• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二氰基亞甲基-四氫吡喃-苯并噻二唑的多功能邏輯門應用

    2014-07-19 11:54:38喻艷華付成文丹賀賢然
    江漢大學學報(自然科學版) 2014年2期
    關(guān)鍵詞:噻二唑基亞吡喃

    喻艷華,付成,文丹,賀賢然

    (江漢大學交叉學科研究院,湖北武漢430056)

    二氰基亞甲基-四氫吡喃-苯并噻二唑的多功能邏輯門應用

    喻艷華,付成,文丹,賀賢然*

    (江漢大學交叉學科研究院,湖北武漢430056)

    合成了基于二氰基亞甲基-四氫吡喃和苯并噻二唑的新型熒光化合物,并研究了該化合物通過改變二價銅離子和氟離子/溴離子滴加順序?qū)姆肿訜晒猬F(xiàn)象。研究發(fā)現(xiàn)先加入二價銅離子導致該化合物的最大發(fā)射波長“藍移”,繼續(xù)滴加氟離子導致熒光淬滅,若繼續(xù)滴加的是溴離子則熒光不變;反之先加入氟離子,該化合物熒光強度微弱降低,繼續(xù)滴加銅離子對熒光強度影響不大,若滴加溴離子,該化合物熒光不變,繼續(xù)滴加銅離子,最大發(fā)射波長強度降低,并且在485nm處出現(xiàn)新的熒光;這些熒光變化的機制也得到研究與證實。分子邏輯門是在分子水平上的邏輯操作來描述邏輯門,輸入和輸出信號。通過改變離子性質(zhì)(加入氟離子或溴離子)、滴加順序、激發(fā)波長獲得不同的熒光發(fā)射波長和熒光強度,模擬了EnYES、EnNOT、EnIMP、EnINH、EnNAND邏輯門,1∶2信號分離器和鍵盤鎖。

    分子熒光;絡合作用;離子識別;邏輯門;鍵盤鎖

    Biographies:YU Yanhua(1985—),female,assistant research fellow,majors in organic chemistry.

    0 Introduction

    The current"Information Age"requires an everincreasing amount of data storage and processing,whereas miniaturization of silicon-based electronic components is about to reach its limit[1].The con?cepts related to digital information technology have been developed on the basis of Boolean binary log?ic,meaning that information is stored and processed by a combination of two different values:0 or 1,cor?responding to the presence or absence of an electric current[2].The pioneering work of de Silva on molec?ular logic have demonstrated that information could be treated at the molecular level using chemical in?puts and fluorescence signals as outputs to mimic the function of an AND logic gate[3].Since then,sev?eral research groups have focused their efforts on the realization of molecular devices that could act as components for molecular computers;and the field of molecular logic developed from an academic curi?osity to a mature interdisciplinary research area with applications in a myriad of fields ranging from chemi?cal sensing,biological diagnosis,targeted therapy,information and security technologies[4-5].

    Unlike classical electronic components that can be easily connected together to create devices with higher complexity,the"wiring"of molecular logic gates in a serial manner is challenged by a number of bottlenecks such as homogenization of inputs and outputs,physical integration of logic gates,decrease in propagation delay and increase of the fan-out[4]. Consequently,the approach consisting in the devel?opment of molecular logic gate arrays,that is,mole?cules not only mimicking a single logic gate but an entire electronic circuit,and able to perform multi?ple logic operations through reconfiguration of the in?puts and/or outputs,which is now emerging as a way to overcome these limitations[4].

    Thanks to their excellent optical-electronic properties,dicyanomethylene-4H-pyran(DCM)devivatives have been investigated as OLED emit?ters,logic gates and optical chemosensors[4].Benzo?thiadiazole devivatives have also been used in the de?velopment of organic light-emitting materials or fluo?roionophores[6].As a continuing interest on the de?velopment of fluorescent molecules[7],we reported here in the synthesis,ion-sensing properties and functionnal integration into various arrays of logic gates of a DCM-benzothiadiazole conjugate mole?cule 7(Scheme 1).

    1 Results and Discussion

    In the context of developing new molecular de?vices for ion sensing and data processing,we were interested in the synthesis of fluorescent compound 7,designed by a combination of the azido-DCM 4 and triazolyl-BZT 6 dyes(Scheme 1).Our choice was motivated by the spectral overlap between BZT fluorescence emission(λem≈490 nm)and DCM ab?sorption(λmax≈460 nm),which should allow ob?servation of fluorescence around 605 nm upon either DCM excitation at 457 nm or BZT excitation at 370 nm.Such a cross-talk between the fluorophores wasexpectedtobeofinterestinthecontextofmolecular information handling,since various chemical stimu?li might affect either fluorophore to different extent.

    1.1 Synthesis of fluorophores 4,6 and 7

    Scheme 1 Synthesis of fluorophore 7 and model compounds 4 and 6

    The target compound 7(Scheme 1)was effi?ciently synthesized from DCM azide 4 and known BZT derivative 5[8].Mesylation of hydroxy-aldehyde 1 followed by substitution with sodium azide in DMF at 90℃led to azide 2,which was reacted with 3 in the presence of piperidine to yield 75%of DCM 4 as the(E)-isomer exclusively[9].Mono-deprotection of 5 was achieved by careful treatment with a catalytic amount of KOH in MeOH,followed by copper-cata?lyzed Huisgen[3+2]cycloaddition of the crude product with azide 4,to afford the desired fluores?cent triazole 7 in 46%overall yield.Triazolyl-BZT 6 was obtained from 5 and ethyl 3-azidopropanoate[10]in 62%yield for the two steps using a similar proce?dure.

    1.2 Ion sensing properties

    The ability of 4,6 and 7 to act as chemical sen?sors for various anions and cations was investigated by following the evolution of absorbance and fluores?cence of 10 μM solutions in MeCN after addition of 8 equiv.ions.Upon excitation at 457 nm,4 exhibit?ed fluorescence emission centered around 610 nm,which remained unchanged after addition of various anions(Fig.1 ).In contrast,the presence of Cu2+re?sulted in a complete quenching of fluorescence,while Fe2+and Hg2+induced a decrease of fluores?cence intensity to ca.75%and 60%of their initial value,respectively.The fluorescence emission spec?tra of triazolyl-BZT 6 upon excitation at 370 nm are reported in Fig.2 .With a notable exception of F-,which induces TMS-alkyne deprotection[10]and re?sults in a slight fluorescence intensity decrease asso?ciated with a blue shift of the maximum from 496 to 489 nm,none of the tested anions affected fluores?cence emission of 6.Among the metal cations test?ed,Cu2+,Ni2+,and to a lower extent Hg2+,Co2+and Fe2+induced a significant decrease in fluorescence intensity.

