• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聯(lián)圖W4+Cn的交叉數(shù)

    2014-07-19 15:10:16岳為君黃元秋歐陽(yáng)章東
    關(guān)鍵詞:子圖畫法圓盤

    岳為君,黃元秋,歐陽(yáng)章東

    1.湖南師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,長(zhǎng)沙 410081

    2.湖南第一師范學(xué)院數(shù)學(xué)系,長(zhǎng)沙 410205

    聯(lián)圖W4+Cn的交叉數(shù)

    岳為君1,黃元秋1,歐陽(yáng)章東2

    1.湖南師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,長(zhǎng)沙 410081

    2.湖南第一師范學(xué)院數(shù)學(xué)系,長(zhǎng)沙 410205

    1 引言

    本文中未說明的概念和術(shù)語(yǔ)均同文獻(xiàn)[1],且無特別說明所涉及的圖G=(V(G),E(G))均指簡(jiǎn)單連通圖,一個(gè)圖G在平面上的一個(gè)好畫法是指滿足以下四個(gè)條件的畫法:

    (1)任意兩條邊最多交叉一次;(2)邊不能自身交叉;

    (3)任意相鄰的兩條邊不能交叉;(4)沒有三條邊交叉于同一個(gè)點(diǎn)。

    crD(G)表示在好畫法D下G中邊與邊之間的交叉數(shù)目。而圖G的交叉數(shù),記為cr(G),其中cr(G)=,即圖G的所有好畫法D中交叉數(shù)中的最小值。若φ是G的一個(gè)好畫法,使得crφ(G)=cr(G),則稱φ是G的一個(gè)最優(yōu)畫法。

    圖的交叉數(shù)是圖的一個(gè)重要參數(shù),自從圖的交叉數(shù)概念提出以來,國(guó)內(nèi)外許多學(xué)者都做出了很多的研究,但由于確定圖的交叉數(shù)是NP-難問題[2],目前國(guó)內(nèi)外在確定圖類的交叉數(shù)研究中,主要是針對(duì)一些特殊結(jié)構(gòu)的圖類上,或者一些圖與圖作某種運(yùn)算后得到的圖,如完全2-部圖Km,n[3],完全多部圖[4-5]一些路,以及星和圈與一些小階圖G的笛卡爾積圖[6-11],特別地,關(guān)于完全2-部圖Km,n,1954年Zarankiewicz在文獻(xiàn)[12]中得到了著名的Zarankiewicz猜想,后來,Ringel和Kainen各自獨(dú)立發(fā)現(xiàn)Zarankiewicz在文獻(xiàn)[12]中的猜想有誤[13]。D.J.Kleitman在文獻(xiàn)[3]中證明了當(dāng)min{m,n}≤6時(shí),Zarankiewicz猜想成立,即Km,n的交叉數(shù)為:cr(Km,n)=Z(m,n)=。這里,對(duì)任意實(shí)數(shù)x,表示不超過x的最大整數(shù)。

    令G和H是兩個(gè)沒有公共頂點(diǎn)的簡(jiǎn)單圖,圖G和H的聯(lián)圖G+H表示這樣的一個(gè)圖:頂點(diǎn)集V(G∪H)=V(G)∪V(H),邊集E(G∪H)=E(G)∪E(H)∪{e(u,v)|?u∈V(G)且v∈V(H)},其中e(u,v)表示連接頂點(diǎn)u和v的邊。設(shè)φ是圖G的一個(gè)好畫法,對(duì)G的任意邊子集A和B,記號(hào)crφ(A)表示在畫法φ下,A中邊之間產(chǎn)生的交叉數(shù):記號(hào)crφ(A,B)表示在畫法φ下,A中邊與B中的邊之間產(chǎn)生的交叉數(shù)。顯然,當(dāng)A=E(G)時(shí),crφ(A)=crφ(G)。

    本文中,一個(gè)輪圖Wm是指一個(gè)圈Cm添加一個(gè)新頂點(diǎn),并且把這個(gè)頂點(diǎn)與圈的所有頂點(diǎn)相連所得的圖,記號(hào)Cn表示有n個(gè)點(diǎn)的一個(gè)圈。目前,有關(guān)聯(lián)圖的交叉數(shù)方面的研究結(jié)果較少。Oporowski B等人在文獻(xiàn)[14]中得到了聯(lián)圖C3+C6的交叉數(shù)。文獻(xiàn)[15]已經(jīng)確定了Pm+Pn和Cm+Cn的交叉數(shù)。近期,Klesc M在文獻(xiàn)[16]中,得到了所有3-階和4-階圖G與路Pn,圈Cn的聯(lián)圖的交叉數(shù)。本文主要確定了5-階輪圖W4的聯(lián)圖的交叉數(shù),即如下定理:

