:X→[0,1](see[6]).

    Defi nition 2.1[1]Let f be a fuzzy set in BL-algebra L.f is called a fuzzy filter if f satisfies the following conditions

    (1)?x,y∈A,f(x⊙y)≥min{f(x),f(y)};

    (2)f is order-preserving,that is,if x≤y,then f(y)≥f(x).

    Defi nition 2.2[7]Let X be a non-empty fixed set.An intuitionistic fuzzy set A is an object having the form

    whereμA:X → [0,1]andλA:X → [0,1]denote the degrees of membership and nonmembership of x∈X to the set A,respectively and 0≤μA(x)+λA(x)≤1 for each x∈X.

    The set ofallintuitionistic fuzzy sets in X is denoted by I F(X).For the sake ofsimplicity, we use A=〈μA,λA〉for A={〈x,μ(x),λ(x)〉|x∈X}.

    Defi nition 2.3[8]Let A,B∈I F(X).Then the intersection A∧B={〈x,min{μA(x), μB(x)},max{λA(x),λB(x)〉|x∈X},the union A∨B={〈x,max{μA(x),μB(x)},min{λA(x),λB(x)〉|x∈X}.

    Defi nition 2.4[9]Let r,t∈[0,1)be two real numbers such that 0≤r+t≤1.An intuitionistic fuzzy set A in a set X of the form

    is called an intuitionistic fuzzy point with the support x and value〈r,t〉,denoted by x(r,t).

    Letγ,δ∈[0,1]be such thatγ<δ.For an intuitionistic fuzzy point x(r,t)and A∈I F(X), we say

    (1)x(r,t)∈γA ifμA(x)≥r>γandλA(x)≤t<1?γ;

    (2)x(r,t)qδA ifμA(x)+r>2δandλA(x)+t<2?2δ;

    (3)x(r,t)∈γ∨qδA if x(r,t)∈γA or x(r,t)qδA;

    Based on the concept ofsoft sets[10],Gunduz and Bayramov gave the concept ofintuitionistic fuzzy soft sets and their operations as follows.

    Defi nition 2.5[11]Let U be an initial universe and E be a set of parameters,A?E. Then a pair(F,A)is called an intuitionistic fuzzy soft set over U,where F is a mapping given by F:A→I F(U).

    Defi nition 2.6[11]The intersectionand the unionoftwo intuitionistic fuzzy soft sets(F,A)and(G,B)over U are intuitionistic fuzzy soft sets,defined as

    respectively,for allε∈C(C′),where C=C′=A∪B.

    §3. (∈γ,∈γ∨qδ)-intuitionistic Fuzzy(Soft) Filters of BL-algebras

    In what follows,let L be a BL-algebra and E be a parameter set related to objects in L unless other statements.

    Defi nition 3.1 An intuitionistic fuzzy set A= 〈μA,λA〉of L is called(∈γ,∈γ∨qδ}-intuitionistic fuzzy filter of L if for all r1,r2∈(0,1],t1,t2∈[0,1)and x,y∈L,

    (F1)x(r1,t1)∈γA and y(r2,t2)∈γA?x⊙y(min{r1,r2},max{t1,t2})∈γ∨qδA;

    (F2)x(r1,t1)∈γA?y(r1,t1)∈γ∨qδA with x≤y.

    Example 3.2 Let L={0,a,b,c,1}be a chain where 0<a<b<c<1.For all x,y∈L,we define x∧y=min{x,y},x∨y=max{x,y}and⊙a(bǔ)nd→as follows

    then(L,∧,∨,⊙,→)is a BL-algebra.Define an intuitionistic fuzzy set A in L as

    It is easy to show A=〈μA,λA〉is an(∈0.3,∈0.3∨q0.4)-intuitionistic fuzzy filter of L.

    Proposition 3.3 Let 2δ=1+γand A be an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L, then?Aγ={x∈L|μA(x)>γandλA(x)<1?γ}/=?is a filter of L.

    Proof Let A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Let x,y∈?Aγ,thenμA(x)>γ,λA(x)<1?γandμA(y)>γ,λA(y)<1?γ.Suppose thatμA(x⊙y)≤γ,λA(x⊙y)≥1?γ, then x(μA(x),λA(x))∈γA,y(μA(y),λA(y))∈γA and

    Theorem 3.4 If I is a non-empty set of L and 2δ=1+γ.Then I is a filter of L if and only if the intuitionistic fuzzy set A=〈μA,λA〉of L such that

    (1)μA(x)≥δandλA(x)≤1?δfor all x∈I;

    (2)μA(x)=γandλA(x)=1?γotherwise

    is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.

    Proof Assume that I is a filter of L.Let x,y∈I and r1,r2∈(γ,1],t1,t1∈[0,1?γ)be such that x(r1,t1),y(r2,t2)∈γA.ThenμA(x)≥r1>γ,λA(x)≤t1<1?γand so x∈I. Similarly,it can be proved that y∈I.