    Fig.1 Fluorescence intensity ratio(left)and emission spectra(right)of 4(10μMin MeCN)after addition of8 equiv.of ions(λex=457 nm)

    Fig.2 Fluorescence intensity ratio(left)and emission spectra(right)of 6(10μMin MeCN)after addition of8 equiv.ions(λex=370 nm)

    Fig.3 Fluorescence intensity ratio(left)and emission spectra(right)of 7(10μMin MeCN)after addition of8 equiv.of ions(λex=370 nm)

    Our attention then turned to compound 7,re?garded as a combination of the previously studied flu?orophores 4 and 6(Fig.3 ).As expected,excitation of BZT(at 370 nm)resulted in fluorescence emis?sion at ca.605 nm,as a consequence of intramolecu?lar energy transfer.Addition of anions did not influ?ence the fluorescence intensity,except F–through deprotection of the TMS-alkyne moiety[11].In con?trast,addition of Cu2+immediately resulted in a dis?coloration of the solution,associated with the appari?tion of the characteristic blue fluorescence of BZT around 490 nm.This result clearly indicates that Cu2+affects the DCM moiety of 7 and quenches its fluorescence,which allows BZT fluorescence emis?sion to be observed.Among other metal cations test?ed,the most notable effects were exhibited by Ni2+,F(xiàn)e2+and Hg2+,resulting in a ca.50%-70%quench?ing of fluorescence as compared to the blank sample.

    1.3 Sequential ion addition

    Having established the selectivity of ion recog?nition by fluorophores 4,6 and 7,our interest then focused on studying the effect of combining cations and anions in a sequence-dependent manner.Our choice turned to Cu2+as a cation,since it affects both DCM and BZT moieties;F-(which induces TMS-alkyne deprotection)and Br-(inert)were se?lected as anions,on the basis of their ability to form stable complexes of the type[Cu(X)n](2-n)+in MeCN,characterized by association constants in the range 107-1015[12].

    The behavior of compound 4 was thus investi?gated in the presence of various combinations of Cu2+,F(xiàn)-and Br-(1 equiv.each,F(xiàn)ig.4 ).Addition of Cu2+resulted in an instantaneous and complete ex?tinction of fluorescence,which was only very weakly recovered after halide ions addition(Fig.4 a).This behaviour is in keeping with the transformation of 4 through Cu2+-mediated air oxidation of DCM as de?picted in Scheme 2.However,the oxidation mecha?nism remains to be clarified.Cu2+-promoted oxida?tion reaction is well known in living system and has been applied to fluorescence turn-on detection of Cu2+[13].In our case,pyran 8 was isolated as a com?plex mixture of regio and/or stereoisomers.This hy?pothesis was further confirmed by the observation that when Cu2+was added to a degassed solution of 4 in MeCN under inert atmosphere,no reaction oc?curred during at least 30 min.,as revealed by theabsence of discoloration of the red solution.In con?trast,the presence of F–or Br–in solution prior to Cu2+maintained a significantly high fluorescence in?tensity(ca.70%-90%of the blank value;Fig.4 b),by preventing 4 from air oxidation,presumably through formation of the complex[CuX]-.It to be no?ticed that oxidation of DCM devrivatives by Cu2+has not been reported before[5].

    Fig.4 Emission spectra of 4(top:10μMin CH3CN,λex457 nm)and 6(bottom:10μMin CH3CN,λex370 nm)after addition of 1 equiv.Cu(ClO4)2,Bu4NF and/or Bu4NBr

    Addition of 1 equiv.Cu2+to 6 induced a ca. 2-fold decrease in BZT fluorescence emission inten?sity,which further diminished when another equiva?lent Cu2+was added to the solution(Fig.4 c).In con?trast,when 1 equiv.F-or Br-was introduced after 1 equiv.Cu2+,fluorescence intensity was restored to reach ca.80%-90%of its initial level.Interestingly,when halide ions addition preceded Cu2+,the fluores?cence intensity of BZT remained almost unchanged(Fig.4 d).

    Scheme 2Cu2+-mediated aerobic oxidative cyclization of 4 into 8

    Such a behavior presumably originates from the Cu2+complexation between a nitrogen atom of benzo?thiadiazole and N(3)of triazole leading to complex[6.Cu][14-15],in which photoinduced electron trans?fer or charge transfer is likely to occur and affect the intensity of the fluorescence(Scheme 3)[8].Subse?quent halide addition results in the formation of com?plexes of the type[6.CuX],with de-coordination of one of the N-atoms.Further halide addition results in the regeneration of 6 and the formation of species of the type[Cu(X)n](2-n)+[11].Conversely,the pres?ence of halide ions prior to Cu2+addition presumably prevents formation of[6.Cu](through formation of[Cu(X)n](2-n)+),as revealed by the conservation of optical properties.

    The spectroscopic and visual outcome of 7 in the presence of combinations of two sequential in?puts chosen from F-,Br-and Cu2+,at two excitation wavelengths(370 and 457 nm)are reported in Fig.5 and Fig.6 .The most dramatic impact was observed when Cu2+was associated with halide ions since such a combination proved to be dependent not only on the sequence of addition but also on the nature of the anion.Indeed,addition of Cu2+followed by F-result?ed in a complete extinction of fluorescence,while using Br-led to a conservation of BZT emission around 490 nm.The inversed sequence F-/Cu2+only induced a slight reduction of fluorescence intensity at ca.600 nm,whereas the couple Br-/Cu2+resulted in the apparition of an additional band around 490 nm. In the light of these studies,the behavior of 7 upon sequential addition of ions could be rationalized as follows:as a first input,F(xiàn)-affects BZT(TMS-al?kyne deprotection)without significantly modifying the fluorescence intensity of 7;Br-has no effect while Cu2+induces quenching of DCM fluorescence through oxidative dimerization(vide supra)thus re?vealing BZT fluorescence.

    Fig.5 Solution of fluorophore 7 in MeCN(A),after sequential addition of F–/Cu2+(B),Br–/Cu2+(C),Cu2+/ F-(D)or Cu2+/Br–(E),upon excitation at 365 nm

    When F-was present in solution prior to Cu2+ad?dition,no striking modification of fluorescence in?tensity of 7 could be observed;in contrast,addition of Cu2+following Br-leads to partial quenching of DCM fluorescence with concomitant partial appear?ance of BZT fluorescence.Such a behavior is pre?sumably the consequence of a competition between formation of complexes of the type[Cu(X)n](2-n)+and DCM oxidative cyclization.Utilization of Br-as a second input following Cu2+has no detectable ef?fect,whereas F–leads to complete quenching of fluo?rescence,revealing a modification of the BZT moi?etypossiblyinvolvingtheformationof acop?per-acetylide complex[16].

    1.4 Keypad lock

    The sequence-dependent character of 7 was ex?ploited for the realization of a molecular keypad lock able to deliver various secret codes,depending on the sequence of inputs(Fig.7 ).Indeed,attributing the letters"E","M"and"N"respectively to Cu2+,F(xiàn)-and Br-inputs,and"W","D"and"U"respec? tively to red,blue and absence of fluorescence(up?on excitation at 365 nm,see Fig.5 )as outputs,the four words"END","MEW","EMU"or"NEW" could be read.

