• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Minimum Dominating Tree Problem for Graphs

    2014-07-24 15:29:27LINHaoLINLan

    LIN Hao,LIN Lan

    (1.School of Science,Henan University of Technology,Zhengzhou 450001,China;2.School of Electronics and Information Engineering,Tongji University,Shanghai 200092,China)

    Minimum Dominating Tree Problem for Graphs

    LIN Hao1,LIN Lan2

    (1.School of Science,Henan University of Technology,Zhengzhou 450001,China;2.School of Electronics and Information Engineering,Tongji University,Shanghai 200092,China)

    A dominating tree T of a graph G is a subtree of G which contains at least one neighbor of each vertex of G.The minimum dominating tree problem is to find a dominating tree of G with minimum number of vertices,which is an NP-hard problem.This paper studies some polynomially solvable cases,including interval graphs,Halin graphs,special outer-planar graphs and others.

    network optimization;minimum dominating tree;special graphs;exact evaluation

    §1. Introduction

    With application background in construction of communication networks,the minimum spanning tree problem in combinatorial optimization is to fi nd a spanning tree T in a weighted connected graph G to minimize the weight w(T)ofthe tree.This problem has been extensively studied in the literature[1-3].A famous generalization is the Steiner tree problem,in which the required subtree T connects several given vertices of G(see[2-3]).Similarly,the optimal dominating tree problem also comes up with applications in network constructions:Given a weighted connected graph G,we are asked to find a subtree T which contains at least one neighbor ofeach vertex(namely,V(T)constitutes a dominating set)such that the weight w(T) of the tree is minimized.As a matter of fact,a large scale communication network often consists of two parts:the principal part is a dominating tree which connects to the neighbor set of each terminaland the secondary part is the set of branch-lines between the terminals and the principal part.In particular,in the wireless senor network(see[4]),many senors(vertices) are scattered on the plane and people want to build a backbone network to controlthese senors.Similar situations appear in transportation system and supply-demand system.The optimal dominating tree problem is concerned with this kind of construction of principal networks.In our previous paper[5],we prove this problem is NP-hard and present a branch-and-bound algorithm.

    The present paper studies the case of un-weighted graphs,i.e.,each edge has weight 1.We can formulate the problem as follows.Given a connected simple graph G=(V,E),where V is the vertex set and E is the edge set,the problem is to find a subtree T=(V′,E′)such that each vertex in VV′is adjacent to a vertex in V′and the number|V′|of vertices of T is minimized.Since V′is a dominating set of G,this problem is called the minimum dominating tree problem.A related problem in graph theory is the dominating set problem,in which one is asked to find a minimum dominating set of G.This is an active topic in recent years(see, e.g.,[6]).

    This also reminds us the so-called maximum leaf spanning tree problem as follows

    Given a connected graph G,the problem is to find a spanning tree T of G such that the number of leaves(degree-1 vertices)is maximized.We have the following equivalence.

    Theorem 1.1 Given a connected graph G,the minimum dominating tree problem of G is equivalent to the maximum leaf spanning tree problem of G.

    Proof For a dominating tree T=(V′,E′),we can obtain a spanning tree by adding the vertices of VV′as leaves.Conversely,for a spanning tree,we can obtain a dominating tree by deleting all leaves.Furthermore,minimizing|V′|is equivalent to maximizing|VV′|. Hence the minimum dominating tree problem is equivalent to the maximum leaf spanning tree problem,as required.

    First,[3]pointed out that the maximum leafspanning tree problem is NP-hard(see problem [ND2]in P206).Later,a number of articles[7-9]were concentrated on the approximation algorithms.In our present paper,we are concerned with a graph-theoretic parameter m d t(G), the vertex number of the minimum dominating tree of G.The main goal is to determine this parameter for some typicalclasses of graphs.

    We shall follow the terminology and notation of[1].

    §2. Interval Graphs

    The class ofintervalgraphs is wellknown in perfect graphs(see[10]).A graph G is called an intervalgraph ifits vertices can be put into one-to-one correspondence with a set ofintervals in the real line such that two vertices are adjacent if and only if their corresponding intervals have nonempty intersection.So the vertices of G may be represented by a set of intervals[ai,bi]for i=1,2,···,n.The following is a characterization of intervalgraphs.

    Lemma 2.1[10]A graph G is an interval graph if and only if the maximal cliques of G can be linearly ordered such that,for every vertex v of G,the maximal cliques containing v occur consecutively.

    In more detail,all maximal cliques of G constitute the path decomposition[11]as follows

    All maximal cliques of G can be ordered as a sequence(X1,X2,···,Xr)satisfying

    (2)For any edge uv∈E(G),there exists an i with 1≤i≤r,such that{u,v}?Xi;

    (3)For any i<j<k,Xi∩Xk?Xj.

    Here,(3)implies that all maximal cliques containing a vertex v occur consecutively.We assume in the sequel that the interval representation{[ai,bi]:1≤ i≤ n}and the path decomposition{Xi:1≤i≤r}for an interval graph G are given in advance.The purpose of this section is to determine the minimum dominating tree number m d t(G)for interval graphs.