    定理1設(shè)W4為輪圖,圈Cn為一個(gè)長(zhǎng)為n的圈,則有:

    2 基本性質(zhì)和引理

    在證明本文主要結(jié)果之前,先給出如下一些基本性質(zhì)和引理。首先,由交叉數(shù)的定義,易有如下性質(zhì):

    性質(zhì)2.1令D是圖G的一個(gè)好畫法,且A,B,C是圖G的三個(gè)邊不相交的子圖,則有:

    (1)crD(A∪B)=crD(A)+crD(B)+crD(A,B)

    (2)crD(A∪B,C)=crD(A,C)+crD(B,C)

    性質(zhì)2.2若A是G的子圖,則有cr(A)≤cr(G)。

    性質(zhì)2.3若圖G與圖H同構(gòu),則有cr(G)=cr(H)。

    引理2.4[11]cr(K4,n)=Z(4,n),cr(K5,n)=Z(5,n)。

    引理2.5[15]設(shè)G為任意一個(gè)圖,φ是Cn+G的一個(gè)最優(yōu)畫法,則圈Cn自身不會(huì)相交,即crφ(Cn)=0。

    引理2.6[16]cr(W3+Cn)=Z(4,n)+n+4,n≥3。

    下面的引理在本文第3章主要結(jié)果的證明中反復(fù)運(yùn)用。

    引理2.8設(shè)Cn=v1v2…vn為一個(gè)圈,Cn在平面上圍成一個(gè)圓盤D,在D的內(nèi)部放置m個(gè)點(diǎn)xj(1≤j≤m),xj與每個(gè)vi(1≤i≤n)連邊,記這樣的邊組成的集合為Txj。若φ是這樣一個(gè)畫法,使得所有邊集Txj都畫在圓盤D的內(nèi)部,即產(chǎn)生的交叉數(shù),即

    3 定理的證明

    定理3.1設(shè)W4為輪圖,圈Cn為一個(gè)長(zhǎng)為n的圈,則有

    在證明定理之前,為了方便,先規(guī)定有關(guān)記號(hào):設(shè)V(W4)={t0,t1,t2,t3,t4},其中t0是W4的中心點(diǎn),而ti(1≤i≤4)表示W(wǎng)4的葉子點(diǎn);V(Cn)={v1,v2,…,vn},En=E(Cn);對(duì)每個(gè)0≤i≤4,記T=T0∪T1∪T2∪T3∪T4,其中Ti={tivj|1≤j≤n}。E′0={t0ti|1≤i≤4},C4=t1-t2-t3-t4-t1,E(C4)=E′4,則E(W4)=E′0∪E′4。又對(duì)于G+Cn的任意邊子集A,A表示由G+Cn的邊子集A導(dǎo)出的子圖。于是W4+Cn的邊集可分解為如下一些不相交的邊子集的并,即有

    因此,在后面的證明中,總是假定n≥4。

    先在平面上構(gòu)造W4+Cn的一個(gè)好畫法π,使

    畫法π的構(gòu)造如圖1。

    圖1 W4+Cn的一個(gè)好畫法π

    以下證明在畫法φ下總能得到一個(gè)與式(1)相矛盾的結(jié)論,從而得到假設(shè)不成立。

    在以下的證明,總是記住如下事實(shí)及斷言:

    事實(shí)因?yàn)棣帐亲顑?yōu)畫法,由引理2.5可知,Cn自身不會(huì)交叉,即crφ(En)=0。在畫法φ下,Cn圍成一個(gè)圓盤D,由對(duì)稱性,可以假定點(diǎn)t0總是位于圓盤D的內(nèi)部。

    斷言1在φ是W4+Cn最優(yōu)畫法下,crφ(E′4,En)+

    證明根據(jù)引理2.7和性質(zhì)2.1以及事實(shí)可得:

    圖2 W4的兩種特殊情形

    子情形1.1當(dāng)crφ(E′4,En)=0且crφ(E′0,En)≤3時(shí),W4的5個(gè)頂點(diǎn)都在Cn的同一區(qū)域,且所有邊集Txj,0≤j≤4都畫在圓盤D的內(nèi)部,由引理2.8得:

    子情形1.2當(dāng)crφ(E′4,En)=2且crφ(E′0,En)≤1時(shí)。

    子情形1.2.1當(dāng)crφ(E′4,En)=2且crφ(E′0,En)=0時(shí),如圖3,W4的5個(gè)頂點(diǎn)都在Cn的同一區(qū)域,且所有邊集Txj,0≤j≤4都畫在圓盤D的內(nèi)部,由引理2.8得:

    圖3 子情形1.2.1

    子情形1.2.2當(dāng)crφ(E′4,En)=2且crφ(E′0,En)=1時(shí),如圖4(a)。

    圖4 子情形1.2.2

    (1)若W4自身有交叉,即crφ(W4)≥1,W4+Cn包含一個(gè)K4,n+1子圖,則:

    (2)若W4自身無交叉,設(shè)Cn有x1個(gè)頂點(diǎn)在C4外部,x2個(gè)頂點(diǎn)在C4內(nèi)部,其中x1+x2=n。在最優(yōu)畫法φ下W4+Cn包含一個(gè)邊導(dǎo)出子圖W3+Cn,且crφ(C3,Cn)=2,其中C3=t1-t2-t3-t1。W3的四個(gè)頂點(diǎn)全在Cn內(nèi)部,C3和不自交的Cn有兩個(gè)交叉只有如圖4(b)一種情況,C3把Cn內(nèi)部分成兩個(gè)對(duì)稱區(qū)域,若t0在圈C3內(nèi)部,則t2在圈t1-t0-t3-t1外部,記圈t1-t0-t3-t1為C,若t0在圈C3外部,則t2在圈C內(nèi)部,由Jordan曲線定理可知crφ(T0,C3)+crφ(T2,C)≥n,由性質(zhì)2.2知:

    圖5 情形2

    子情形2.2當(dāng)crφ(E′4,En)=2時(shí),則crφ(E′0,En)=0如圖5(b),記crφ(Tx,En)=1,0≤x≤4。又,W4的四個(gè)頂點(diǎn)都在Cn的同一區(qū)域,且四個(gè)點(diǎn)的所有邊集Tx都畫在圓盤D的內(nèi)部,類似子情形2.1易推出與假設(shè)矛盾。

    子情形3.1當(dāng)crφ(Tx,En)=2,0≤x≤4時(shí),滿足結(jié)論要求,如圖6。

    圖6 子情形3.1

    子情形3.1.1如圖6(a),由子情形2.1可得出與假設(shè)矛盾。

    子情形3.1.2如圖6(b),

    圖7 子情形3.2

    子情形4.1當(dāng)crφ(Tx,En)=3時(shí),

    子情形4.1.1如圖8(a),由子情形2.1可得出與假設(shè)矛盾。

    圖8 子情形4.1

    子情形4.1.2如圖8(b),由子情形3.1.2可得出與假設(shè)矛盾。

    子情形4.1.3如圖8(c),

    圖9 子情形4.2

    子情形4.2.1如圖9(a),類似子情形3.2可推出與假設(shè)矛盾。

    子情形4.2.2如圖9(b)。

    子情形4.2.2.1當(dāng)crφ(T0,En)=0時(shí),不妨設(shè)crφ(T1,En)= 2,crφ(T2,En)=1,則

    子情形4.2.2.2當(dāng)crφ(T0,En)=1,類似子情形4.2.2.1可得出矛盾。

    圖10 子情形4.3

    4 結(jié)論及猜想

    [1]Bondy J A,Murty U S R.Graph theory with applications[M]. North-Holland:Elsevier Science Ltd,1976.

    [2]Garey M R,Johnson D S.Crossing number is NP-complete[J].Slam J Algebric Discrete Methods,1993,4:312-316.

    [3]Kleitman D J.The crossing number ofK5,n[J].Combinatorial Theory,1971,9:315-323.

    [4]Ho P T.On the crossing number of some complete multipartite graphs[J].Utilitas Mathematica,2009,79:143-154.

    [5]Mei H F,Huang Y Q.The crossing number ofK1,5,n[J]. International J Math Com,2007,1:33-44.

    [6]Klesc M.The crossing numbers ofK2,3×PnandK2,3×Sn[J].Tatra Moutains Math Publ,1996,1:51-56.

    [7]Klesc M.On the crossing number of Cartesian products of stars and paths or cycles[J].Math Slovaca,1991,41:113-120.

    [8]Beineke L W,Ringeisen R D.On the crossing number of products of cycles and graphs of order four[J].Graph Theory,1980,4:145-155.

    [9]Klesc M.The crossing number of Cartesian products of paths with 5-vertex graphs[J].Discrete Mathematics,2001,233:353-359.

    [10]Klesc M.The crossing number of the Cartesian products ofWmwithPn[J].Mathematical Research,2009,29:362-366.

    [11]Wang J,Huang Y Q.The crossing number ofK2,4×Pn[J]. Acta Mathematica Scientia:in Chinese,2008,28A:251-255.