    Fig.7 Compound 7 as a fluorescence-based molecular keypad lock

    1.5 Logic gate arrays

    The ion-responsive properties of fluorophores 4,6 and 7 were also employed to perform logic oper?ations.In the case of BZT 6,using both chemical and optical inputs(Cu2+,Br-and excitation at 370 nm),associated with the reading of fluorescence at 487 nm(relative threshold value of 0.7 as compared to the blank sample)as an output,the truth table depicted in Tab.1 was constructed(see Fig.4 c/d).Interest?ingly,6 performs enabled IMPLICATION(EnIMP)logic operation,that is,output will be 0 only in the presence of In1(Cu2+)alone.In3(λex370 nm)acts as the enabling channel,since no logic functionality could be observed when its value is 0;therefore,BZT 6 is a molecular mimic of the electronic logic circuit represented in Fig.8 a.

    Fig.8 Logic circuits corresponding to the functions of(a)6 and(b)4

    As a consequence of the sequence-dependent character of DCM 4(compare Cu2+/Br-and Br-/Cu2+in Fig.4 a/b),this compound can act as two logic cir?cuits performing either the functions enabled IN?VERTER(EnINV,resulting in output 0 when In1 is 1)when the order of addition is Cu2+/Br-,or EnIMP(resulting in output 0 only if In2 is present alone) when the order is Br–/Cu2+(Tab.1 ).The enabling optical input In3 is excitation at 457 nm,and a rep?resentation of the electronic circuits corresponding to the functions of 4 can be found in Fig.8 b.Note?worthy is the fact that same results were obtained for both 6 and 4 when F-was used instead of Br-.

    In compound 7 however,the nature of the ha?

    Tab.1 Truth table for compounds 6 and 4

    lide(F-or Br-)also influences fluorescence emis?sion resulting in four molecular molecular logic gate arrays able to perform enabled YES(EnYES),en?abled NOT(EnNOT),EnIMP,enabled INHIBIT(EnINH)and enabled NOT AND(EnNAND)func?tions,through simple modification of the order of ion addition,the nature of the halide ion(F-or Br-)and the fluorescence reading wavelength and/or rela?tive intensity threshold values.For instance,using Cu2+and Br-as sequence-controlled In1 and In2,re?spectively,and BZT excitation at 370 nm as the en?abling In3,EnYES and EnNOT logic operations were revealed upon reading fluorescence at 487 nm(If,rel=0.3)and 605 nm(If,rel=0.3),respectively(Tab.2 a,F(xiàn)ig.6 and Fig.9 a).Practically,irrespec?tive of the value of In2,EnYES returns the value of In1,while EnNOT returns the opposite of In1.Re?versing the order of addition(Br–as In1 and Cu2+as In2)conversely lead to EnYES and EnNOT func?tions with respect to In2,whatever the value of In1(Tab.2 b,F(xiàn)ig.6 and Fig.9 b).In addition,EnIMP and EnINH functions were obtained by following flu?orescence emission at 605 nm(If,rel=0.3)and 487 nm(If,rel=0.5),respectively.When the logic device is enabled(i.e.In3 is 1),EnIMP returns 0 only when In2 is present and In1 absent,while En?INH returns 1 in the same situation.

    Furthermore,compound 7 acts as a 1∶2 demul?tiplexer,an electronic device allowing the individu?al recovery of multiple signals transmitted on the same data line[4,17].

    Depending on the value of the address input Ad(Cu2+),7 is able to deliver the value of input In(excitation at 370 nm)to either outputs O1 or O2(Tab.3 ),thus mimicking the circuit depicted in Fig.10 .

    As mentioned above,the nature of the halide ion also influences the behavior of 7.Indeed,using F-as the first input followed by Cu2+,with excitation at 370 nm as the enabling input,resulted in EnNOT(λobs605 nm,thresholdIf,rel=0.3),EnINH(λobs487 nm,thresholdIf,rel=0.3)and En?NAND(λobs570 nm,thresholdIf,rel=0.3)logic functions(Tab.2 c,F(xiàn)ig.6 and Fig.9 c).The latter returns 0 when both In1 and In2 are 1.Noteworthy is the fact that NAND gate(together with NOR gate)is considered to be universal since it could be used to generate any logic function[2].Finally,when Cu2+is followed by F-,compound 7 exhibits the behavior of EnIMP(λobs605 nm,thresholdIf,rel=0.3)and EnINH(λobs605 nm,thresholdIf,rel=0.3)functions(Tab.2 d,F(xiàn)ig.6 and Fig.9 d).

    Tab.2 Truth table for compound 7

    Tab.3 Truth table of a 1∶2 demultiplexer

    2 Conclusion

    Three novel fluorescent molecules based on DCM,triazolyl-BZT and a combination thereof were synthesized and exhibited a propensity to selectively modify their fluorescence behavior in the presence of some anions and cations.The Cu2+-promoted oxida? tive dimerization of DCM moiety has been observed for the first time.Combinations of Cu2+,F(xiàn)-and/or Br-proved to be highly sequence-and halide-de?pendent for fluorescence emission in the case of DCM-based compounds 4 and 7.This property has been used to construct a keypad lock for compound 7.By appropriate selection of inputs(nature of ions,sequence of additions and excitation wavelength)and outputs(fluorescence reading wavelength and threshold),these fluorophores were able to mimick the functions of complex logic gate arrays performing up to the six logic operations EnYES,EnNOT,En?IMP,EnINH,EnNAND and 1∶2 demultiplexer. Although our system remains irreversible,this study might open the way for the design of new chromo?phores as molecular logic gates.

    3 Experimental Section

    Fig.9 Logic circuits corresponding to the functions of compound 7

    Fig.10 Molecular 1∶2 demultiplexer corresponding to the function of 7

    General:Commercially available solvents and reagents were used without further purification ex?cept MeCN which was distilled over CaH2.Melting points were measured on a Kofler bench.Column chromatography was performed on Carlo Erba Silica Gel 60A(40-63 μm).Analytical thin layer chroma?tography was performed on E.Merck aluminum per?colated plates of Silica Gel 60F-254 with detection by UV.1H and13C-NMR spectra were recorded on a Jeol ECS-400 spectrometer.ESI-HRMS spectra were recorded on a Bruker microTOF-Q II spectrom?eter or Bruker maxis using standard conditions.IR spectra were recorded on Shimadzu FTIR-8400S spectrometer(Shimadzu Corporation,Kyoto,Ja?pan).Absorptionspectrawererecordedona Uvikon-940KON-TRONspectrophotometerand corrected emission spectra were performed on a Jo?bin-Yvon Fluoromax 3 spectrofluorometer(1 cm quartz cell was used).The fluorescence quantum yield(ΦF)was determined by the standard method using quinine sulphate in 0.5 M H2SO4as a refer?ence.The refractive index of the solvent was taken into account in the measurement[18].All anions were of the form(Bu4N+,X-),all cations of the form[Mn(+HClO4-)n],except AgNO3.