    Lemma 2.2 Let G be any graph with diameter D(G).Then m d t(G)≥D(G)?1.

    Proof Suppose that D(G)=dG(u,v),where u,v∈V(G)and dG(u,v)is the distance between u and v in G.Let T be a minimum dominating tree.Then u,v must be dominated by two vertices u′,v′in T respectively.Let P′=(u′,···,v′)be the unique path between u′,v′in T.Then we obtain a path P=(u,u′,···,v′,v)in G.Hence m d t(G)+1=|V(T)|+1≥|V(P′)|+1=|V(P)|?1≥dG(u,v)=D(G).This completes the proof.

    Theorem 2.3 If G is an intervalgraph,then m d t(G)=D(G)?1.

    Proof Let G be an interval graph with vertex set V(G)={v1,v2,···,vn}.For each vertex v∈V(G),the corresponding intervalis denoted by[a(v),b(v)],where a(v)is the left-end and b(v)is the right-end ofthe interval.Moreover,allmaximalcliques of G constitute the path decomposition(X1,X2,···,Xr).We proceed to construct a dominating tree T as follows.

    First,assume that v1is the vertex whose interval has the smallest right-end b(v1)= min{b(vi):1≤ i≤ n}(if there is a tie,we choose the smallest left-end a(v1)).Then for any two neighbors of v1,the corresponding intervals have nonempty intersection(as they must have the right-end b(v1)of v1in common).Thus v1belongs to a unique maximalclique,namely X1,which consists of v1and allits neighbors.

    Symmetrically,we assume that vnis the vertex whose interval has the largest left-end a(vn)=max{a(vi):1≤i≤n}(if there is a tie,we choose the largest right-end b(vn)).Then any two neighbors of vnare adjacent(as their intervals must have the left-end a(vn)of vnin common).Thus vnbelongs to a unique maximal clique,namely Xr.

    Then we take a shortest path P=(v1,x1,x2,···,xt,vn)between v1and vnin G.Since x1is adjacent to v1,we see that x1∈X1.By Lemma 2.1,the maximalcliques containing x1occur consecutively.So we may suppose that the maximalcliques containing x1are X1,X2,···,Xi1in order.Let Y1=X1∪X2∪···∪Xi1.Then a vertex y is adjacent to x1if and only if y∈Y1. We proceed inductively.Suppose that xkand its neighbor set Ykare given(k≥1).As xk+1is adjacent to xk,we have xk+1∈Yk.Without loss ofgenerality,we may assume that xk+1∈Xik(if xk+1∈Xjwith j<ik,the proof below is still valid).By Lemma 2.1 again,the maximal cliques containing xk+1occur consecutively,say they are Xik,Xik+1,···,Xik+1.Then theneighbor set of xk+1is Yk+1=Xik∪Xik+1∪···∪Xik+1.Set k:=k+1 and repeat the above procedure until we reach xtwhich is adjacent to vn.In this way,we obtain a path P′=(x1,x2,···,xt)which dominates all vertices inHence P′is a dominating tree of G.

    Furthermore,as P=(v1,x1,x2,···,xt,vn)is a shortest path from v1to vnin G,we conclude that|V(P)|=dG(v1,vn)+1.Besides,for any two vertices x,y∈V(G),suppose that x∈Xi,y∈Xj.Then a shortest path from x to y can use a part of P.Thus dG(x,y)≤dG(v1,vn) and so P is a diameter path of G.Therefore P′is a dominating tree with vertex number D(G)?1.By Lemma 2.2,P′is a minimum dominating tree of G and m d t(G)=D(G)?1. The proof is complete.

    By this theorem,for an interval graph G,the minimum dominating tree is a path and the maximum leaf tree is a“caterpillar”.Here,a tree is called a caterpillar ifit yields a path when all leaves are deleted.

    §3.Powers of Paths and Cycles

    For a graph G,the k-th power Gkof G is defined as the graph with the same vertex set of G that two distinct vertices u and v are adjacent in Gkif and only if their distance in G is at most k.In particular,if the vertex set of a path Pnon n vertices is V(Pn)={v1,v2,···,vn},then the edge set of the k-th power of PnisSimilarly,if the vertex set of a cycle Cnon n vertices is V(Cn)={v1,v2,···,vn},then the edge set of the k-th power of Cnis={vivj:min{|i?j|,n?|i?j|}≤k}.For an edgeif |i?j|≤k,then we say that e covers the path(vi,vi+1,···,vj)of Cn;if n?|i?j|≤k,then we say that e covers the path(vj,vj+1,···,vn,v1,···,vi)of Cn.

    Conversely,we show that a dominating tree ofcorresponds to a dominating tree ofwith the same vertex number.Let T be a dominating tree ofwith vertex set V(T)= {vi1,vi2,···,vil},where 1≤i1<i2<···<il≤n.We distinguish two cases as follows.