    [12]Zarankiewicz K.On a problem of P.turan concerning graphs[J].Fund Math,1954,41:137-145.

    [13]Guy R K.The decline and fall of Zarankiewicz’s theorem[C]//Proc of the Second Ann Arbor Graph Theory Conference.New York:Academic Press,1969:63-69.

    [14]Oporowski B,Zhao D.Coloring graphs with crossing[J]. Discrete Mathematics,2009,309:2948-2951.

    [15]Tang L,Wang J,Huang Y Q.The crossing number of the join ofCnandPn[J].International J Math Com,2007,11:110-116.

    [16]Klesc M.The join of the graphs and crossing numbers[J]. Discrete Math,2007,28:349-355.

    [17]賀佩玲,黃元秋.W4×Sn的交叉數(shù)[J].鄭州大學(xué)學(xué)報(bào):理學(xué)版,2007,39(4):14-21.

    YUE Weijun1,HUANG Yuanqiu1,OUYANG Zhangdong2

    1.College of Mathematics and Computer Science,Hunan Normal University,Changsha 410081,China
    2.Department of Mathematics,Hunan First Normal University,Changsha 410205,China

    drawing;crossing number;join graph;Cn

    聯(lián)圖G+H表示將G中每個(gè)點(diǎn)與H中的每個(gè)點(diǎn)連邊得到的圖。在Klesc M.給出聯(lián)圖W3+Cn的交叉數(shù)的基礎(chǔ)上,應(yīng)用反證法和排除法得到了聯(lián)圖W4+Cn的交叉數(shù)為,并在Zarankiewicz猜想成立的前提下,根據(jù)證明,提出對(duì)Wm+Cn的交叉數(shù)的一個(gè)猜想:

    畫法;交叉數(shù);聯(lián)圖;圈

    A

    O157.5

    10.3778/j.issn.1002-8331.1401-0203

    YUE Weijun,HUANG Yuanqiu,OUYANG Zhangdong.On crossing numbers of join ofW4+Cn.Computer Engineering and Applications,2014,50(18):79-84.

    國(guó)家自然科學(xué)基金(No.11371133,No.11301169)。

    岳為君(1989—),男,碩士,主要研究方向:圖論及其應(yīng)用;黃元秋(1966—),通訊作者,男,博士,教授,博士生導(dǎo)師,主要研究方向:圖論及其應(yīng)用;歐陽(yáng)章東(1981—),男,博士,講師,主要研究方向:圖論及其應(yīng)用。E-mail:hyqq@hunnu.edu.cn