    4-[N-(2-Azidoethyl)-N-methyl]amino?benzaldehyde 2:To a stirred solution of 4-[N-(2-hydroxyethyl)-N-methyl]aminobenzaldehyde(9.03 g,0.050 mol)in CH2Cl2(125 mL)at 0℃,were added respectively Et3N(21 mL,0.150 mol)and MsCl(5.8 mL,0.075 mol).The mixture was stirred for 20 to 30 min.until the brown color changedtoyellow.Themixturewastreatedwith150mL of water,the aqueous layer was extracted with CH2Cl2(2×50 mL).The organic layers were com?bined,washed with brine,dried over MgSO4and evaporated under vacuum to give 13.84 g of crude mesylate which was used without purification for the next step.To a solution of this crude product in DMF(90 mL)was added sodium azide(4.89 g,0.750 mol). The mixture was stirred at 90℃for 90 min.(moni?toring by TLC),cooled to RT and the solvent was evaporated under vacuum.The residue was parti?tioned in CH2Cl2/H2O(150/150 mL),the aqueous layer was extracted with CH2Cl2(2×50 mL),then or?ganic layers were combined,washed with saturated NaHCO3,dried over MgSO4and evaporated under vacuum.Column chromatography(gradient EtOAc/ petroleum ether 9/1,8/2,7/3,6/4)afforded 2(10.15 g,99%)as a brown oil.TLC:Rf=0.31(petroleum ether/EtOAc:2/1).1H NMR(400 MHz,CDCl3):δ=9.74(s,1H,CHO),7.74(d,J=8.7 Hz,2H,Ph),6.74(d,J=8.7 Hz,2H,Ph),3.63(t,J=5.9 Hz,2H,CH2),3.51(t,J= 6.0 Hz,2H,CH2),3.11(s,3H,N-Me).13C NMR(100 MHz,CDCl3):δ=190.4,153.0,132.5,126.1,111.2,77.3,51.6,48.9;39.2. HRMS(ESI)forC10H13N4O[M+H]+calcd 205.1084,found 205.1 088;for C10H12N4ONa[M+ Na]+calcd 227.090 3,found 227.090 4.

    (E)-2-(2-(4-((2-Azidoethyl)(methyl)amino)styryl)-6-tert-butyl-4H-pyran-4-yli?dene)malononitrile 4:To a stirred solution of 4-[N-(2-azidoethyl)-N-methyl]aminobenzaldehyde(6.02 g,0.029 mol)and 2-(2-tert-butyl-6-meth?yl-4H-pyran-4-ylidene)malononitrile[19](6.32 g,0.029 mol)in distilled MeCN(60 mL)under ar?gon,was added piperidine(3.9 mL,0.039 mol). The mixture was refluxed for 3 to 4 h(monitoring by TLC)and cooled to RT.The filtered precipitate was washed with cold MeCN(10-20 mL)and cyclohex?ane(200-400 mL).The filtrate was evaporated un?der vacuum and the residue triturated with a mini?mum of cold MeCN and filtered(sonication could be used during trituration).Combination of the two sol?ids afforded 4(8.79 g,75%)as an orange-red sol?id.A portion of 4(6.2 g)was recrystallized from MeCN(110 mL).TLC:Rf=0.33(petroleum ether/ EtOAc:7/3).m.p.156°C.1H NMR(400 MHz,CD?Cl3):δ=7.45(d,J=8.7 Hz,2H,Ph),7.34(d,J=15.6 Hz,1H,CH=),6.73(d,J=8.7 Hz,2H,Ph),6.61(d,J=1.8 Hz,1H,CH=),6.53(d,J=1.8 Hz,1H,CH=),6.53(d,J= 1.8 Hz,1H,CH=),6.51(d,J=16.0 Hz,1H,CH=),3.63(t,J=6.0 Hz,2H,CH2),3.51(t,J=5.7 Hz,2H,CH2),3.11(s,3H,N-Me),1.38(s,9H,tBu).13C NMR(100 MHz,CDCl3):δ=172.0,160.1,156.9,150.3,138.2,129.9,123.2,115.84,115.77,113.6,112.1,105.8,102.5,77.2,58.2,51.6,49.0,39.0,36.8,28.2.HRMS(ESI)for C23H25N6O[M+H]+calcd 400.2007,found 401.208 8;for C23H24N6ONa[M+ Na]+423.190 4,found 423.190 3.

    (E)-2-(2-Tert-butyl-6-(4-(methyl(2-(4-(7-((trimethylsilyl)ethynyl)benzo[c][1,2,5]thiadiazol-4-yl)-1H-1,2,3-triazol-1-yl)eth?yl)amino)styryl)-4H-pyran-4-ylidene)malo?nonitrile 7:To a solution of 4,7-bis((trimethylsi?lyl)ethynyl)benzo[c][1,2,5]thiadiazole 58(200 mg,0.61 mmol)in MeOH(15 mL)was add?ed 1M aqueous KOH(30 mL),and the mixture was stirred at RT under argon over night.After evapora?tion of the solvent under vacuum,the residue was dissolved in EtOAc(30 mL),washed with water(30 mL)and brine(30 mL),dried over MgSO4,fil?tered,and concentrated.To the obtained solid dis?solved in CH2Cl2(10 mL)and H2O(1 mL),were added 3(243 mg,0.61 mmol),CuSO4·5H2O(25 mg,0.1 mmol)and sodium ascorbate(40 mg,0.2 mmol). The reaction mixture was vigorously stirred at RT for 12 h,then CH2Cl2(20 mL)was added.The solution was washed with water(30 mL),dried over MgSO4,filtered,and concentrated to a solid which was puri?fied by column chromatography(petroleum ether/ EtOAc/CH2Cl2:3/3/1)to afford compound 7(300 mg,46%).TLC:Rf=0.34(petroleum ether/EtOAc:2/1).m.p.132℃.1H NMR(400 MHz,CDCl3):δ=8.65(s,1H,CH),8.50(d,J=7.4 Hz,1H,CH),7.88(d,J=7.4 Hz,1H,CH),7.42(d,J=8.7 Hz,2H,Ph),7.30(d,J=16.0 Hz,1H,CH),6.71(d,J=8.7 Hz,2H,Ph),6.60(d,J=2.3 Hz,1H,CH=),6.53(d,J=2.3 Hz,1H,CH=),6.47(d,J=16.0 Hz,1H,CH=),4.71(m,2H,CH2),4.05(m,2H,CH2),2.94(s,3H,CH3),1.37(s,9H,3×CH3),0.34(s,9H,Si(CH3)3).13C NMR(100 MHz,CDCl3):δ=172.0,159.9,156.8,155.0,151.4,149.8,143.1,137.9,134.2,129.9,125.2,125.1,123.6,123.5,116.0,115.7,115.6,113.9,112.2,105.9,102.5,100.2,58.3,52.7,47.8,39.0,36.7,28.1,0.0.IR(KBr):2 207,1 642,1 597,1 548,1 498,1 421,1 377,1 304,1 252,1 175,1 119,1 053,928,848,750 cm-1.UV/Vis(MeCN):λmax(ε)=457 nm(40 700 L·mol–1·cm–1). ΦF(λex372 nm)=(12±1.2)%.HRMS(ESI)for C36H37N8OSSi[M+H]+:calcd 657.250 2,found 657.257 1.