    (1)There exists an edge of Cnwhich is not covered by any edge of T.Without loss of generality,we may assume this edge is vnv1.We construct afromby deleting all edges ofthat cover vnv1.Then T is a dominating tree of this

    (2)Every edge of Cnis covered by an edge of T.Then we can see that|ih?ih+1|≤k for1≤h≤l?1,since there is an edge of T that covers the path from vihto vih+1.So we can construct a dominating path P=(vi1,vi2,···,vil)ofwith|V(P)|=|V(T)|.Furthermore, this P is a dominating tree ofwith the same vertex number as T.

    In summary,we set up a correspondence between the dominating trees ofand the dominating trees ofwith the same vertex number.ThereforeThis completes the proof.

    §4.Halin Graphs

    Clearly,for a wheel Wn,its center is a minimum dominating tree and so mdt(Wn)=1. As a generalization of wheels,there is a well-known class of 3-connected graphs,called Halin graphs[1].A graph G is called a Halin graph if it can be drawn in the plane as a tree T0without degree-2 vertices together with a cycle C passing through the leaves of T.

    Theorem 4.1 For any Halin graph G=(V,E),m d t(G)=2|V|?|E|?1.

    Proof Let T0and C be the tree and the cycle in the definition.Then T0is a spanning tree of G and E(C)is the edge set ofthe co-tree of T0.For any spanning tree T,let l(T)denote the number of leaves of T.We first show that T0is a spanning tree with the maximum l(T). For this,we use induction on the number r of non-leaf vertices of T0.When r=1,G is a wheel with a center(or“hub”)h.Meanwhile,the vertices of C can be denoted by x1,x2,···,xn?1. For any other spanning tree T/=T0,at least one xiis not a leafin T(where hxi∈E(T)).Hence l(T)≤n?1=l(T0).Suppose that r>1 and the assertion holds for smaller r.For the tree T0, let y be the second vertex of a diameter path of T0.Then y must be a non-leaf vertex and allits neighbors but one are leaves.Now let x1,x2,···,xkbe the leaves adjacent to y.We denote by W the subgraph of G induced by{y,x1,x2,···,xk}.Note that W is also a subgraph of a wheel.For any other spanning tree T1/=T0,when restricting to the subgraph W,the leaf number of T1is not greater than that of T0(by the argument for wheels).So we change the part of T1in W to coincide with T0and obtain another spanning tree T2.Then l(T1)≤l(T2). Now we contract W to a single vertex w.Then the resulting graph G′is still a Halin graph. Letandbe the corresponding spanning trees of T0and T2respectively.By the induction hypothesis,we haveTherefore l(T2)≤ l(T0)and thus l(T1)≤ l(T2)≤ l(T0) holds,completing the induction.

    Note that T0is a spanning tree and E(C)is the edge set of the co-tree of G.The edge number of the co-treeμ(G)=|E|?|V|+1 is called the cyclic rank of G.So l(T0)=|E(C)|= |E|?|V|+1.Finally we conclude that the vertex number of the minimum dominating tree is m d t(G)=|V|?l(T0)=|V|?(|E|?|V|+1)=2|V|?|E|?1.The proof is complete.

    §5.Outer-planar Graphs

    The outer-planar graphs are a special class of planar graphs.We consider a 2-connected outer-planar graph G,that is,it has a plane embedding such that all vertices are lying on theboundary C of the outer face.Apart from the edges on cycle C,the remaining edges are the chords of the cycle.As G is simple,we do not consider multiple edges.

    The dual graph of a plane embedding of a planar graph G is defined as follows:each face(region)is corresponding to a vertex and two vertices are joined by an edge if and only if two faces have a common edge in their boundaries.When we delete the vertex ofouter face(and the incident edges)in the dualgraph,the resulting graph is called the weak-dualgraph,denoted by G?.Figure 1 shows an outer-planar graph G and its weak-dual graph G?.We claim that the weak-dual graph of an outer-planar graph is a tree.If not,there is a cycle in the weakdual graph G?and so this cycle surrounds a vertex of graph G,which cannot be contained in the boundary of the outer face.This leads to a contradiction to the definition of outer-planar graphs.

    An outer-planar graph G is said to be serialif(1)its weak-dualgraph G?is a path;(2)the boundary of each face and the outer-boundary C have precisely one section(an edge or a path) in common(see Figure 1).

    Proposition 5.1 For a serial outer-planar graph G,if the boundary of every face is a triangle(which is a maximalouter-planar graph),then m d t(G)=D(G)?1.

    Proof In this case,each maximalclique of G is a triangle and allthese maximalcliques can be ordered in a sequence satisfying the conditions of path decomposition.By Lemma 2.1, G is an interval graph.Further by Theorem 2.3,the result follows.

    Figure 1 A Serial Outer-planar Graph and Its Weak Dual Graph

    We generalize this result to a general serial outer-planar graph G,in which the boundary of a face is not necessarily a triangle,namely,this boundary intersects C at a path of length at least two(see faces abb′a′and bcc′e in Figure 1).