    2014-01-14

    2014-03-18

    1002-8331(2014)18-0079-06

    猜你喜歡
    子圖畫法圓盤
    鱷魚的畫法
    圓盤鋸刀頭的一種改進(jìn)工藝
    石材(2020年6期)2020-08-24 08:27:00
    臨界完全圖Ramsey數(shù)
    水禽的畫法(六)
    老年教育(2018年12期)2018-12-29 12:43:02
    夜景的畫法
    童話世界(2018年20期)2018-08-06 08:57:38
    菊花的畫法
    丹青少年(2017年1期)2018-01-31 02:28:27
    單位圓盤上全純映照模的精細(xì)Schwarz引理
    奇怪的大圓盤
    基于頻繁子圖挖掘的數(shù)據(jù)服務(wù)Mashup推薦
    基于Profibus-DP的圓盤澆鑄控制系統(tǒng)的應(yīng)用
    超碰成人久久| 最近中文字幕2019免费版| a级毛片在线看网站| 国产人伦9x9x在线观看| 国产一区二区激情短视频 | 伦理电影免费视频| 日本av手机在线免费观看| 99久久综合免费| 在线 av 中文字幕| 12—13女人毛片做爰片一| 国产视频一区二区在线看| 亚洲一区中文字幕在线| 热99国产精品久久久久久7| 国产亚洲一区二区精品| 精品久久久精品久久久| 欧美日本中文国产一区发布| 一级黄色大片毛片| 女警被强在线播放| 99精国产麻豆久久婷婷| 天天躁日日躁夜夜躁夜夜| 最近最新中文字幕大全免费视频| 免费少妇av软件| 精品久久久精品久久久| 大码成人一级视频| 国产精品久久久久久人妻精品电影 | 国产精品二区激情视频| 亚洲三区欧美一区| 国产xxxxx性猛交| 久久中文看片网| 日韩视频一区二区在线观看| 欧美日韩成人在线一区二区| 婷婷丁香在线五月| 亚洲欧美一区二区三区久久| 婷婷色av中文字幕| 久久精品aⅴ一区二区三区四区| 国产精品九九99| 男女免费视频国产| 亚洲色图 男人天堂 中文字幕| 18禁裸乳无遮挡动漫免费视频| 久久影院123| 午夜91福利影院| 国产精品一区二区精品视频观看| 精品亚洲成国产av| 99re6热这里在线精品视频| 久久女婷五月综合色啪小说| 18禁观看日本| 香蕉丝袜av| 一本综合久久免费| 黄频高清免费视频| 99国产精品一区二区三区| 两人在一起打扑克的视频| 男女下面插进去视频免费观看| 巨乳人妻的诱惑在线观看| 亚洲精品第二区| 黑人欧美特级aaaaaa片| 日本av免费视频播放| 成人免费观看视频高清| 无遮挡黄片免费观看| 国产精品国产三级国产专区5o| videos熟女内射| 精品一区二区三卡| 俄罗斯特黄特色一大片| 三级毛片av免费| 国产日韩一区二区三区精品不卡| 老司机影院毛片| a级毛片在线看网站| 性少妇av在线| 啦啦啦在线免费观看视频4| 手机成人av网站| 老司机靠b影院| 欧美黑人精品巨大| 纵有疾风起免费观看全集完整版| 久久这里只有精品19| 欧美少妇被猛烈插入视频| 久久人人爽av亚洲精品天堂| 国产精品99久久99久久久不卡| 乱人伦中国视频| 亚洲,欧美精品.| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩一区二区精品| 国产成人免费观看mmmm| 欧美久久黑人一区二区| 秋霞在线观看毛片| 国产精品久久久人人做人人爽| 天天添夜夜摸| 99久久国产精品久久久| 日日摸夜夜添夜夜添小说| 亚洲欧美精品综合一区二区三区| 日韩精品免费视频一区二区三区| 国产精品av久久久久免费| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲av一区麻豆| 精品国产乱子伦一区二区三区 | kizo精华| 一区二区三区乱码不卡18| 视频区欧美日本亚洲| 精品一区二区三区av网在线观看 | 亚洲av成人不卡在线观看播放网 | kizo精华| 精品人妻熟女毛片av久久网站| 19禁男女啪啪无遮挡网站| 欧美日本中文国产一区发布| 国产一区二区三区在线臀色熟女 | 波多野结衣一区麻豆| 婷婷丁香在线五月| 精品国产国语对白av| 99国产精品一区二区三区| 热re99久久精品国产66热6| 欧美日韩黄片免| 久久久久久久国产电影| 午夜免费成人在线视频| 久久亚洲精品不卡| 黄频高清免费视频| 欧美日韩亚洲国产一区二区在线观看 | 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| cao死你这个sao货| 丰满人妻熟妇乱又伦精品不卡| 9热在线视频观看99| 国产一区有黄有色的免费视频| 啦啦啦 在线观看视频| 宅男免费午夜| 中文字幕人妻丝袜一区二区| www.av在线官网国产| 免费女性裸体啪啪无遮挡网站| 一级,二级,三级黄色视频| 最新的欧美精品一区二区| 欧美日韩福利视频一区二区| 在线观看免费午夜福利视频| 老司机午夜福利在线观看视频 | 亚洲精品国产区一区二| 精品亚洲乱码少妇综合久久| 美女午夜性视频免费| 国产成人系列免费观看| 美女中出高潮动态图| 亚洲国产精品999| 免费高清在线观看日韩| av超薄肉色丝袜交足视频| 久久精品成人免费网站| 久久久精品国产亚洲av高清涩受| 日韩一卡2卡3卡4卡2021年| 欧美中文综合在线视频| 久久人人爽av亚洲精品天堂| 亚洲精品国产色婷婷电影| 欧美大码av| 日日摸夜夜添夜夜添小说| 黄网站色视频无遮挡免费观看| 国产野战对白在线观看| 精品人妻熟女毛片av久久网站| 国产成人精品久久二区二区91| 亚洲欧美成人综合另类久久久| 亚洲avbb在线观看| 久久久精品94久久精品| 窝窝影院91人妻| 国产视频一区二区在线看| 久久久欧美国产精品| 久久免费观看电影| 日本av手机在线免费观看| 亚洲精品国产区一区二| 男人舔女人的私密视频| 国产在线一区二区三区精| 18禁裸乳无遮挡动漫免费视频| 欧美日韩福利视频一区二区| 午夜福利在线观看吧| 香蕉国产在线看| 在线观看www视频免费| 国产精品影院久久| 久久天堂一区二区三区四区| 十八禁网站免费在线| 中文字幕人妻丝袜制服| 亚洲一区二区三区欧美精品| 久久这里只有精品19| 各种免费的搞黄视频| 日本av手机在线免费观看| 水蜜桃什么品种好| 国产精品久久久人人做人人爽| 一级,二级,三级黄色视频| 亚洲免费av在线视频| 亚洲欧美一区二区三区久久| 久久久国产欧美日韩av| 久久久久国内视频| 国产在视频线精品| 午夜免费观看性视频| 亚洲精华国产精华精| 精品久久久久久电影网| 老司机深夜福利视频在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 午夜久久久在线观看| 精品福利观看| 国产不卡av网站在线观看| 丝袜人妻中文字幕| 高潮久久久久久久久久久不卡| 在线观看www视频免费| 十八禁网站免费在线| 久久香蕉激情| 亚洲专区字幕在线| 久久久欧美国产精品| 国产精品成人在线| 午夜免费鲁丝| 午夜精品国产一区二区电影| 国产精品av久久久久免费| 国产亚洲欧美精品永久| 午夜两性在线视频| 成人免费观看视频高清| 国产男人的电影天堂91| 亚洲五月色婷婷综合| 蜜桃在线观看..| tocl精华| av电影中文网址| 精品国产一区二区三区四区第35| 亚洲七黄色美女视频| 熟女少妇亚洲综合色aaa.| 亚洲精品av麻豆狂野| 九色亚洲精品在线播放| 97在线人人人人妻| 亚洲中文av在线| 国产欧美日韩综合在线一区二区| 精品国产国语对白av| 少妇精品久久久久久久| 欧美成狂野欧美在线观看| 国精品久久久久久国模美| 精品亚洲成a人片在线观看| 亚洲欧美一区二区三区黑人| 欧美国产精品一级二级三级| 999久久久国产精品视频| 大陆偷拍与自拍| 国产精品亚洲av一区麻豆| 曰老女人黄片| 国产一区二区三区综合在线观看| 亚洲国产av影院在线观看| 在线 av 中文字幕| 高清视频免费观看一区二区| 久久久久久亚洲精品国产蜜桃av| 建设人人有责人人尽责人人享有的| 十八禁网站网址无遮挡| 日韩一卡2卡3卡4卡2021年| 精品国内亚洲2022精品成人 | av网站在线播放免费| 一级a爱视频在线免费观看| 亚洲第一青青草原| 热99re8久久精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 大片免费播放器 马上看| 精品视频人人做人人爽| 免费在线观看黄色视频的| 久久国产精品人妻蜜桃| 亚洲精品国产av蜜桃| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 精品亚洲乱码少妇综合久久| 男女边摸边吃奶| 精品国内亚洲2022精品成人 | 国产无遮挡羞羞视频在线观看| 久久女婷五月综合色啪小说| 精品久久蜜臀av无| 黄网站色视频无遮挡免费观看| 国产精品.久久久| 免费不卡黄色视频| 建设人人有责人人尽责人人享有的| 90打野战视频偷拍视频| 精品国产一区二区久久| 欧美精品av麻豆av| 女性被躁到高潮视频| 亚洲国产成人一精品久久久| 欧美精品人与动牲交sv欧美| 捣出白浆h1v1| www.av在线官网国产| 日韩一卡2卡3卡4卡2021年| 国产一区二区 视频在线| 999久久久国产精品视频| 亚洲国产欧美一区二区综合| 无限看片的www在线观看| 亚洲久久久国产精品| 三级毛片av免费| 一级黄色大片毛片| 久久女婷五月综合色啪小说| 亚洲精品久久午夜乱码| 久热这里只有精品99| bbb黄色大片| 秋霞在线观看毛片| 天天操日日干夜夜撸| 国产1区2区3区精品| 欧美变态另类bdsm刘玥| 亚洲综合色网址| 男人舔女人的私密视频| 汤姆久久久久久久影院中文字幕| 99九九在线精品视频| 久久毛片免费看一区二区三区| av片东京热男人的天堂| 三上悠亚av全集在线观看| 男女边摸边吃奶| 美国免费a级毛片| 美女高潮喷水抽搐中文字幕| 国产片内射在线| 