    Ethyl 3-(4-(7-((trimethylsilyl)ethynyl)benzo[c][1,2,5]thiadiazol-4-yl)-1H-1,2,3-triazol-1-yl)propanoate 6:To a solution of 4,7-bis((trimethylsilyl)ethynyl)benzo[c][1,2,5]thi?adiazole 5[5](200 mg,0.61 mmol)in MeOH(15 mL)was added 1M aqueous KOH(30 mL),and the mix?ture was stirred at rt under argon over night.After evaporation of the solvent under vacuum,the resi?due was dissolved in EtOAc(30 mL),washed with water(30 mL)and brine(30 mL),dried over Mg?SO4,filtered,and concentrated.To the solid dis?solved in CH2Cl2(10 mL)and H2O(1 mL),were added ethyl 3-azidopropanoate(87 mg,0.61 mmol),CuSO4·5H2O(25 mg,0.1 mmol)and sodium ascor?bate(40 mg,0.2 mmol).The reaction mixture was vigorously stirred at RT for 12 h,then CH2Cl2(20 mL)was added.The solution was washed with water(30 mL),dried over MgSO4,filtered,and concen?trated to a solid which was purified by column chro?matography(petroleumether/EtOAc:10/1)to afford compound 6(250 mg,62%).TLC:Rf=0.36(petroleum ether/EtOAc:15/1).m.p.124℃.1H NMR(400 MHz,CDCl3):δ=8.84(s,1H,CH),8.50(d,J=7.4 Hz,1H,CH),7.88(d,J=7.4 Hz,1H,CH),4.79(t,J=6.4 Hz,2H,CH2),4.17(q,J=7.2 Hz,2H,CH2),3.06(t,J=6.4 Hz,2H,CH2),1.25(t,J=7.2 Hz,3H,CH3)0.34(s,9H,Si(CH3)3),13C NMR(100 MHz,CDCl3):δ=170.4,154.9,151.4,142.8,134.2,125.1,123.9,115.8,102.2,100.3,61.3,45.8,34.8,14.1,0.0;IR(KBr):2 146,1 729,1 591,1 464,1 442,1 404,1 378,1 249,1 197,1 163,1 096,838,850,757 cm-1.UV/Vis(MeCN):λmax(ε)=390 nm(11 800 L·mol–1·cm–1). ΦF(λex368 nm)=(79±7.9)%.HRMS(ESI)for C18H22N5O2SSi[M+H]+:calcd 400.1185,found 400.126 3.

    Copper(II)-catalyzed oxidative cyclisation of 4:To a solution of 4(50 mg,0.125 mmol)in 3 mL MeCN was added Cu(ClO4)2·6H2O(46 mg,0.125 mmol).After stirring at RT for 5 min,the sol?vent was removed under vacuum to give a green solid which was exclusively soluble in MeCN.The green solid was dissolved in 5 mL MeCN,washed with 1M EDTA,then extracted with EtOAc(2×20 mL).The combined organic layers were dried over MgSO4,evaporated to give a yellow solid which was purified by column chromatography(petroleum ether/EtO?Ac:2/1)to afford 10 mg of compound 8 as a light yellow solid.TLC:Rf=0.34(petroleum ether/EtO?Ac:1/1).HRMS(ESI)for C46H49N12O3[M+H]+:calcd 817.404 5,found 817.404 3.

    Procedure for ion addition

    Stock solutions of compounds 4,6 or 7 were prepared in MeCN at a concentration of 10-3M.Solu?tions of Cu(ClO4)2,Bu4NF,Bu4NBr were prepared in MeCN at a concentration of 10-2M.In a quartz cu?vette,25 μL stock solutions of compounds 4,6 or 7 were diluted with 2 475 μL MeCN(final concen?tration of 10 mM),then 2.5 μL of a solution of Cu2+,F(xiàn)-or Br-was added.The mixture was shacked for 1 min(followed by a second addition and shack?ing for another minute if necessary)before recording absorption and fluorescence spectra.

    4 Acknowledgments

    Thanks to RUAN Yibin for helpful discussions.

    [1]MATHARU A S,JEEVA S,RAMANUJAM P S.Liq?uid crystals for holographic optical data storage[J]. Chem Soc Rev,2007,36:1868-1880.

    [2]HAYES J P.Introduction to Digital Logic Design[M]. Boston:Longman Publishing Co.,Inc.,1993.

    [3]DE SILVA A P,GUNARATNE H Q N,MCCOY C P. A molecular photoionic AND gate based on fluorescent signalling[J].Nature,1993,364:42-44.

    [4]DE SILVA A P.Molecular logic gate arrays[J].Chem Asian J,2011,6:750-766.

    [5]MARGULIES D,F(xiàn)ELDER C E,MELMAN G,et al.A molecular keypad lock:a photochemical device capa?ble of authorizing password entries[J].J Am Chem Soc,2007,129:347-354.

    [6]FANG Q,XU B,JIANG B,et al.Bisindoles contain?ing a 2,1,3-benzothiadiazole unit:novel non-doping red organic light-emitting diodes with excellent color purity[J].Chem Commun,2005,11:1468-1470.

    [7]DAVID O,MAISONNEUVE S,XIE J.Generation of new fluorophore by click chemistry:synthesis and prop?erties of β-cyclodextrin substituted by 2-pyridyl tri?azole[J].Tetrahedron Lett,2007,48:6527-6530.

    [8]DASILVEIRA NETO B A,SANT′ANA LOPES A,EB?ELING G,et al.Photophysical and electrochemicalproperties of π-extended molecular 2,1,3-benzothiadi?azoles[J].Tetrahedron Lett,2005,61:10975-10982.

    [9]ANDREU R,CARRASQUER L,GARIN J,et al.New one-andtwo-dimensional4H-pyranylideneNLO-phores[J].Tetrahedron Lett,2009,50:2920-2924.

    [10]REUX B,WEBER V,GALMIER M J,et al.Synthesis and cytotoxic properties of new fluorodeoxyglucose-cou?pled chlorambucil derivatives[J].Bioorg Med Chem,2008,16:5004-5020.

    [11]LU H,WANG Q,LI Z,et al.A specific chemodosime?ter for fluoride ion based on a pyrene derivative with tri?methylsilylethynylgroups[J].OrgBiomolChem,2011,9:4558-4562.

    [12]SESTILI L,F(xiàn)URLANI C,CIANA A,et al.Polarogra?phy of copper(II)-halide complexes in non-aqueous solvents[J].Electrochim Acta,1970,15:225-235.

    [13]WANG D,SHIRAISHI Y,HIRAI T.A BODIPY-based fluorescent chemodosimeter for Cu(II)driven by an oxi?dative dehydrogenation mechanism[J].Chem Com?mun,2011,47:2673-2675.

    [14]PAPAEFSTATHIOU G S,TSOHOS A,RAPTOPOU?LOU C P,et al.Cystal engineering:stacking interac? tions control the crystal structures of benzothiadiazole(btd)and its complexes with copper(II)and copper(I)chlorides[J].Cryst Growth Des,2001(1):191-194.

