• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process*

    2014-07-18 11:56:04ZHANGHuiqin張薈欽ZHONGZhaoxiang仲兆祥LIWeixing李衛(wèi)星XINGWeihong邢衛(wèi)紅andJINWanqin金萬勤
    關(guān)鍵詞:衛(wèi)星

    ZHANG Huiqin (張薈欽), ZHONG Zhaoxiang (仲兆祥), LI Weixing (李衛(wèi)星), XING Weihong (邢衛(wèi)紅)** and JIN Wanqin (金萬勤)

    State Key Laboratory of Materials-Oriented Chemical Engineering, Membrane Science and Technology Research Center, Nanjing University of Technology, Nanjing 210009, China

    River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process*

    ZHANG Huiqin (張薈欽), ZHONG Zhaoxiang (仲兆祥), LI Weixing (李衛(wèi)星), XING Weihong (邢衛(wèi)紅)** and JIN Wanqin (金萬勤)

    State Key Laboratory of Materials-Oriented Chemical Engineering, Membrane Science and Technology Research Center, Nanjing University of Technology, Nanjing 210009, China

    Membrane filtration technology combined with coagulation is widely used to purify river water. In this study, microfiltration (MF) and ultrafiltration (UF) ceramic membranes were combined with coagulation to treat local river water located at Xinghua, Jiangsu province, China. The operation parameters, fouling mechanism and pilot-scale tests were investigated. The results show that the pore size of membrane has small effect on the pseudo-steady flux for dead-end filtration, and the increase of flux in MF process is more than that in UF process for cross-flow filtration with the same increase of cross-flow velocity. The membrane pore size has little influence on the water quality. The analysis on membrane fouling mechanism shows that the cake filtration has significant influence on the pseudo-steady flux and water quality for the membrane with pore size of 50, 200 and 500 nm. For the membrane with pore size of 200 nm and backwashing employed in our pilot study, a constant flux of 150 L·m?2·h?1was reached during stable operation, with the removal efficiency of turbidity, total organic carbon (TOC) and UV254 higher than 99%, 45% and 48%, respectively. The study demonstrates that coagulation-porous ceramic membrane hybrid process is a reliable method for river water purification.

    ceramic membrane, surface water, membrane fouling mechanism, pilot study

    1 INTRODUCTION

    Lack of clean fresh water becomes a potential risk to public health [1]. The rapid increase of contaminants such as heavy metals, bacteria, virus, and disinfection by-products in the source water strongly affects the quality of drinking water [2-5]. Traditional processes (coagulation + settlement + sand filtration + chlorination) are often used to treat the contaminated water in many waterworks, but it is difficult for the treated water to meet the drinking water standards.

    In recent years, membrane technologies such as ultrafiltration (UF) and microfiltration (MF) are used to purify river water in China. Polymeric UF or MF membrane has been widely used in water treatment [6]. For example, polyvinyl chloride membrane and polyvinylidene fluoride membrane were employed to purify the water from the Tai Lake (Wuxi, China) and Huangpu River (Shanghai, China), respectively [7, 8]. Ceramic membranes have also been used in pharmaceutical, electronic, petrochemical, metallurgical and environmental fields, because of their substantial thermal, chemical and mechanical stability compared to organic membranes. Recently, with the decrease in price, ceramic membranes have been adopted to treat surface water [9-12]. Hofs et al. investigated four ceramic membranes (TiO2, ZrO2, Al2O3, and SiC) and one polymeric membrane (polyethersulfone-polyvinylpyridine) and showed that the ceramic membranes had high flux and high removal rate for natural organic matter (NOM) and UV254 [11].

    NOM plays an important role in membrane fouling [13]. Coagulation pretreatment is reported to be an effective method to alleviate the fouling by NOM [14, 15]. The performance of a coagulation-ceramic membrane system depends on characteristics of feed water. In-line coagulation prior to ceramic microfiltration was used for low turbidity (1 NTU) water treatment. The flux was maintained about 250 L·m?2·h?1[16]. The hybrid process of coagulation and ceramic membrane filtration was adopted to treat Ruhr River water, and stable operation at a constant flux of 80 L·m?2·h?1was obtained [17].