无遮挡黄片免费观看| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡 | 一区福利在线观看| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 精品国产乱码久久久久久小说| 老熟妇乱子伦视频在线观看 | 亚洲国产精品一区三区| 80岁老熟妇乱子伦牲交| 高清av免费在线| 十八禁高潮呻吟视频| 后天国语完整版免费观看| 九色亚洲精品在线播放| 欧美在线一区亚洲| 免费日韩欧美在线观看| 性色av乱码一区二区三区2| 国精品久久久久久国模美| 国产精品国产av在线观看| 国产一区二区三区在线臀色熟女 | 激情视频va一区二区三区| 国产免费福利视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 91精品三级在线观看| 精品一区在线观看国产| 久久久久久人人人人人| 成人国产一区最新在线观看| 亚洲专区中文字幕在线| 老熟妇乱子伦视频在线观看 | 91大片在线观看| 91大片在线观看| 精品国产国语对白av| 五月天丁香电影| 999久久久国产精品视频| 亚洲精品久久成人aⅴ小说| 五月开心婷婷网| 亚洲一码二码三码区别大吗| 亚洲人成电影免费在线| 一级毛片电影观看| av电影中文网址| 美女视频免费永久观看网站| 国产真人三级小视频在线观看| 日韩视频一区二区在线观看| 真人做人爱边吃奶动态| 99国产精品免费福利视频| av一本久久久久| 日韩视频在线欧美| 高清av免费在线| 欧美精品高潮呻吟av久久| 国产国语露脸激情在线看| 美女视频免费永久观看网站| 久9热在线精品视频| 丰满饥渴人妻一区二区三| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 91av网站免费观看| 午夜91福利影院| 国产精品九九99| 人人妻人人添人人爽欧美一区卜| 精品乱码久久久久久99久播| 国产高清国产精品国产三级| kizo精华| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 国产男人的电影天堂91| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区精品| 999精品在线视频| 国产精品偷伦视频观看了| 侵犯人妻中文字幕一二三四区| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 免费观看人在逋| 咕卡用的链子| 成在线人永久免费视频| 咕卡用的链子| 欧美xxⅹ黑人| 欧美激情久久久久久爽电影 | 亚洲avbb在线观看| 在线观看免费视频网站a站| 首页视频小说图片口味搜索| 十八禁高潮呻吟视频| 日韩一卡2卡3卡4卡2021年| 亚洲av成人不卡在线观看播放网 | 欧美在线黄色| 大片电影免费在线观看免费| 久久亚洲精品不卡| 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 亚洲第一欧美日韩一区二区三区 | 国产精品久久久人人做人人爽| 亚洲avbb在线观看| 国产又色又爽无遮挡免| 中国国产av一级| 在线永久观看黄色视频| 久久影院123| 国产一卡二卡三卡精品| 高潮久久久久久久久久久不卡| 亚洲av美国av| 啦啦啦在线免费观看视频4| 国产在线免费精品| 精品国产国语对白av| 俄罗斯特黄特色一大片| 不卡av一区二区三区| 狠狠婷婷综合久久久久久88av| 一区二区三区乱码不卡18| 久久国产精品大桥未久av| 亚洲av成人一区二区三| 中文字幕人妻丝袜制服| 亚洲一区中文字幕在线| 麻豆av在线久日| 亚洲欧美激情在线| 后天国语完整版免费观看| 成人av一区二区三区在线看 | 亚洲第一av免费看| 国产激情久久老熟女| 在线观看免费视频网站a站| svipshipincom国产片| 少妇被粗大的猛进出69影院| 亚洲国产精品一区三区| 成年人免费黄色播放视频| 叶爱在线成人免费视频播放| 窝窝影院91人妻| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 97精品久久久久久久久久精品| 麻豆av在线久日| 国产视频一区二区在线看| 黄片大片在线免费观看| 亚洲精品国产av蜜桃| 精品一区二区三区四区五区乱码| 亚洲国产毛片av蜜桃av| 一级片'在线观看视频| 人妻 亚洲 视频| 久久午夜综合久久蜜桃| www.av在线官网国产| 亚洲av片天天在线观看| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲 | 亚洲av国产av综合av卡| 妹子高潮喷水视频| bbb黄色大片| 国产野战对白在线观看| 日本猛色少妇xxxxx猛交久久| 日韩欧美一区二区三区在线观看 | 国产一区二区三区av在线| 亚洲专区国产一区二区| 国产精品偷伦视频观看了| 午夜视频精品福利| 少妇人妻久久综合中文| 日韩视频在线欧美| 啦啦啦免费观看视频1| 