    [15]TAMANINI E,RIGBY S E J,MOTEVALLI M,et al. Responsive metal complexes:a click-based"allosteric scorpionate"complex permits the detection of a biologi?cal recognition event by EPR/ENDOR spectroscopy[J]. Chem Eur J,2009,15:3720-3728.

    [16]CHOW Y L,BUONO-CORE G E.Triplet-state benzo?phenone-sensitized photoreduction of bis(acetylaceto?nato)copper(II):the generation and stability of copper(I)complexes[J].Can J Chem,1983,61:795-800.

    [17]ANDRéASSON J,PISCHEL U,STRAIGHT S D,et al. All-photonic multifunctional molecular logic device[J].J Am Chem Soc,2011,133:11641-11648.

    [18]LAKOWICZ J R.Principles of fluorescence spectrosco?py[M].3rd ed.New York:Springer Science,2006.

    [19]YAO Y S,XIAO J,WANG X S,et al.Starburst DCM-type red-light-emitting materials for electrolumi?nescence applications[J].Adv Funct Mater,2006,16:706-718.

    (責任編輯:陳曠)

    2013-12-15

    The National Natural Science Foundation of China(No.21302065)

    O644;O69

    A

    1673-0143(2014)02-0049-12

    *Corresponding Author:HE Xianran(1983—),male,associate research fellow,doctor,majors in sugar chemistry and pharmacochemistry.E-mail:hexianran@163.com