    Since I is a filter of L,then x⊙y∈I,that isμA(x⊙y)≥δandλA(x⊙y)≤1?δ.If min{r1,r2}≤δand max{t1,t2}≥1?δ,thenμA(x⊙y)≥δ≥min{r1,r2}>γandλA(x⊙y)≤1?δ≤max{t1,t2}<1?γ,i.e.,x⊙y(min{r1,r2},max{t1,t2})∈γA.Ifmin{r1,r2}>δand max{t1,t2}<1?δ,thenμA(x⊙y)+min{r1,r2}>2δandλA(x⊙y)+max{t1,t2}<2?2δ. Thus x⊙y(min{r1,r2},max{t1,t2})qδA.Hence x⊙y(min{r1,r2},max{t1,t2})∈γ∨qδA.

    Now let x,y∈L and r∈(γ,1],t∈[0,1?γ)be such that x≤y and x(r,t)∈γA.we can prove that x∈I in the above way.Since I is a filter of L,then y∈I,which impliesμA(y)≥δ andλA(y)≤1?δ.If r≤δand t≥1?δ,thenμA(y)≥δ≥r>γandλA(y)≤1?δ≤t<1?γ, i.e.,y(r,t)∈γA.If r>δand t<1?δ,thenμA(y)+r>2δandλA(y)+t<2?2δ,i.e., y(r,t)qδA.Hence y(r,t)∈γ∨qδA.

    Therefore,A=〈μA,λA〉is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.

    Conversely,suppose that A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.It is easy to see thatHence,I is a filter of L.

    Theorem 3.5 Let A=〈μA,λA〉be an intuitionistic fuzzy set of L.Then A is an (∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only if the following conditions hold:for all x,y∈L,

    (P1) max{μA(x⊙y),γ}≥min{μA(x),μA(y),δ}and min{λA(x⊙y),1?γ}≤max{λA(x), λA(y),1?δ};

    (P2) max{μA(y),γ}≥min{μA(x),δ}and min{λA(y),1?γ}≤max{λA(x),1?δ}with x≤y.

    Proof Let A be an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Suppose that(P1)does not hold,then there exist x,y∈L such that max{μA(x⊙y),γ}<r=min{μA(x),μA(y),δ}, min{λA(x⊙y),1?γ}>t=max{λA(x),λA(y),1?δ}.Hence,μA(x)≥r>γ,μA(y)≥t>γ, μA(x⊙y)<r andμA(x⊙y)+r<2r≤2δ,λA(x)≤t<1?γ,λA(y)≤t<1?γ,λA(x⊙y)>t andλA(x⊙y)+t>2t≥2?2δ.That is,x(r,t)∈γA,y(r,t)∈γA,buta contradiction.Thus,(P1)holds.

    Let x≤y.Suppose that max{μA(y),γ}<r=min{μA(x),δ}and min{λA(y),1?γ}>t= max{λA(x),1?δ}.ThenμA(x)≥r>γ,μA(y)<r,μA(y)+r<2r≤2δandλA(x)≤t<1?γ, λA(y)>t,μA(y)+t>2t≥2?2δ,i.e.,x(r,t)∈γA buta contradiction. Hence,(P2)is valid.

    Conversely,suppose that(P1)and(P2)hold.Let x,y∈L,r1,r2∈(γ,1]and t1,t2∈[0,1?γ)be such that x(r1,t1)∈γA,y(r2,t2)∈γA.Then we getμA(x)≥ r1> γ, λA(x)≤t1<1?γ,μA(y)≥r2>γ,λA(y)≤t2<1?γ,

    Now,if min{r1,r2}≤δand max{t1,t2}≥1?δ,thenμA(x⊙y)≥min{r1,r2}andλA(x⊙y)≤ max{t1,t2},i.e.,x⊙y(min{r1,r2},max{t1,t2})∈γA.If min{r1,r2}> δandmax{t1,t2}<1?δ,thenμA(x⊙y)+min{r1,r2}≥δ+min{r1,r2}>2δandλA(x⊙y)+ max{t1,t2}≤1?δ+max{t1,t2}<2?2δ,i.e.,x⊙y(min{r1,r2},max{t1,t2})qδA.Hence, x⊙y(min{r1,r2},max{t1,t2})∈γ∨qδA and so(F1)is satisfied.

    Let x≤y such that x(r,t)∈γA,where x,y∈L,r∈(γ,1]and t∈[0,1?γ).Then we haveμA(x)≥r>γ,λA(x)≤t<1?γ,max{μA(y),γ}≥min{μA(x),δ}≥max{r,δ}, min{λA(y),1?γ}≤max{λA(x),1?δ}≤{t,1?δ}.

    Now,if r≤δand t≥1?δ,thenμA(y)≥r andλA(y)≤t,i.e.,y(r,t)∈γA.If r>δand t<1?δ,thenμA(y)+r≥δ+r>2δandλA(y)+t≤1?δ+t<2?2δ,i.e.,y(r,t)qδA. Hence,y(r,t)∈γ∨qδA and so(F2)holds.

    For any intuitionistic fuzzy set A=〈μA,λA〉of L and r∈(γ,1]and t∈[0,1?γ),we denote A(r,t)={x∈L|x(r,t)∈γA}as∈γ-levelset,as qδ-levelset and

    The following theorem and corollary presentthe relationshipsbetween(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters and crisp filters of L.