    In our previous work, the effect of coagulation on this hybrid process was reported [18]. More work is needed to understand membrane fouling mechanism and stability of ceramic membranes processes. In this study, a coagulation-porous ceramic membrane hybrid process is used to purify the micro-polluted source water of Hengjing River in East China. Hemia model is employed to investigate the fouling mechanism for membranes with different pore sizes. River water is used as the feed water to investigate the effects of operation modes on ceramic membrane filtration. A pilot study is employed to study the feasibility of ceramic membranes for river water purification.

    2 MATERIALS AND METHODS

    2.1 Feed water and experimental system

    Feed water was taken from Hengjing River,which is one of the drinking water sources for the city of Xinghua, China and a typical water source for small cities in East China. The experiment was carried out in winter with rich humic acid substance in the river. The schematic diagram of the membrane filtration process for river water purification is shown in Fig. 1. It was carried out in open mode, in which the permeate did not return to the feed tank.

    Figure 1 Schematic diagram of the experiment

    2.2 Analytical methods

    The concentrations of metal ions in the feed water and permeate were measured by inductively coupled plasma atomic emission spectroscopy (ICP, Optima 2000 DV, Perkin Elmer, USA). The concentrations of natural organic matters were determined by the TOC (TOC-VCPH, Shimadzu, Japan) and UV254(Gold S54, Shanghai Lengguang Technology Co. Ltd, China). The turbidity was measured with a turbidity meter (2100N, HACH, USA). Surface morphology and cross-section morphology of the membranes were observed by field emission scanning electron microscopy (FE-SEM, S-4800, Hitachi, Japan).

    2.3 Membranes

    The 19-channel ceramic membranes were used, supplied by Jiangsu Jiuwu Hitech Co., Ltd. (China), with external diameter of 31 mm, channel diameter of 4 mm, and membrane area of 0.1 m2. The mean pore size of membrane was 20, 50, 200 and 500 nm, determined by gas bubble pressure method. The pure water fluxes of membranes with pore size of 20, 50, 200 and 500 nm were 161.5, 568.9, 614.2 and 891.9 L·m?2·h?1(0.1 MPa, 20 °C), respectively. For membranes with pore size of 20 and 50 nm, the membrane material was ZrO2/α-Al2O3; for those with pore size of 200 and 500 nm, the material was α-Al2O3/α-Al2O3.

    3 MODELING FOR MEMBRANE FOULING PROCESS

    Constant pressure blocking filtration laws to Newtonian fluids was first reported by Hermia in 1982 [19]. Membrane fouling involves four mechanisms: standard blocking, intermediate blocking, complete blocking, and cake filtration. A general equation for these mechanisms is given

    For n=0, the membrane fouling mechanism is cake filtration, with all particles deposited in the filtration cake at the membrane surface. For n=1, the fouling mechanism is intermediate blocking, with some particles entering and blocking some pores and others stay in the cake. For n=1.5, the fouling mechanism is general blocking, with all particles arriving at the membrane deposited on pore walls. For n=2, the membrane fouling is complete blocking, with particles blocking some pores without superposition of particles [20, 21].

    Yuan et al. [22, 23] successfully applied this model to describe membrane fouling mechanism for MF process of humic acid aqueous solutions. The mathematical expressions of the four fouling mechanisms are described by Salahi et al. [24] and Beatriz et al [25].

    For cake filtration (n=0), the flux vs. t is

    For intermediate blocking (n=1), the flux vs. t is given by

    For standard blocking (n=1.5), the relationship is

    For complete blocking (n=2), the expression is

    In this study, the fouling mechanism of the membrane with different pore sizes was evaluated by Eqs. (2)-(5). All the simulations were implemented with Origin 8 (OriginLab, USA).

    4 RESULTS AND DISCUSSION

    4.1 Effect of pore size on flux

    Figure 2 shows the fluxes of membranes with different pore sizes for purification of river water. In the first hour of filtration, the flux decreased significantly, and then turned to be stable. The pseudo-steady flux was 52.6, 69.0, 66.8 and 93.1 L·m?2·h?1(75 kPa, 20 °C) for four membranes under dead-end conditions after filtration for 7 h. As the average pore size increases, the flux decreases more rapidly. The flux decline is similar for the membranes with pore size of 50, 200 and 500 nm, but it is different with the pore size of 20 nm. This indicates that the mechanism of membrane fouling for the membrane with pore size of 20 nm is different from that for other three membranes.