    猜你喜歡
    噻二唑基亞吡喃
    小分子螺吡喃光致變色化合物合成研究進展*
    化學工程師(2022年5期)2022-05-11 06:26:16
    今天
    北方人(2021年8期)2021-09-03 09:24:23
    今天
    北方人(2021年15期)2021-08-26 11:51:38
    1,3,4-噻二唑取代的氮唑類化合物的合成及體外抗真菌活性
    1,3,4-噻二唑類衍生物在農(nóng)藥活性方面的研究進展
    1,3,4-噻二唑衍生物的合成與應用
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進
    合成化學(2015年9期)2016-01-17 08:57:14
    1-O-[3-(2-呋喃基)丙烯?;鵠-β-D-吡喃果糖的合成及應用
    煙草科技(2015年8期)2015-12-20 08:27:14
    新型芳并吡喃類多環(huán)化合物的合成與光譜性質(zhì)研究
    兩種含1,3,4-噻二唑α-氨基膦酸酯與蛋白質(zhì)弱相互作用的ESI-MS研究
    18禁裸乳无遮挡动漫免费视频| 色吧在线观看| 日本与韩国留学比较| 汤姆久久久久久久影院中文字幕| 亚洲天堂av无毛| 欧美日韩精品成人综合77777| 99久久中文字幕三级久久日本| 一级a做视频免费观看| 97在线视频观看| 青春草亚洲视频在线观看| 久久精品久久精品一区二区三区| 一区二区三区乱码不卡18| a级毛片黄视频| 蜜桃国产av成人99| 久久国产精品男人的天堂亚洲 | www.av在线官网国产| 看免费成人av毛片| 在线精品无人区一区二区三| 久久鲁丝午夜福利片| 欧美最新免费一区二区三区| 亚洲成人av在线免费| 久久人妻熟女aⅴ| 亚洲精品美女久久av网站| 色94色欧美一区二区| 国产av码专区亚洲av| 欧美日韩一区二区视频在线观看视频在线| 成人毛片60女人毛片免费| 国产精品无大码| 国产一区二区在线观看日韩| 国产极品粉嫩免费观看在线 | 制服人妻中文乱码| 中文精品一卡2卡3卡4更新| av又黄又爽大尺度在线免费看| av又黄又爽大尺度在线免费看| 精品久久久久久久久av| 国产亚洲最大av| 一级二级三级毛片免费看| 久久99热这里只频精品6学生| 国产成人a∨麻豆精品| 美女内射精品一级片tv| 99久久精品国产国产毛片| 大香蕉97超碰在线| 2021少妇久久久久久久久久久| 韩国av在线不卡| 九九在线视频观看精品| 两个人免费观看高清视频| 欧美老熟妇乱子伦牲交| 伊人久久精品亚洲午夜| 性高湖久久久久久久久免费观看| 你懂的网址亚洲精品在线观看| 国产av码专区亚洲av| 母亲3免费完整高清在线观看 | 久久国产亚洲av麻豆专区| 我要看黄色一级片免费的| 最近2019中文字幕mv第一页| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院 | 少妇丰满av| 久久精品久久精品一区二区三区| 国产日韩欧美亚洲二区| 亚洲精华国产精华液的使用体验| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区| 国产色爽女视频免费观看| 国产精品不卡视频一区二区| 国产精品久久久久久久电影| 只有这里有精品99| 亚洲av男天堂| 搡老乐熟女国产| 国模一区二区三区四区视频| 性色av一级| 在线观看人妻少妇| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 热re99久久精品国产66热6| 香蕉精品网在线| 久久这里有精品视频免费| 亚洲国产日韩一区二区| 人妻夜夜爽99麻豆av| 亚洲天堂av无毛| 国产亚洲欧美精品永久| 美女内射精品一级片tv| 最近2019中文字幕mv第一页| 老熟女久久久| 欧美激情 高清一区二区三区| 全区人妻精品视频| 亚洲精品,欧美精品| av又黄又爽大尺度在线免费看| 国产成人av激情在线播放 | 夜夜爽夜夜爽视频| 看免费成人av毛片| 久久免费观看电影| 亚洲伊人久久精品综合| 久久综合国产亚洲精品| 日韩亚洲欧美综合| 三上悠亚av全集在线观看| 国产av一区二区精品久久| 高清午夜精品一区二区三区| 两个人的视频大全免费| a级毛片在线看网站| av免费在线看不卡| 精品少妇久久久久久888优播| 老司机影院成人| 老熟女久久久| 在线精品无人区一区二区三| 永久免费av网站大全| 亚洲av成人精品一二三区| 激情五月婷婷亚洲| 能在线免费看毛片的网站| 热re99久久精品国产66热6| 青春草视频在线免费观看| 国产在线免费精品| 久久热精品热| 成人国语在线视频| 国产精品久久久久久av不卡| 日韩 亚洲 欧美在线| 亚洲精品一区蜜桃| 欧美激情 高清一区二区三区| 亚洲第一区二区三区不卡| 日韩中字成人| 亚洲国产精品专区欧美| 丰满迷人的少妇在线观看| av不卡在线播放| 国产爽快片一区二区三区| 久久亚洲国产成人精品v| 色网站视频免费| 亚洲精品日韩av片在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲国产成人一精品久久久| 亚洲欧美色中文字幕在线| 黄色一级大片看看| 伊人亚洲综合成人网| 一级毛片 在线播放| 久久久久人妻精品一区果冻| 五月天丁香电影| 建设人人有责人人尽责人人享有的| xxx大片免费视频| 日韩强制内射视频| 国产精品久久久久成人av| 九九久久精品国产亚洲av麻豆| 九色成人免费人妻av| 日韩欧美精品免费久久| 国产欧美日韩一区二区三区在线 | 国产一区二区在线观看av| 青青草视频在线视频观看| 久久久久网色| 久久久久久久久久久丰满| 伦精品一区二区三区| 最新的欧美精品一区二区| 各种免费的搞黄视频| 一二三四中文在线观看免费高清| 亚洲精品成人av观看孕妇| 国产色婷婷99| 在线天堂最新版资源| 午夜av观看不卡| 在线观看国产h片| 午夜激情av网站| 国产在线一区二区三区精| 久久久久久久久久成人| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 97精品久久久久久久久久精品| 日本欧美视频一区| 亚洲成色77777| 国产一区二区在线观看日韩| 青青草视频在线视频观看| 少妇熟女欧美另类| 秋霞伦理黄片| 高清午夜精品一区二区三区| 日日撸夜夜添| 人人澡人人妻人| 另类精品久久| 国产亚洲av片在线观看秒播厂| 精品酒店卫生间| 最新的欧美精品一区二区| 九色成人免费人妻av| 亚洲四区av| 国产色爽女视频免费观看| 免费高清在线观看日韩| 免费播放大片免费观看视频在线观看| 日本av手机在线免费观看| 99热全是精品| 秋霞伦理黄片| 中文天堂在线官网| 精品一区在线观看国产| 男人爽女人下面视频在线观看| 91成人精品电影| 欧美最新免费一区二区三区| 久久久久精品久久久久真实原创| 久久精品久久精品一区二区三区| 嘟嘟电影网在线观看| 国产成人一区二区在线| 午夜日本视频在线| 男女高潮啪啪啪动态图| 下体分泌物呈黄色| 黄色欧美视频在线观看| 午夜福利在线观看免费完整高清在| 一区二区av电影网| 日日爽夜夜爽网站| 999精品在线视频| 蜜桃在线观看..| 亚洲国产精品一区二区三区在线| 中国三级夫妇交换| 亚洲欧美清纯卡通| 精品人妻一区二区三区麻豆| 免费高清在线观看日韩| 亚洲怡红院男人天堂| av卡一久久| 欧美成人午夜免费资源| 伦理电影大哥的女人| 制服诱惑二区| 国产日韩一区二区三区精品不卡 | 色5月婷婷丁香| freevideosex欧美| 激情五月婷婷亚洲| 久久精品国产亚洲网站| 国产成人一区二区在线| 人成视频在线观看免费观看| 97超视频在线观看视频| 大片免费播放器 马上看| 天天躁夜夜躁狠狠躁躁| 性高湖久久久久久久久免费观看| 视频区图区小说| 丁香六月欧美| 国产精品影院久久| 亚洲av日韩精品久久久久久密| 最黄视频免费看| 午夜福利视频精品| 乱人伦中国视频| 精品国产一区二区三区久久久樱花| 操美女的视频在线观看| 黑人操中国人逼视频| 国产男靠女视频免费网站| 性色av乱码一区二区三区2| 两人在一起打扑克的视频| 欧美日韩国产mv在线观看视频| 午夜视频精品福利| 高清视频免费观看一区二区| 久久精品成人免费网站| 免费久久久久久久精品成人欧美视频| 国产老妇伦熟女老妇高清| 色播在线永久视频| 黑人巨大精品欧美一区二区蜜桃| 天天添夜夜摸| 日本一区二区免费在线视频| 午夜福利视频精品| 亚洲av成人不卡在线观看播放网| 欧美日韩亚洲综合一区二区三区_| 国产成人免费观看mmmm| 欧美乱码精品一区二区三区| 老熟女久久久| 亚洲性夜色夜夜综合| 亚洲色图 男人天堂 中文字幕| 淫妇啪啪啪对白视频| 超碰97精品在线观看| 中文字幕人妻丝袜一区二区| 久9热在线精品视频| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 国产午夜精品久久久久久| 一进一出抽搐动态| 午夜福利视频精品| 人人妻,人人澡人人爽秒播| 99精国产麻豆久久婷婷| 欧美一级毛片孕妇| 久热爱精品视频在线9| 久久中文字幕人妻熟女| 亚洲成人手机| 国产亚洲欧美在线一区二区| 精品国内亚洲2022精品成人 | 国产午夜精品久久久久久| 高清在线国产一区| 精品人妻在线不人妻| 夜夜夜夜夜久久久久| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 亚洲自偷自拍图片 自拍| 国产一区二区三区综合在线观看| 久久国产精品人妻蜜桃| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 激情视频va一区二区三区| cao死你这个sao货| 欧美性长视频在线观看| 欧美激情高清一区二区三区| 一本久久精品| 19禁男女啪啪无遮挡网站| 国产aⅴ精品一区二区三区波| 美女午夜性视频免费| 午夜老司机福利片| 三上悠亚av全集在线观看| 汤姆久久久久久久影院中文字幕| 久久国产精品影院| 欧美精品人与动牲交sv欧美| 9热在线视频观看99| 欧美激情高清一区二区三区| av电影中文网址| 在线天堂中文资源库| 最新美女视频免费是黄的| 成年动漫av网址| 国产区一区二久久| 色在线成人网| 亚洲免费av在线视频| 999久久久国产精品视频| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 欧美激情久久久久久爽电影 | 一边摸一边做爽爽视频免费| 