    Theorem 3.6 Let 2δ=1+γand A=〈μA,λA〉be an intuitionistic fuzzy set of L.Then A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only ifis a filter of L for each r∈(γ,1],t∈[0,1?γ).

    Proof Assume that A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Letfor some r∈(γ,1],t∈[0,1?γ),then x(r,t)∈γA or x(r,t)qδA.We haveμA(x)≥r>γ, λA(x)≤t<1?γorμA(x)>2δ?r≥2δ?1=γ,λA(x)<2?2δ?t≤2?2δ=1?γ.Since A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L,thusμA(x⊙y)≥min{μA(x),μA(y),δ} andλA(x⊙y)≤max{λA(x),λA(y),1?δ}.We consider two cases.

    Case 1 r∈(γ,δ],t∈[1?δ,1?γ).Then 2δ?r≥δ>r,2?2δ?t≤1?δ<t<1?γand soμA(x)≥r,μA(y)≥r,λA(x)≤t,λA(y)≤t.Thus,μA(x⊙y)≥min{μA(x),μA(y),δ}≥r andλA(x⊙y)≤max{λA(x),λA(y),1?δ}≤t and so x⊙y(r,t)∈γA.

    Case 2 r∈(δ,1],t∈[0,1?δ).Then 2δ?r<δ<r,2?2δ?t>1?δ>t and μA(x)>2δ?r,μA(y)>2δ?r,λA(x)<2?2δ?t,λA(y)<2?2δ?t.ThusμA(x⊙y)≥min{μA(x),μA(y),δ}>2δ?r andλA(x⊙y)≤max{λA(x),λA(y),1?δ}<2?2δ?t and so x⊙y(r,t)qδA.

    Therefore,x⊙y(r,t)∈γ∨qδA,i.e.,It can be showed thatand x≤y impliesin the similar way.Hence,is a filter of L.

    Therefore,(P1)holds.(P2)can be proved in the similar way.Thus,A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.

    Corollary 3.7 Let A=〈μA,λA〉be an intuitionistic fuzzy set of L.

    (1)A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only if A(r,t)(/=?)is a filter of L for each r∈(γ,δ],t∈[1?δ,1?γ).

    (2)If 2δ=1+γ,then A is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L if and only ifis a filter of L for each r∈(δ,1],t∈[0,1?δ).

    In the following,we apply the concept of intuitionistic fuzzy soft sets to filter theory and propose the notion of(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of BL-algebras.

    Defi nition 3.8 Let(F,A)be an intuitionistic fuzzy soft set of L,where A?E.Then (F,A)is called an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L if F(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L for eachε∈A.

    Proposition 3.9 Let(F,A)and(G,B)be two(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of L,where A,B?E.If C=A∪B,thenis an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.

    Proof Since(F,A)and(G,B)are(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of L and for eachε∈C,we consider three cases.

    Case 1 Ifε∈A,then H(ε)=F(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.

    Case 2 Ifε∈B,then H(ε)=G(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lter of L.

    Case 3 Ifε∈A∩B,then F(ε)and G(ε)are(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters of L.Let x,y∈L,then

    and

    Let x,y∈L be such that x≤y.Similarly,we can prove that max{(μF(ε)∧μG(ε))(y),γ}≥min{(μF(ε)∧μG(ε))(x),δ}and min{(λF(ε)∨λG(ε))(y),1?γ}≤max{(λF(ε)∨λG(ε))(x),1?δ}.

    Hence,F(ε)∧G(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.

    Therefore,in any case,H(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.Asεis arbitrary,thusis an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.

    Proposition 3.10 Let(F,A)and(G,B)be two(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of L,where A,B?E.If A∩B=?,thenis an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.

    Proof Since A∩B=?,for eachε∈C,thenε∈A?B orε∈B?A.Since(F,A)and (G,B)are(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lters of L,ifε∈A?B,then H(ε)=F(ε)is an (∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Ifε∈B?A,then H(ε)=G(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Hence,in any case,H(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L.Asεis arbitrary,(H,C)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.

    In the above theorem,if A∩B/=?,(H,C)maybe not an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.To show this,we present the following example.

    Example 3.11 Let L={0,a,b,c,d,1}be a chain,where 0<b<a<1,0<d<a<1 and 0<d<c<1.Define x∧y=min{x,y},x∨y=max{x,y}and⊙a(bǔ)nd→as follows

    Then(L,∧,∨,⊙,→,0,1)is a BL-algebra(see[3]).Define two intuitionistic fuzzy sets A and B in L byμA(0)=0.2, μA(a)=0.7,μA(b)=0.6,μA(c)=0.2,μA(d)=0.3,μA(1)=0.7, λA(0)=0.5,λA(a)=0.2,λA(b)=0.3,λA(c)=0.5,λA(d)=0.5,λA(1)=0.1 andμB(0)=0.1, μB(a)=0.3,μB(b)=0.25,μA(c)=0.4,μB(d)=0.2,μB(1)=0.6,λB(0)=0.4,λB(a)=0.2, λB(b)=0.4,λB(c)=0.1,λB(d)=0.3,λB(1)=0.2.