国产精品亚洲av一区麻豆| 波多野结衣av一区二区av| 大片电影免费在线观看免费| 久久亚洲国产成人精品v| 黄色怎么调成土黄色| 国产三级黄色录像| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 国产无遮挡羞羞视频在线观看| 两性夫妻黄色片| 久久人人97超碰香蕉20202| 极品人妻少妇av视频| 国产又爽黄色视频| 国产高清videossex| 男女床上黄色一级片免费看| 精品卡一卡二卡四卡免费| 免费女性裸体啪啪无遮挡网站| 黄色视频在线播放观看不卡| 国产精品偷伦视频观看了| 亚洲精品国产av蜜桃| 成人国产av品久久久| 在线精品无人区一区二区三| 亚洲精品av麻豆狂野| 一个人免费在线观看的高清视频 | 在线天堂中文资源库| 咕卡用的链子| 午夜福利在线观看吧| 亚洲精品国产区一区二| 国产一区二区在线观看av| 天天影视国产精品| 成人国语在线视频| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 婷婷色av中文字幕| cao死你这个sao货| 欧美精品啪啪一区二区三区 | 热99re8久久精品国产| 老熟妇乱子伦视频在线观看 | 欧美变态另类bdsm刘玥| 中文字幕色久视频| av在线老鸭窝| 在线av久久热| 精品亚洲乱码少妇综合久久| 成人黄色视频免费在线看| 手机成人av网站| 国产av精品麻豆| 淫妇啪啪啪对白视频 | 这个男人来自地球电影免费观看| 亚洲精品国产av成人精品| 国产精品九九99| 亚洲色图综合在线观看| www.999成人在线观看| 久久久久久久久免费视频了| 日韩三级视频一区二区三区| 一区二区三区乱码不卡18| 国产成人精品无人区| 建设人人有责人人尽责人人享有的| 热99re8久久精品国产| av欧美777| 精品一区在线观看国产| 岛国毛片在线播放| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 亚洲少妇的诱惑av| 亚洲精品国产色婷婷电影| 亚洲中文av在线| 欧美人与性动交α欧美软件| 成年人黄色毛片网站| 丁香六月天网| av天堂久久9| 国产一区二区三区在线臀色熟女 | 国产一区二区三区在线臀色熟女 | 男女边摸边吃奶| 日韩制服丝袜自拍偷拍| 亚洲综合色网址| 日韩,欧美,国产一区二区三区| 欧美国产精品va在线观看不卡| 久久九九热精品免费| 久久精品国产a三级三级三级| 国产男女内射视频| 亚洲精品粉嫩美女一区| 欧美日韩精品网址| 成人黄色视频免费在线看| 国产又爽黄色视频| 黄色怎么调成土黄色| 少妇裸体淫交视频免费看高清 | 中国美女看黄片| 午夜视频精品福利| www.精华液| 久久精品人人爽人人爽视色| 水蜜桃什么品种好| 亚洲国产av新网站| 国产不卡av网站在线观看| 99久久综合免费| 人成视频在线观看免费观看| 午夜视频精品福利| 国产精品欧美亚洲77777| 色94色欧美一区二区| 九色亚洲精品在线播放| 老司机午夜十八禁免费视频| 欧美老熟妇乱子伦牲交| 美国免费a级毛片| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频在线观看免费| 天堂8中文在线网| 中文字幕人妻丝袜制服| 久久久久久免费高清国产稀缺| 亚洲欧美成人综合另类久久久| 午夜福利一区二区在线看| 午夜日韩欧美国产| av超薄肉色丝袜交足视频| 91字幕亚洲| 多毛熟女@视频| 天天添夜夜摸| 妹子高潮喷水视频| 国产亚洲欧美精品永久| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 成人国产av品久久久| 永久免费av网站大全| 久久久久久久大尺度免费视频| 色综合欧美亚洲国产小说| 亚洲精品美女久久av网站| 手机成人av网站| 国产一区二区在线观看av| 午夜福利,免费看| 欧美性长视频在线观看| 中文字幕人妻熟女乱码| 80岁老熟妇乱子伦牲交| 日韩免费高清中文字幕av| tocl精华| 欧美精品高潮呻吟av久久| 日日爽夜夜爽网站| 亚洲精品日韩在线中文字幕| videos熟女内射| xxxhd国产人妻xxx| 久久免费观看电影| 午夜福利视频在线观看免费| 日日夜夜操网爽| 亚洲精品日韩在线中文字幕| 国产精品麻豆人妻色哟哟久久| 亚洲 欧美一区二区三区| 亚洲国产欧美一区二区综合| 国产亚洲精品第一综合不卡| 黄色怎么调成土黄色| 亚洲国产欧美一区二区综合| 男女午夜视频在线观看| 黄色怎么调成土黄色| 中亚洲国语对白在线视频| 免费黄频网站在线观看国产| 国精品久久久久久国模美| 18在线观看网站| 国产精品麻豆人妻色哟哟久久| 国产1区2区3区精品| 免费人妻精品一区二区三区视频| 精品国产一区二区三区四区第35| 中文字幕高清在线视频| 两性夫妻黄色片| h视频一区二区三区| 天天躁日日躁夜夜躁夜夜| 午夜精品久久久久久毛片777| 久热这里只有精品99| 我要看黄色一级片免费的| 操出白浆在线播放| 热99久久久久精品小说推荐|