    A face of G corresponding to a leaf of G?is called a terminal face of G.So G contains two terminal faces.The boundary of a terminal face f consists of two parts:a section of cycle C(a path),denoted by Cfand a chord of C.This path Cfmust have length at least two(for otherwise multiple edges occur,contradicting the assumption of simple graphs)and thus contains degree-2 vertices.On the other hand,if the boundary of a non-terminal face f is not a triangle,then it must contain a section of cycle C(a path)with length at least two,which is also denoted by Cf(the other part ofthe boundary consists oftwo chords).In both cases,wewill call these paths Cfspecial boundaries.

    When a spanning tree of graph G is constructed,we must break all cycles in G,namely, delete one edge from the boundary of each face.In order to get as many leaves as possible in the special boundaries Cf,the following properties should be satisfied

    (1)If Cfhas length two,say Cf=uxv with x being a degree-2 vertex,then either ux or xv is deleted and x becomes a leaf.

    (2)If Cfhas length at least three,say Cf=ux···yv with x,···,y being degree-2 vertices, then one of the edges in x···y is deleted and two ends of this edge become leaves.

    Algorithm for Serial Outer-planar Graphs

    Input A serial outer-planar graph G.

    Output A spanning tree T of G with maximum number of leaves.

    Step 1 For a terminal face f,if the special boundary Cfhas length at least three,say Cf=ux···yv,then x···y is contracted into a single vertex.Moreover,ifthe specialboundary Cfof a non-terminal face f has length at least two,say Cf=ux···yv,then it is removed by deleting the internal vertices x,···,y.

    Step 2 Let f1and f2be the two terminalfaces.Find a shortest path P from the internal vertex of Cf1to the internal vertex of Cf2.Take E1=E(P).

    Step 3 Let L be the set of vertices dominated by V(P),i.e.,L={x∈V(G)V(P): there is a y∈V(P)such that xy is a chord}.Let E2be the set of chords chosen by:for each x∈L,a chord xy is chosen such that y∈V(P).

    Step 4 For the terminal face f that Cf=ux···yv has length at least three and x···y is contracted into a single vertex in Step 1,we restore the special boundary Cfand obtain two leaves by deleting one of the edges in x···y.Moreover,for the non-terminal face f that the special boundary Cfhas length at least two and the internal vertices are deleted in Step 1,we restore the special boundary Cf.If Cf=uxv has length two,then we delete either ux or xv; especially,we delete ux whenever u(rather than v)is a leaf of the constructed tree so far.If Cf=ux···yv has length at least three,then we obtain two leaves by deleting one of the edges in x···y.Let E3be the set of adding edges of C in this step.

    Step 5 Return the spanning tree T with edge set E(T)=E1∪E2∪E3.

    For example,in the graph of Figure 1,we first take the shortest path abcd from f1to f2and set E1={ab,bc,cd}.Then we take the set ofchords E2={bb′,bb′′,cc′}.For the special boundaries,we take E3={ab,a′b′,be}.

    Proposition 5.2 For a serialouter-planar graph G,the above algorithm provides a spanning tree T with the maximum number of leaves.

    Proof We first consider the vertices in the special boundaries.For a terminal face f,Cfis a section of cycle C,which must have length at least two.If Cfhas length two,then the boundary of face f is a triangle and we do nothing for it.If Cfhas length at least three,thenthere willbe two leaves in it and we may do this in the last step.Nevertheless,we may contract the internal vertices to make its boundary to be a triangle at the beginning.Moreover,for the non-terminal face f that the special boundary Cf=ux···yv has length at least two,we claim that there exists a spanning tree T with the maximum number of leaves such that T does not contain the whole path Cf.Suppose,to the contrary,that T contains the whole Cf. Then apart from Cf,the remaining boundary of f consists of two chords,one of which is not contained in T(for otherwise there is a cycle in T).Thus,we may construct a new spanning tree T′by deleting one edge of Cfand adding the chord not in T.It is easy to see that the leaf number of T′is not less than that of T(as at least one more leaf occur in Cfand at most one leafis lost when adding the chord).This shows the claim.By this claim,we can delete the internal vertices of Cffirst in Step 1 and then restore them in Step 4.

    After the treatment of Step 1,the boundary of each face is a triangle and this reduces to the case of intervalgraph G′.Step 2 and Step 3 comprise the algorithm for finding a spanning tree with maximum leafnumber ofintervalgraph G′.Finally,in Step 4 we make the leafnumber in special boundaries Cfas large as possible.Therefore the spanning tree T constructed by the algorithm is one of maximum leaf number.This completes the proof.

    By the above algorithm,we obtain a maximum leaf spanning tree T and thus obtain a minimum dominating tree by deleting the leaves.

    [1]BONDY J A,MURTY U S R.Graph Theory[M].Berlin:Springer,2008.

    [2]PAPADIMITRIOU C H,STEIGLITZ K.CombinatorialOptimization:Algorithms and Complexity[M].New Jersey:Prentice-Hall,1982.

    [3]GAREY M R,JOHNSON D S.Computers and Intractability:A Guide to the NP-Completeness[M].New York:Freman,1979.

    [4]SHANG Wei-ping,YAO F,WAN P.On minimum m-connected k-dominating set problem in unit disc graphs[J].J of Combinatorial Optimization,2008,16(2):99-106.