    Defi ne intuitionistic fuzzy soft sets(F,A′)and(G,B′),where A′={ε1,ε2}and B′= {ε1,ε3}as

    Then F(ε1)and G(ε1)are two(∈0.3,∈0.3∨q0.6)-intuitionistic fuzzy filters of L,F(ε1)∨G(ε1)is not an(∈0.3,∈0.3∨q0.6)-intuitionistic fuzzy filter since b(0.6,0.3)∈0.3F(ε1)∨G(ε1), c(0.4,0.1)∈0.3F(ε1)∨G(ε1),but.Hence,(F,A)■(G,B)= (H,C)is not an(∈0.3,∈0.3∨q0.6)-intuitionistic fuzzy soft filter of L.

    §4.The Image and Inverse Image of (∈γ,∈γ∨qδ)-intuitionistic Fuzzy Soft Filters of BL-algebras

    In what follows,we denote C(L,E),C(S,E′)and C(T,E′′)as the classes of intuitionistic fuzzy soft sets of L,S and T with parameters from E,E′and E′′respectively,where L,S and T are BL-algebras.

    Defi nition 4.4 Let f=(u,p):C(L,E)→C(S,E′)be a mapping,where u:L→S and p: E→E′are two mappings.For(G,B)∈C(S,E′),the inverse image of(G,B)under f,denoted by f?1(G,B),is an intuitionistic fuzzy soft set of L defined by f?1(G,B)=(u?1(G),p?1(B)), whereμu?1(G)(ε)(x)=μG(p(ε))(u(x))andλu?1(G)(ε)(x)=λG(p(ε))(u(x)),for allε∈p?1(B)and x∈L.

    Defi nition 4.2 Let f=(u,p):C(L,E)→ C(S,E′)be a mapping,where u:L→ S and p:E→E′are mappings.For(F,A)∈C(L,E),the image of(F,A)under f,denoted by f(F,A),is an intuitionistic fuzzy soft set of S defined by f(F,A)=(u(F),p(A)),where

    for allη∈p(A)and y∈S.

    Theorem 4.3 Let f(u,p):C(L,E)→ C(S,E′)be a mapping,where p:E→ E′is a mapping and u is a homomorphic mapping from L to S.If(G,B)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lter of S,then f?1(G,B)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.

    Proof For eachε∈p?1(B),i.e.,p(ε)∈B,then G(p(ε))is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of S.For all x,y∈L,

    Let x,y∈L be such that x≤y,then

    Thus,u?1(G)(ε)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of L. Asεis arbitrary, f?1(G,B)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L.

    Theorem 4.4 Let f:C(L,E)→C(S,E′)be a mapping,p:E→E′be a mapping and u be a surjective homomorphism from L to S.If(F,A)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of L,then f(F,A)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of S.

    Proof For eachη∈B and y1,y2∈S,then

    and

    If y1≤y2,similarly,we can prove that max{μu(F)(η)(y2),γ}≥min{μu(F)(η)(y1),δ}and min{λu(F)(η)(y2),1?γ}≤max(λu(F)(η)(y1),1?δ}.

    Thus u(F)(η)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy filter of S.Asηis arbitrary,f(F,A)is an(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filter of S.

    [1]LIU Lian-zhen,LI Kai-tai.Fuzzy fi lters of BL-algebras[J].Inform Sci,2005,173:141-154.

    [2]MA Xue-ling,ZHAN Jian-ming.On(∈,∈∨q)-fuzzy fi lters of BL-algebras[J].J Syst Sci Complex,2008,21: 144-158.

    [3]YIN Yun-qiang,ZHAN Jian-ming.New types of fuzzy filters of BL-algebras[J].Comput Math Appl,2010, 60:2115-2125.

    [4]ZHAN Jian-ming,JUN Young Bae.Soft BL-algebras based on fuzzy sets[J].Comput Math Appl,2010,59: 2037-2046.

    [5]HAJEK P.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers,1998.

    [6]ZADEH L A.Fuzzy sets[J].Inform Control,1965,8:338-353.

    [7]ATANASSOV K.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20:87-96.

    [8]DE S K,BISWAS R,ROY A R.Some operations on intuitionistic fuzzy sets[J].Fuzzy Sets and Systems, 2000,114:477-484.

    [9]COKER D,DEMIRCI M.On intuitionistic fuzzy points[J].Notes IFS,1995,1(2):79-84.

    [10]MOLODTSOV D.Soft set theory-fi rst result[J].Comput Math Appl,1999,37:19-31.

    [11]GUNDUZ C,BAYRAMOV S.Intuitionistic fuzzy soft modules[J].Comput Math Appl,2011,62:2480-2486.

    [12]KHARAL A,AHMAD B.Mappings on fuzzy soft classes[J].Adv Fuzzy Syst,2009,doi:10.1155/2009/407890.