麻豆av在线久日| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看www视频免费| 最近最新免费中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 精品免费久久久久久久清纯 | 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 999久久久国产精品视频| 后天国语完整版免费观看| 亚洲成人免费电影在线观看| 大香蕉久久成人网| 亚洲熟女毛片儿| 久久精品91无色码中文字幕| 国产老妇伦熟女老妇高清| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 在线天堂中文资源库| 精品一区二区三区av网在线观看 | 十分钟在线观看高清视频www| 好男人电影高清在线观看| 欧美日韩视频精品一区| 丝袜在线中文字幕| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 汤姆久久久久久久影院中文字幕| av免费在线观看网站| 交换朋友夫妻互换小说| 国产精品1区2区在线观看. | 免费在线观看黄色视频的| 999精品在线视频| 久久性视频一级片| 美女视频免费永久观看网站| 亚洲天堂av无毛| 999久久久精品免费观看国产| 一边摸一边抽搐一进一小说 | 久久久欧美国产精品| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 亚洲欧洲精品一区二区精品久久久| 成年动漫av网址| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 啦啦啦免费观看视频1| 狂野欧美激情性xxxx| 日韩成人在线观看一区二区三区| 久久久久国产一级毛片高清牌| 涩涩av久久男人的天堂| av又黄又爽大尺度在线免费看| 丝袜喷水一区| 国产亚洲欧美精品永久| 考比视频在线观看| 久久热在线av| 亚洲成av片中文字幕在线观看| 最新美女视频免费是黄的| 欧美激情 高清一区二区三区| 国产精品一区二区在线不卡| 精品视频人人做人人爽| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 精品人妻熟女毛片av久久网站| 大码成人一级视频| 精品乱码久久久久久99久播| 女警被强在线播放| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| 正在播放国产对白刺激| 亚洲成人免费av在线播放| 两性夫妻黄色片| 夜夜骑夜夜射夜夜干| 国产精品二区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 飞空精品影院首页| 老鸭窝网址在线观看| 精品高清国产在线一区| 国产一卡二卡三卡精品| 亚洲免费av在线视频| 日本黄色视频三级网站网址 | 十八禁人妻一区二区| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 多毛熟女@视频| 十八禁高潮呻吟视频| 欧美成狂野欧美在线观看| 岛国在线观看网站| 天天添夜夜摸| 精品国产乱子伦一区二区三区| 久久免费观看电影| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院| 国产精品亚洲av一区麻豆| 欧美亚洲日本最大视频资源| 99国产精品一区二区蜜桃av | 9热在线视频观看99| 亚洲人成77777在线视频| 搡老乐熟女国产| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 久久国产精品影院| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| 一进一出好大好爽视频| av又黄又爽大尺度在线免费看| 纯流量卡能插随身wifi吗| 国产成人影院久久av| 99国产精品一区二区三区| 国产三级黄色录像| 久久人妻av系列| 精品国产一区二区三区四区第35| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 久久精品熟女亚洲av麻豆精品| 欧美人与性动交α欧美精品济南到| 咕卡用的链子| 国产不卡一卡二| 日本一区二区免费在线视频| 国产日韩欧美视频二区| 亚洲av第一区精品v没综合| 精品卡一卡二卡四卡免费| 精品人妻在线不人妻| av又黄又爽大尺度在线免费看| 韩国精品一区二区三区| 一区二区三区精品91| 手机成人av网站| 深夜精品福利| 午夜成年电影在线免费观看| 无遮挡黄片免费观看| 国产精品美女特级片免费视频播放器 | 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产a三级三级三级| 黑人巨大精品欧美一区二区mp4| 黄色视频不卡| 久久久久精品国产欧美久久久| tube8黄色片| 日本wwww免费看| 欧美日韩亚洲高清精品| 欧美亚洲 丝袜 人妻 在线| 成年版毛片免费区| 精品免费久久久久久久清纯 | 激情在线观看视频在线高清 | 99riav亚洲国产免费| 脱女人内裤的视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩有码中文字幕| 无限看片的www在线观看| 他把我摸到了高潮在线观看 | 国产淫语在线视频| 首页视频小说图片口味搜索| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 亚洲中文字幕日韩| 1024视频免费在线观看| 亚洲午夜精品一区,二区,三区| 狠狠婷婷综合久久久久久88av| 真人做人爱边吃奶动态| 精品人妻熟女毛片av久久网站| av一本久久久久| 日本欧美视频一区| 18禁裸乳无遮挡动漫免费视频| 日本五十路高清| 国产精品秋霞免费鲁丝片| 中文亚洲av片在线观看爽 | 操出白浆在线播放| 亚洲精品中文字幕在线视频| 黄片大片在线免费观看| 侵犯人妻中文字幕一二三四区| 69av精品久久久久久 | 高清黄色对白视频在线免费看| 咕卡用的链子| 午夜福利在线免费观看网站| 久久国产亚洲av麻豆专区| 欧美日本中文国产一区发布| 久久久久久久久免费视频了| 18禁国产床啪视频网站| 一级毛片电影观看| h视频一区二区三区| 成人三级做爰电影| 少妇精品久久久久久久| 夜夜夜夜夜久久久久| 精品人妻1区二区| 菩萨蛮人人尽说江南好唐韦庄| 日韩免费av在线播放| 亚洲人成电影免费在线| 亚洲精品国产区一区二| 久久九九热精品免费| 日本黄色视频三级网站网址 | 国产一区二区在线观看av| 丝瓜视频免费看黄片| bbb黄色大片| 亚洲 国产 在线| 欧美日韩福利视频一区二区| 亚洲精品国产区一区二| 日本av免费视频播放| 亚洲精品国产区一区二| 制服诱惑二区| 国产一区二区三区视频了| 国产黄频视频在线观看| 日本黄色视频三级网站网址 | 免费看十八禁软件| 99国产精品一区二区三区| 黄频高清免费视频| 我要看黄色一级片免费的| 91av网站免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产成人免费| 婷婷成人精品国产| 欧美日韩视频精品一区| 丰满饥渴人妻一区二区三| 久久九九热精品免费| 免费在线观看影片大全网站| 精品国产乱码久久久久久小说| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 12—13女人毛片做爰片一| 国产av又大| 在线亚洲精品国产二区图片欧美| 精品国产乱码久久久久久小说| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 午夜精品国产一区二区电影| 女警被强在线播放| 久久精品国产a三级三级三级| 99久久精品国产亚洲精品| 在线观看人妻少妇| 欧美成人免费av一区二区三区 | 中文字幕制服av| 精品一区二区三区四区五区乱码| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| 亚洲精品美女久久久久99蜜臀| av国产精品久久久久影院| 国产欧美亚洲国产| 精品少妇内射三级| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影小说| a级毛片在线看网站| 亚洲欧美日韩另类电影网站| 久久精品亚洲av国产电影网| 亚洲国产欧美日韩在线播放| 黄色片一级片一级黄色片| 十八禁高潮呻吟视频| 可以免费在线观看a视频的电影网站| 国产又色又爽无遮挡免费看| 黑人猛操日本美女一级片| 久久中文看片网| 一级毛片女人18水好多| 久久精品人人爽人人爽视色| 国产亚洲精品一区二区www | 一区二区三区精品91| 午夜视频精品福利| 国产麻豆69| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 精品人妻在线不人妻| 国产一区二区 视频在线| 亚洲熟妇熟女久久| 黑人操中国人逼视频| 国产免费福利视频在线观看| 国产精品1区2区在线观看. | 国产av精品麻豆| 欧美激情久久久久久爽电影 | 黄色a级毛片大全视频| 一二三四社区在线视频社区8| 亚洲精品av麻豆狂野| 极品教师在线免费播放| 在线 av 中文字幕| 国产黄色免费在线视频| 999精品在线视频| 精品久久久久久电影网| 亚洲第一av免费看| 在线播放国产精品三级| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 免费女性裸体啪啪无遮挡网站| 成年版毛片免费区| 国产色视频综合| 99国产极品粉嫩在线观看| 久久久国产一区二区| 一进一出好大好爽视频| 一级毛片女人18水好多| 99精国产麻豆久久婷婷| 成年版毛片免费区| 欧美乱妇无乱码| 人人妻,人人澡人人爽秒播| 人妻久久中文字幕网| 国产一卡二卡三卡精品| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 黄色视频在线播放观看不卡| 亚洲五月婷婷丁香| 韩国精品一区二区三区| 成人三级做爰电影| 国产伦理片在线播放av一区| 精品高清国产在线一区| 国产福利在线免费观看视频| 黄网站色视频无遮挡免费观看| 三级毛片av免费| 亚洲欧美色中文字幕在线| 国产精品一区二区在线不卡| 国产在线免费精品| 夜夜骑夜夜射夜夜干| 这个男人来自地球电影免费观看| 国产欧美日韩一区二区三区在线| 少妇的丰满在线观看|