    [5]LIN Hao,LIN Lan.Optimal dominating tree problem in networks[J].Systems Engineering-Theory and Practice,2006,26(5):83-87.

    [6]SONG Xiao-xin,WANGXiao-feng.Roman dominating number and dominating number ofa tree[J].Chinese Quarterly Journal of Mathematics,2006,21(3):385-367.

    [7]FUJIE T.The maximum-leaf spanning tree problem:formulations and facets[J].Networks,2004,43(4): 212-223.

    [8]LI P C,TOULOUSE M.Variations of maximum leaf spanning tree problem for bipartite graphs[J].Information Processing Letters,2006,97(40):129-132.

    [9]LU H,RAVIR.Approximating maximum leafspanning trees in almost linear time[J].J of Algorithms,1998, 29:132-141.

    [10]GOLUMBIC M.Algorithmic Graph Theory and Perfect Graphs[M].New York:Academic Press,1980.

    [11]GUSTEDT J.On the pathwidth of chordal graphs[J].Discrete Appl Math,1993,45(3):233-248.

    tion:05C35,05C69,90C35

    1002–0462(2014)01–0001–08

    Chin.Quart.J.of Math. 2014,29(1):1—8

    date:2013-03-01

    Supported by NNSF of China(11101383,61373106)

    Biography:LIN Hao(1974-),male,native of Taishan,Guangdong,an associate professor of Henan University of Technology,M.S.D.,engages in network optimization.