    YANG Yong-wei,XIN Xiao-long,HE Peng-fei

    (Department of Mathematics,Northwest University,Xi’an 710127,China)

    In the paper,in order to further study the properties of filters of BL-algebras, we propose the concepts of the(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters and(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft fi lters of BL-algebras and derive some related results.Finally,we discuss the properties of images and inverse images of(∈γ,∈γ∨qδ)-intuitionistic fuzzy soft filters of BL-algebras.

    BL-algebras;intuitionistic fuzzy sets;(∈γ,∈γ∨qδ)-intuitionistic fuzzy filters; soft sets

    tion:03E72,08A72

    1002–0462(2014)01–0065–11

    date:2012-09-11

    Supported by the Graduate Independent Innovation Foundation of Northwest University(YZZ12061)

    Chin.Quart.J.of Math. 2014,29(1):65—75

    Biographies:YANG Yong-wei(1984-),male,native of Shangqiu,Henan,a Ph.D.candidate of Northwest University,engages in fuzzy algebras,logic algebras;XIN Xiao-long(1955-),male,native of Xi’an,Shaanxi,a professor of Northwest University,Ph.D.,engages in logic algebras;HE Peng-fei(1986-),male,native of Xi’an, Shaanxi,a Ph.D.candidate of Northwest University,M.S.D.,engages in fuzzy algebras,rough set theory.

    CLC number:O159 Document code:A

    国产精品三级大全| 亚洲图色成人| 亚洲国产欧美网| 久久精品久久精品一区二区三区| 一级毛片电影观看| www.精华液| 国产成人91sexporn| 亚洲天堂av无毛| 欧美日韩成人在线一区二区| 天天操日日干夜夜撸| 成人亚洲精品一区在线观看| 国产一区二区三区综合在线观看| 久久亚洲国产成人精品v| 亚洲精品一二三| 久久精品熟女亚洲av麻豆精品| 男女无遮挡免费网站观看| 一区二区日韩欧美中文字幕| 欧美日韩亚洲高清精品| 啦啦啦啦在线视频资源| 欧美日韩av久久| 日本欧美国产在线视频| 国产麻豆69| 91国产中文字幕| 免费高清在线观看视频在线观看| 免费黄频网站在线观看国产| 日本欧美国产在线视频| 欧美久久黑人一区二区| 免费久久久久久久精品成人欧美视频| 国产国语露脸激情在线看| 中文字幕人妻熟女乱码| 日韩精品有码人妻一区| 最黄视频免费看| 在线观看免费午夜福利视频| 国产极品粉嫩免费观看在线| 亚洲精品,欧美精品| 18在线观看网站| 国产极品天堂在线| 又大又爽又粗| 亚洲精品aⅴ在线观看| 只有这里有精品99| 亚洲美女黄色视频免费看| 99香蕉大伊视频| 久久久精品国产亚洲av高清涩受| 国产国语露脸激情在线看| 国产精品秋霞免费鲁丝片| 一级毛片 在线播放| 免费久久久久久久精品成人欧美视频| 亚洲国产中文字幕在线视频| 国产成人av激情在线播放| 丰满迷人的少妇在线观看| 丰满迷人的少妇在线观看| 久久精品国产综合久久久| 国产成人免费无遮挡视频| 丰满乱子伦码专区| 成年女人毛片免费观看观看9 | 好男人视频免费观看在线| 久久 成人 亚洲| 午夜91福利影院| 最近中文字幕高清免费大全6| 日韩成人av中文字幕在线观看| 国产片内射在线| 国产精品免费大片| 国产成人啪精品午夜网站| 亚洲情色 制服丝袜| 免费av中文字幕在线| 国产视频首页在线观看| 国产片内射在线| 黄片播放在线免费| 综合色丁香网| 成人影院久久| 欧美另类一区| 夫妻午夜视频| 久久影院123| 国产99久久九九免费精品| 丝袜美足系列| 国语对白做爰xxxⅹ性视频网站| 国产在视频线精品| 最近2019中文字幕mv第一页| 韩国高清视频一区二区三区| 黄色 视频免费看| 亚洲国产精品国产精品| 免费少妇av软件| 国产淫语在线视频| 18禁国产床啪视频网站| 人人妻人人爽人人添夜夜欢视频| 久久国产精品大桥未久av| 久久免费观看电影| 街头女战士在线观看网站| 亚洲av成人精品一二三区| 国产一区二区在线观看av| 亚洲国产中文字幕在线视频| 青青草视频在线视频观看| 综合色丁香网| 最近手机中文字幕大全| 国产精品99久久99久久久不卡 | 在线看a的网站| 欧美精品一区二区大全| 亚洲七黄色美女视频| 永久免费av网站大全| 久久99一区二区三区| 亚洲精品自拍成人| 亚洲色图 男人天堂 中文字幕| 国产精品 国内视频| 国产黄色免费在线视频| 欧美亚洲 丝袜 人妻 在线| 制服诱惑二区| 一区在线观看完整版| 成人黄色视频免费在线看| 欧美在线一区亚洲| 在线看a的网站| 大香蕉久久成人网| 99香蕉大伊视频| e午夜精品久久久久久久| 日本vs欧美在线观看视频| 精品一区二区免费观看| 欧美精品人与动牲交sv欧美| 中文欧美无线码| 看非洲黑人一级黄片| 日本vs欧美在线观看视频| 高清av免费在线| 黑人欧美特级aaaaaa片| 丝袜美足系列| 国产片特级美女逼逼视频| 国产黄色视频一区二区在线观看| 久久久久久免费高清国产稀缺| 亚洲专区中文字幕在线 | 99精品久久久久人妻精品| 国产麻豆69| 久久久久国产一级毛片高清牌| av一本久久久久| 免费观看性生交大片5| 2021少妇久久久久久久久久久| 久久人人爽人人片av| 丁香六月天网| 欧美激情 高清一区二区三区| 在线天堂中文资源库| 国产伦人伦偷精品视频| 日韩人妻精品一区2区三区| 亚洲一区二区三区欧美精品| 青草久久国产| 亚洲欧洲国产日韩| 2018国产大陆天天弄谢| 精品一区二区三区av网在线观看 | 欧美人与性动交α欧美精品济南到| 一区二区av电影网| av又黄又爽大尺度在线免费看| 亚洲国产精品一区三区| 国产精品久久久久成人av| 国产精品一二三区在线看| 亚洲国产精品国产精品| 午夜福利一区二区在线看| e午夜精品久久久久久久| 亚洲婷婷狠狠爱综合网| 久久久久久人人人人人| 亚洲精品美女久久久久99蜜臀 | 观看av在线不卡| av天堂久久9| 下体分泌物呈黄色| 午夜福利乱码中文字幕| 亚洲精品视频女| 黄片播放在线免费| 热re99久久精品国产66热6| 自线自在国产av| 青春草视频在线免费观看| 国产在线视频一区二区| 51午夜福利影视在线观看| 中文字幕人妻熟女乱码| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 黄色 视频免费看| 国产色婷婷99| 亚洲男人天堂网一区| 天堂中文最新版在线下载| 国产麻豆69| 校园人妻丝袜中文字幕| 老司机亚洲免费影院| 999精品在线视频| 亚洲精品久久成人aⅴ小说| 久久久久精品人妻al黑| 国产男女超爽视频在线观看| 亚洲av中文av极速乱| 精品久久蜜臀av无| 国产精品人妻久久久影院| 亚洲国产精品一区三区| 国产精品嫩草影院av在线观看| 超碰97精品在线观看| 搡老岳熟女国产| 精品人妻熟女毛片av久久网站| 在线天堂最新版资源| 亚洲av中文av极速乱| 少妇人妻 视频| 久久午夜综合久久蜜桃| 大片免费播放器 马上看| 青春草国产在线视频| 巨乳人妻的诱惑在线观看| 亚洲av电影在线进入| 亚洲精品日韩在线中文字幕| 国产一区二区在线观看av| 色视频在线一区二区三区| 最近的中文字幕免费完整| 男人舔女人的私密视频| 亚洲,欧美精品.