    CLC number:O157.5 Document code:A

    欧美乱妇无乱码| 久久久久久人人人人人| 国产一卡二卡三卡精品| 日本a在线网址| 精品国产乱码久久久久久小说| 搡老乐熟女国产| 欧美国产精品va在线观看不卡| 建设人人有责人人尽责人人享有的| 精品一区二区三卡| 亚洲av电影在线进入| 成年人黄色毛片网站| 国产精品 欧美亚洲| 91精品国产国语对白视频| 成人特级黄色片久久久久久久 | 黄色片一级片一级黄色片| 亚洲情色 制服丝袜| 97人妻天天添夜夜摸| 无遮挡黄片免费观看| 久久久国产精品麻豆| 欧美精品一区二区免费开放| 国产在线精品亚洲第一网站| 丰满饥渴人妻一区二区三| 日韩欧美一区视频在线观看| 亚洲av第一区精品v没综合| 国产麻豆69| 亚洲 欧美一区二区三区| 俄罗斯特黄特色一大片| 精品久久久久久电影网| 精品国产国语对白av| 在线观看www视频免费| 精品视频人人做人人爽| 69av精品久久久久久 | 在线永久观看黄色视频| 久久久久国内视频| 久久热在线av| 妹子高潮喷水视频| 老汉色av国产亚洲站长工具| 国产av又大| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| 成年动漫av网址| 天堂中文最新版在线下载| 两人在一起打扑克的视频| 王馨瑶露胸无遮挡在线观看| 十八禁高潮呻吟视频| 亚洲精品粉嫩美女一区| 69精品国产乱码久久久| 黄色毛片三级朝国网站| 亚洲av成人不卡在线观看播放网| 精品久久久久久久毛片微露脸| 亚洲熟女精品中文字幕| 国产精品电影一区二区三区 | 亚洲男人天堂网一区| 久久精品成人免费网站| 91大片在线观看| 国产精品99久久99久久久不卡| 欧美在线黄色| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲综合一区二区三区_| 国产国语露脸激情在线看| 国产99久久九九免费精品| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 久久精品91无色码中文字幕| 国产一区二区 视频在线| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 国产黄色免费在线视频| 天堂8中文在线网| 黄网站色视频无遮挡免费观看| 他把我摸到了高潮在线观看 | 亚洲专区中文字幕在线| 免费高清在线观看日韩| 成人国产av品久久久| 久久久国产精品麻豆| 视频区图区小说| 国产成人精品久久二区二区免费| 国产精品久久久av美女十八| 久久免费观看电影| 国产精品一区二区免费欧美| 欧美日韩亚洲高清精品| 天天添夜夜摸| 精品久久蜜臀av无| 亚洲五月色婷婷综合| 亚洲成人国产一区在线观看| 欧美日韩视频精品一区| 精品高清国产在线一区| 在线观看一区二区三区激情| 久久天躁狠狠躁夜夜2o2o| 欧美国产精品一级二级三级| 激情视频va一区二区三区| 欧美黄色片欧美黄色片| 久久香蕉激情| 丰满少妇做爰视频| 国产高清激情床上av| 久久久久久久久久久久大奶| 制服人妻中文乱码| 成人特级黄色片久久久久久久 | 黑人猛操日本美女一级片| 亚洲欧美精品综合一区二区三区| 老汉色av国产亚洲站长工具| 一区二区av电影网| 下体分泌物呈黄色| 精品乱码久久久久久99久播| 波多野结衣一区麻豆| 色视频在线一区二区三区| 久久婷婷成人综合色麻豆| 大香蕉久久网| 国产单亲对白刺激| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 最新在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 国产高清激情床上av| 99riav亚洲国产免费| 最近最新中文字幕大全电影3 | av天堂在线播放| 久久人妻福利社区极品人妻图片| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 黄色视频不卡| 可以免费在线观看a视频的电影网站| 女性被躁到高潮视频| h视频一区二区三区| 久久精品成人免费网站| 91精品国产国语对白视频| 新久久久久国产一级毛片| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色 | 精品一区二区三区视频在线观看免费 | 国产精品免费视频内射| 捣出白浆h1v1| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区mp4| 91麻豆精品激情在线观看国产 | 男女边摸边吃奶| 人人澡人人妻人| 亚洲全国av大片| 日韩欧美免费精品| 人妻久久中文字幕网| 在线观看66精品国产| 91精品三级在线观看| 99久久国产精品久久久| 一边摸一边抽搐一进一出视频| 国产主播在线观看一区二区| 欧美日韩福利视频一区二区| 国产在视频线精品| 91麻豆精品激情在线观看国产 | 1024视频免费在线观看| 色播在线永久视频| 日韩欧美一区视频在线观看| 精品国产乱码久久久久久小说| 国产在视频线精品| 人妻一区二区av| 国产极品粉嫩免费观看在线| 色老头精品视频在线观看| 久久天堂一区二区三区四区| 无人区码免费观看不卡 | 汤姆久久久久久久影院中文字幕| 亚洲av成人一区二区三| 久久狼人影院| 69精品国产乱码久久久| 不卡一级毛片| 在线看a的网站| 婷婷丁香在线五月| 精品少妇一区二区三区视频日本电影| 久久久水蜜桃国产精品网| 精品一区二区三区四区五区乱码| 国产精品国产高清国产av | 日韩欧美国产一区二区入口| 大陆偷拍与自拍| 午夜激情久久久久久久| 少妇粗大呻吟视频| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | av在线播放免费不卡| 亚洲五月婷婷丁香| 欧美人与性动交α欧美软件| 热99久久久久精品小说推荐| aaaaa片日本免费| 岛国在线观看网站| 国产午夜精品久久久久久| 在线av久久热| 不卡一级毛片| 欧美激情高清一区二区三区| 两个人看的免费小视频| 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| xxxhd国产人妻xxx| 午夜福利欧美成人| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| 日韩三级视频一区二区三区| 熟女少妇亚洲综合色aaa.