| 久久精品国产亚洲av高清一级| 亚洲欧美成人综合另类久久久| 久久热在线av| 中文乱码字字幕精品一区二区三区| 久久久久久人妻| 十八禁网站网址无遮挡| 又大又爽又粗| 中文精品一卡2卡3卡4更新| 黄色毛片三级朝国网站| 97人妻天天添夜夜摸| 狠狠精品人妻久久久久久综合| 日韩一区二区视频免费看| 午夜福利在线免费观看网站| 日本av免费视频播放| 黄色怎么调成土黄色| 一级黄片播放器| avwww免费| 精品免费久久久久久久清纯 | 十八禁高潮呻吟视频| 999精品在线视频| 黄色怎么调成土黄色| 黑人巨大精品欧美一区二区蜜桃| 日韩 欧美 亚洲 中文字幕| 国产av一区二区精品久久| 久久人人97超碰香蕉20202| 亚洲欧美色中文字幕在线| 日韩熟女老妇一区二区性免费视频| 麻豆av在线久日| 久久久国产一区二区| 午夜日韩欧美国产| 黄色 视频免费看| 精品一品国产午夜福利视频| 国产高清不卡午夜福利| 美女大奶头黄色视频| 国产成人91sexporn| 国产成人a∨麻豆精品| 999久久久国产精品视频| 欧美黄色片欧美黄色片| 1024视频免费在线观看| 人人妻人人澡人人看| 免费观看性生交大片5| 最近的中文字幕免费完整| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品自产自拍| 亚洲欧洲国产日韩| 日本av手机在线免费观看| 女性被躁到高潮视频| 国产欧美日韩一区二区三区在线| 亚洲,欧美,日韩| 十八禁人妻一区二区| 日韩av免费高清视频| 色婷婷久久久亚洲欧美| 女的被弄到高潮叫床怎么办| 深夜精品福利| 成人毛片60女人毛片免费| e午夜精品久久久久久久| 久久ye,这里只有精品| av不卡在线播放| 一个人免费看片子| 制服丝袜香蕉在线| 菩萨蛮人人尽说江南好唐韦庄| 国产免费一区二区三区四区乱码| 九九爱精品视频在线观看| 久久毛片免费看一区二区三区| 香蕉丝袜av| av片东京热男人的天堂| 丝袜美足系列| av线在线观看网站| 五月开心婷婷网| 成人黄色视频免费在线看| 国产日韩一区二区三区精品不卡| a级毛片黄视频| 久久国产精品男人的天堂亚洲| 丝袜美腿诱惑在线| 国产精品亚洲av一区麻豆 | 亚洲在久久综合| 青草久久国产| 黑人欧美特级aaaaaa片| 国产亚洲一区二区精品| 亚洲成av片中文字幕在线观看| 在线观看免费日韩欧美大片| 亚洲精品国产色婷婷电影| 老司机在亚洲福利影院| 国产xxxxx性猛交| 男女之事视频高清在线观看 | 国产一区二区三区综合在线观看| 中文天堂在线官网| 色综合欧美亚洲国产小说| 女性被躁到高潮视频| 精品视频人人做人人爽| 成年美女黄网站色视频大全免费| 一本色道久久久久久精品综合| 欧美人与性动交α欧美软件| 自线自在国产av| 国产av精品麻豆| 中文精品一卡2卡3卡4更新| 亚洲精品国产av成人精品| 18禁动态无遮挡网站| 捣出白浆h1v1| 免费人妻精品一区二区三区视频| 又粗又硬又长又爽又黄的视频| 色婷婷久久久亚洲欧美| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 国产亚洲最大av| 久久人人爽人人片av| 在线观看免费视频网站a站| 男女之事视频高清在线观看 | 电影成人av| 国产一区二区 视频在线| 超碰97精品在线观看| 一本一本久久a久久精品综合妖精| 91国产中文字幕| 午夜免费鲁丝| 精品国产超薄肉色丝袜足j| 欧美日本中文国产一区发布| av免费观看日本| 男男h啪啪无遮挡| 国产野战对白在线观看| 最近最新中文字幕大全免费视频 | 日韩中文字幕视频在线看片| 高清欧美精品videossex| 高清在线视频一区二区三区| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频| 久久久久网色| 日韩电影二区| 久久久久久久久久久久大奶| 成人影院久久| 天天躁夜夜躁狠狠躁躁| 成人亚洲欧美一区二区av| 精品一区二区三区四区五区乱码 | 18禁裸乳无遮挡动漫免费视频| 国产片特级美女逼逼视频| 亚洲av在线观看美女高潮| 欧美日韩一区二区视频在线观看视频在线| 久久久国产一区二区| 亚洲五月色婷婷综合| 免费看不卡的av| 1024视频免费在线观看| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美视频二区| 99国产精品免费福利视频| e午夜精品久久久久久久| 女性被躁到高潮视频| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 毛片一级片免费看久久久久| 久久精品国产a三级三级三级| av有码第一页| 成人国语在线视频| 欧美日韩av久久| 1024香蕉在线观看| 国产 一区精品| 99久久综合免费| 91成人精品电影| 1024视频免费在线观看| av国产精品久久久久影院| 婷婷成人精品国产| 精品国产一区二区三区久久久樱花| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| 波多野结衣一区麻豆| 99九九在线精品视频| 久久精品aⅴ一区二区三区四区| 国产 一区精品| 在线观看免费高清a一片| 一个人免费看片子| 18在线观看网站| svipshipincom国产片| 国产亚洲一区二区精品| 18禁国产床啪视频网站| 极品人妻少妇av视频| 99久国产av精品国产电影| 久久久欧美国产精品| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 丰满迷人的少妇在线观看| 999久久久国产精品视频| 亚洲一码二码三码区别大吗| 国产片内射在线| 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 亚洲精品国产一区二区精华液| 少妇 在线观看| 欧美日本中文国产一区发布| 最新在线观看一区二区三区 | 美女国产高潮福利片在线看| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| 伦理电影免费视频| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 男女国产视频网站| 韩国高清视频一区二区三区| 亚洲精品美女久久av网站| xxx大片免费视频| 飞空精品影院首页| 在线天堂最新版资源| 2018国产大陆天天弄谢| 蜜桃国产av成人99| av有码第一页| 亚洲欧洲日产国产| 免费黄网站久久成人精品| 母亲3免费完整高清在线观看| 欧美日韩视频高清一区二区三区二| 国产深夜福利视频在线观看| 老鸭窝网址在线观看| xxxhd国产人妻xxx| 精品亚洲乱码少妇综合久久| 国产精品久久久久久人妻精品电影 | 国产精品久久久av美女十八| 最新的欧美精品一区二区| 嫩草影院入口| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 