| 久久久久久免费高清国产稀缺| 亚洲人成77777在线视频| 免费久久久久久久精品成人欧美视频| 丝瓜视频免费看黄片| 欧美乱妇无乱码| 黄色怎么调成土黄色| 久久久国产欧美日韩av| 波多野结衣一区麻豆| 欧美人与性动交α欧美软件| 啦啦啦 在线观看视频| 精品欧美一区二区三区在线| 久久久久久人人人人人| 亚洲精品自拍成人| 亚洲午夜理论影院| 高清视频免费观看一区二区| 狂野欧美激情性xxxx| 精品国产超薄肉色丝袜足j| 免费高清在线观看日韩| 天堂8中文在线网| 日韩成人在线观看一区二区三区| 成年人黄色毛片网站| 夜夜骑夜夜射夜夜干| 欧美激情 高清一区二区三区| 日本撒尿小便嘘嘘汇集6| 午夜激情av网站| 国产精品.久久久| 美女扒开内裤让男人捅视频| 亚洲伊人色综图| av超薄肉色丝袜交足视频| 中文字幕av电影在线播放| 国产又爽黄色视频| 久久这里只有精品19| 少妇 在线观看| 色94色欧美一区二区| 国产精品欧美亚洲77777| 老熟妇仑乱视频hdxx| 亚洲国产精品一区二区三区在线| 99久久99久久久精品蜜桃| 蜜桃在线观看..| 免费不卡黄色视频| 国产成人欧美| 久久免费观看电影| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 欧美乱码精品一区二区三区| 亚洲久久久国产精品| 国产成人欧美在线观看 | 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 91字幕亚洲| 午夜福利在线观看吧| 91九色精品人成在线观看| 国产一卡二卡三卡精品| 大片电影免费在线观看免费| 女人高潮潮喷娇喘18禁视频| 成人黄色视频免费在线看| 亚洲午夜精品一区,二区,三区| 国产一区二区三区综合在线观看| 夫妻午夜视频| 搡老岳熟女国产| 久久香蕉激情| 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 少妇猛男粗大的猛烈进出视频| 精品人妻在线不人妻| 人人妻人人澡人人看| 久久国产精品影院| 高清黄色对白视频在线免费看| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av香蕉五月 | 咕卡用的链子| 视频区欧美日本亚洲| 黄色丝袜av网址大全| 色在线成人网| 黄色片一级片一级黄色片| 麻豆乱淫一区二区| 久久久久久久精品吃奶| 亚洲国产欧美网| 国产伦理片在线播放av一区| 午夜成年电影在线免费观看| 巨乳人妻的诱惑在线观看| 黄色片一级片一级黄色片| 亚洲欧美激情在线| 国产精品久久久久久人妻精品电影 | 国产欧美日韩一区二区三| 国产单亲对白刺激| 免费看a级黄色片| 国产欧美日韩一区二区精品| 午夜两性在线视频| 夜夜爽天天搞| 五月天丁香电影| 成人亚洲精品一区在线观看| 视频区欧美日本亚洲| 国产一区二区 视频在线| 国产不卡一卡二| 日本撒尿小便嘘嘘汇集6| 蜜桃国产av成人99| 两性夫妻黄色片| 热re99久久国产66热| 日本精品一区二区三区蜜桃| 欧美大码av| 国产又爽黄色视频| 中文字幕色久视频| 精品亚洲成国产av| 国产麻豆69| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 黄色成人免费大全| 亚洲国产欧美一区二区综合| 99国产精品一区二区三区| 国产免费现黄频在线看| 在线观看免费高清a一片| 高清视频免费观看一区二区| 丰满迷人的少妇在线观看| 日韩视频在线欧美| 老司机午夜福利在线观看视频 | 大香蕉久久成人网| 国产亚洲av高清不卡| 日本a在线网址| 少妇猛男粗大的猛烈进出视频| 人妻一区二区av| 久久久精品94久久精品| 在线观看免费视频网站a站| 久久精品国产99精品国产亚洲性色 | 国产午夜精品久久久久久| 久久国产精品人妻蜜桃| 国产精品国产av在线观看| 精品久久蜜臀av无| 日本欧美视频一区| 亚洲第一欧美日韩一区二区三区 | 波多野结衣一区麻豆| 麻豆乱淫一区二区| 免费人妻精品一区二区三区视频| 国产日韩欧美视频二区| 久久精品成人免费网站| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 久久精品亚洲精品国产色婷小说| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 国产精品自产拍在线观看55亚洲 | 老熟妇仑乱视频hdxx| 久久九九热精品免费| 变态另类成人亚洲欧美熟女 | 亚洲三区欧美一区| 国产黄频视频在线观看| 日本黄色视频三级网站网址 | 久久午夜综合久久蜜桃| 久久精品国产亚洲av香蕉五月 | 老熟妇乱子伦视频在线观看| 69av精品久久久久久 | 久久性视频一级片| 变态另类成人亚洲欧美熟女 | 日日摸夜夜添夜夜添小说| 男女床上黄色一级片免费看| 午夜久久久在线观看| 激情视频va一区二区三区| 性色av乱码一区二区三区2| 在线观看免费高清a一片| 巨乳人妻的诱惑在线观看| 大香蕉久久成人网| 另类精品久久| 日本av免费视频播放| 黄网站色视频无遮挡免费观看| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 一个人免费在线观看的高清视频| 99九九在线精品视频| 国产一区二区激情短视频| 青青草视频在线视频观看| 国产一卡二卡三卡精品| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美在线一区| av在线播放免费不卡| 亚洲综合色网址| 久久国产精品男人的天堂亚洲| 最新在线观看一区二区三区| 男女午夜视频在线观看| 亚洲成国产人片在线观看| 一个人免费看片子| 成年女人毛片免费观看观看9 | 热99久久久久精品小说推荐| 精品第一国产精品| 一二三四社区在线视频社区8| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 窝窝影院91人妻| 亚洲男人天堂网一区| 久久热在线av| 亚洲精品美女久久av网站| 99精品在免费线老司机午夜| videosex国产| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 757午夜福利合集在线观看| 国产福利在线免费观看视频| 国产精品一区二区精品视频观看| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜精品| 青草久久国产| 免费在线观看影片大全网站| 日本一区二区免费在线视频| 99国产极品粉嫩在线观看| 精品国产一区二区久久| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 