男人爽女人下面视频在线观看| 赤兔流量卡办理| 亚洲av成人精品一二三区| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| 中文精品一卡2卡3卡4更新| 黄色 视频免费看| 午夜福利网站1000一区二区三区| 青春草亚洲视频在线观看| 伊人久久大香线蕉亚洲五| 日韩av不卡免费在线播放| 嫩草影院入口| 精品人妻在线不人妻| 成人国产麻豆网| 丝袜脚勾引网站| 最近中文字幕2019免费版| 天堂8中文在线网| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 2021少妇久久久久久久久久久| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 性色av一级| 51午夜福利影视在线观看| 最近中文字幕高清免费大全6| 久久狼人影院| 精品国产乱码久久久久久小说| 中文乱码字字幕精品一区二区三区| 午夜福利免费观看在线| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃| 母亲3免费完整高清在线观看| 中文字幕高清在线视频| 1024香蕉在线观看| 中国三级夫妇交换| 欧美 日韩 精品 国产| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 国产在线免费精品| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 99热国产这里只有精品6| 97精品久久久久久久久久精品| 欧美黑人欧美精品刺激| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久男人| 大片电影免费在线观看免费| 成年av动漫网址| 亚洲美女黄色视频免费看| 九色亚洲精品在线播放| 亚洲在久久综合| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 黄片无遮挡物在线观看| av女优亚洲男人天堂| 国产精品一区二区在线观看99| 国产精品一区二区在线不卡| 巨乳人妻的诱惑在线观看| 成人国产麻豆网| 亚洲精品成人av观看孕妇| 欧美激情高清一区二区三区 | 赤兔流量卡办理| 99热网站在线观看| 妹子高潮喷水视频| 亚洲一码二码三码区别大吗| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 成人三级做爰电影| 国产欧美日韩一区二区三区在线| 永久免费av网站大全| 婷婷色综合www| 90打野战视频偷拍视频| av一本久久久久| 成年动漫av网址| 国产一区二区在线观看av| 建设人人有责人人尽责人人享有的| 欧美最新免费一区二区三区| 亚洲色图综合在线观看| 午夜福利一区二区在线看| 性少妇av在线| 久久久久久人人人人人| 一区二区三区精品91| 男人爽女人下面视频在线观看| 欧美日韩综合久久久久久| 日本av手机在线免费观看| 午夜福利一区二区在线看| 极品人妻少妇av视频| 欧美成人精品欧美一级黄| 男女边摸边吃奶| 国产精品熟女久久久久浪| 国产高清不卡午夜福利| 日本av手机在线免费观看| 蜜桃在线观看..| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区| 日韩伦理黄色片| 日韩中文字幕欧美一区二区 | 久久久久久久久久久久大奶| 国产在视频线精品| 岛国毛片在线播放| 成人漫画全彩无遮挡| 人妻 亚洲 视频| 狂野欧美激情性xxxx| 在线观看人妻少妇| 免费不卡黄色视频| 国产爽快片一区二区三区| 久久精品亚洲av国产电影网| 精品国产国语对白av| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 亚洲第一av免费看| 精品一区二区免费观看| 欧美亚洲日本最大视频资源| 亚洲欧美精品自产自拍| 精品国产国语对白av| 深夜精品福利| 国产精品免费大片| 午夜福利视频在线观看免费| 69精品国产乱码久久久| 夜夜骑夜夜射夜夜干| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| av有码第一页| 亚洲,一卡二卡三卡| 十八禁网站网址无遮挡| 久久综合国产亚洲精品| 人妻一区二区av| 欧美另类一区| 久久婷婷青草| 日本vs欧美在线观看视频| 国产乱人偷精品视频| 精品久久久久久电影网| 性色av一级| 色精品久久人妻99蜜桃| 777久久人妻少妇嫩草av网站| 男女免费视频国产| www日本在线高清视频| 亚洲欧美一区二区三区黑人| 国产精品熟女久久久久浪| 久久精品国产亚洲av高清一级| 一本久久精品| 国产成人精品久久二区二区91 | 日日啪夜夜爽| 性少妇av在线| 精品亚洲成国产av| 性少妇av在线| 一级爰片在线观看| 亚洲成国产人片在线观看| 日本91视频免费播放| 国产97色在线日韩免费| 国产亚洲av片在线观看秒播厂| 国产成人欧美在线观看 | 国产99久久九九免费精品| 日本黄色日本黄色录像| 99热网站在线观看| 黄色 视频免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久国产电影| 又大又黄又爽视频免费| 嫩草影视91久久| 国产麻豆69| 国产亚洲精品第一综合不卡| 成人国语在线视频| 天天影视国产精品| 最新在线观看一区二区三区 | 狂野欧美激情性bbbbbb| 亚洲精品,欧美精品| 久久久久久免费高清国产稀缺| 香蕉国产在线看| www.自偷自拍.com| 日韩制服骚丝袜av| 精品亚洲成国产av| 女人精品久久久久毛片| 国产亚洲av片在线观看秒播厂| 午夜激情久久久久久久| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| av在线播放精品| 亚洲人成77777在线视频| 热re99久久国产66热| 叶爱在线成人免费视频播放| 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 最近的中文字幕免费完整| 久久99精品国语久久久| 热re99久久精品国产66热6| 日本wwww免费看| 无遮挡黄片免费观看| 在线观看三级黄色| avwww免费| 大码成人一级视频| 美女午夜性视频免费| 男女边吃奶边做爰视频|