免费少妇av软件| 久久久国产一区二区| 久久国产精品男人的天堂亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产精品男人的天堂亚洲| 国产亚洲欧美精品永久| 国产精品一区二区免费欧美| 久久毛片免费看一区二区三区| 高清av免费在线| 国产又色又爽无遮挡免费看| 国产精品 欧美亚洲| 他把我摸到了高潮在线观看 | 露出奶头的视频| 欧美乱码精品一区二区三区| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 中国美女看黄片| 黑人巨大精品欧美一区二区mp4| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 高清视频免费观看一区二区| 国产av国产精品国产| 五月开心婷婷网| 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲 | 一个人免费看片子| 国产激情久久老熟女| 国产精品国产av在线观看| 久久热在线av| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 狠狠婷婷综合久久久久久88av| 在线 av 中文字幕| 最新的欧美精品一区二区| 老熟妇乱子伦视频在线观看| 一区二区三区精品91| 悠悠久久av| 午夜老司机福利片| 日本欧美视频一区| 国产高清国产精品国产三级| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品98久久久久久宅男小说| 成人手机av| 精品国产一区二区久久| 色在线成人网| 免费av中文字幕在线| 欧美激情 高清一区二区三区| 精品国内亚洲2022精品成人 | 香蕉丝袜av| 激情在线观看视频在线高清 | 伦理电影免费视频| 日韩三级视频一区二区三区| 一本综合久久免费| 老鸭窝网址在线观看| 国产亚洲一区二区精品| 日本一区二区免费在线视频| 国产一区有黄有色的免费视频| 夫妻午夜视频| 老汉色av国产亚洲站长工具| 一本久久精品| 免费看十八禁软件| 黄色 视频免费看| 日本vs欧美在线观看视频| 精品一区二区三卡| 久久人人爽av亚洲精品天堂| 国产男女超爽视频在线观看| 精品福利观看| 亚洲一卡2卡3卡4卡5卡精品中文| 免费黄频网站在线观看国产| 欧美精品av麻豆av| 岛国毛片在线播放| 夜夜骑夜夜射夜夜干| 亚洲国产欧美一区二区综合| 黄色 视频免费看| av片东京热男人的天堂| 久久精品国产亚洲av香蕉五月 | 久久婷婷成人综合色麻豆| 精品久久久久久电影网| 一区福利在线观看| 久久青草综合色| 久久中文字幕一级| 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| 丁香欧美五月| 国产精品一区二区免费欧美| 国产av精品麻豆| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 免费少妇av软件| 久久影院123| 国产精品九九99| 国产精品熟女久久久久浪| 欧美亚洲 丝袜 人妻 在线| 亚洲 国产 在线| 色综合欧美亚洲国产小说| 91麻豆精品激情在线观看国产 | 国产片内射在线| 亚洲精品美女久久av网站| 久久精品亚洲精品国产色婷小说| 国产成人影院久久av| 成人国产一区最新在线观看| 国产精品免费大片| 啦啦啦 在线观看视频| av不卡在线播放| 这个男人来自地球电影免费观看| www.自偷自拍.com| 国产亚洲欧美精品永久| 日本黄色日本黄色录像| 99国产精品99久久久久| 久久人妻福利社区极品人妻图片| 一二三四在线观看免费中文在| 成人黄色视频免费在线看| 在线观看人妻少妇| 亚洲精品国产色婷婷电影| 美女高潮到喷水免费观看| 欧美日韩国产mv在线观看视频| 母亲3免费完整高清在线观看| 女人被躁到高潮嗷嗷叫费观| 少妇的丰满在线观看| 日韩欧美三级三区| 久久精品国产综合久久久| 久久精品91无色码中文字幕| 国产深夜福利视频在线观看| 久久久精品94久久精品| 露出奶头的视频| 一级a爱视频在线免费观看| 国产国语露脸激情在线看| 丝袜喷水一区| 久久午夜综合久久蜜桃| 久久中文字幕人妻熟女| 成人特级黄色片久久久久久久 | 欧美 日韩 精品 国产| 少妇的丰满在线观看| 一本一本久久a久久精品综合妖精| 搡老熟女国产l中国老女人| 亚洲精华国产精华精| 成人国产一区最新在线观看| svipshipincom国产片| 亚洲中文av在线| 色老头精品视频在线观看| 99精品久久久久人妻精品| 午夜福利欧美成人| 久久 成人 亚洲| 亚洲国产欧美一区二区综合| 久久人人97超碰香蕉20202| 国产男女内射视频| 女性生殖器流出的白浆| 一二三四在线观看免费中文在| 精品国产一区二区久久| 国产欧美日韩一区二区三| 午夜91福利影院| 久久精品成人免费网站| 免费看a级黄色片| 久久热在线av| 18禁美女被吸乳视频| 久久国产精品影院| 国产精品秋霞免费鲁丝片| 久久久精品免费免费高清| 日本av手机在线免费观看| 男女免费视频国产| 三上悠亚av全集在线观看| 国产亚洲午夜精品一区二区久久| 人人妻人人澡人人爽人人夜夜| 麻豆成人av在线观看| 桃花免费在线播放| 国产伦理片在线播放av一区| 两性午夜刺激爽爽歪歪视频在线观看 | 新久久久久国产一级毛片| 丰满迷人的少妇在线观看| 黄频高清免费视频| 婷婷成人精品国产| 美女扒开内裤让男人捅视频| videosex国产| 国产日韩欧美视频二区| 久久精品国产99精品国产亚洲性色 | 亚洲五月婷婷丁香| 在线观看一区二区三区激情| 一级毛片精品| 视频在线观看一区二区三区| 亚洲少妇的诱惑av| 91老司机精品| 天天操日日干夜夜撸| 亚洲全国av大片| 国产精品一区二区在线不卡| 黄频高清免费视频| 久久久久久久国产电影| 色尼玛亚洲综合影院| 极品教师在线免费播放| 建设人人有责人人尽责人人享有的| 亚洲第一欧美日韩一区二区三区 | 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区黑人| 12—13女人毛片做爰片一| 法律面前人人平等表现在哪些方面| 老司机影院毛片| 亚洲精品在线美女| 午夜激情久久久久久久| 90打野战视频偷拍视频| 动漫黄色视频在线观看| 2018国产大陆天天弄谢| 成人亚洲精品一区在线观看| 天堂俺去俺来也www色官网| 精品午夜福利视频在线观看一区 | 淫妇啪啪啪对白视频| 99国产精品一区二区蜜桃av | 大陆偷拍与自拍|