    Figure 2 Effects of pore size on flux in dead-end filtration (75 kPa, 20 °C)

    The analysis on membrane fouling resistance is employed to determine Rm/RTfor this filtration. Rmand RTare calculated by Darcy’s law,

    The methods were described in details previously [26]. The results are shown in Table 1. As the pore size increases, Rm/RTdecreases. For the membranes with pore size 50, 200 and 500 nm, the difference in Rm/RTis regular, but the values are only one third of that with pore size of 20 nm.

    Table 1 Resistances of the membranes with different pore sizes

    The quality of permeate with different membrane pore sizes is shown in Table 2. The pore size in the range of 20 nm to 500 nm has little influence on the water quality. Fig. 3 shows the field-emission scanning electron microscope (FE-SEM) images for the membrane surface with pore size of 50 nm withtrans-membrane pressure (TMP) of 0.1 MPa and cross-flow velocity (CFV) of 1 m·s?1. The fouling layer on the membrane surface is denser than a new membrane. During the filtration, the fouling layer that acts as a dynamic membrane has a more significant influence on the water quality than the ceramic membrane. Therefore, water quality is affected by pore size and porosity of the cake rather than the pore size of membrane. The results suggest that ceramic membrane with large pore sizes (200 nm or 500 nm) can be used for river water purification.

    Table 2 Quality of feed water and permeate with different membranes

    Figure 3 SEM images of new membrane (a) and fouled membrane (b) with pore size 50 nm

    Figure 4 Analysis for membrane fouling process■ 20 nm; ● 50 nm; ▲ 200 nm; ▼ 500 nm

    4.2 Effect of pore size on fouling mechanism

    Equations (2)-(5) are used to fit the flux with filtration time t to determine the fouling mechanism, as shown in Fig. 4, with the correlation coefficients R2in Table 3. For the membrane with pore size of 20 nm, all of these models are not acceptable. For the membrane with pore size of 50 and 500 nm, the fouling is mainly caused by intermediate blocking (R2>0.97) and cake filtration (R2>0.98); for the membrane with pore size of 200 nm, it is mainly caused by standard blocking (R2>0.96), intermediate blocking (R2>0.98), and cake filtration (R2>0.98).

    Table 3 Correlation coefficient R2by linear fitting with Hermia model for analysis on fouling mechanism

    The fitting of cake filtration model is slightly better than that of intermediate and standard blocking. The intermediate blocking indicates the transition from pore blocking to cake filtration [20]. The pore blocking (intermediate blocking) occurs in the initial stage of filtration process. After filtration for about 1 h, the fouling mechanism changed to cake filtration because the flux decline became slowly (Fig. 3). Salahi et al. [24] investigated the membrane fouling for oil wastewater filtration, the fouling mechanism changed after 300 s filtration. The critical time may depend on the quality of feed water. At higher concentration of organic matter, the fouling mechanism changed earlier. According to the fouling mechanism analysis andorganic membrane fouling by river water reported by Qiao et al. [7], we infer that the membrane fouling process is divided into two steps. First, the membrane is fouled by the NOM and suspended solid with small particle size and pore blocking is the main fouling mechanism. Then the cake formed by the NOM and suspended solid with large particle size is the main reason for the slow decline of flux. Thus the cake filtration has significant influence on the process with ceramic membranes. In order to alleviate the resistance of the filter cake, backwashing was employed in pilot study.

    4.3 Effect of operation mode

    Two operation modes, dead-end filtration and micro-cross-flow filtration, were used to assess the membrane fouling in river water purification, as shown in Fig. 5. When the operation mode was changed from dead-end filtration to micro-cross-flow filtration (0.5 m·s?1), for UF membranes with pore sizes of 20 and 50 nm, the pseudo-steady flux was improved by 20.4% and 20.2%, respectively; for the MF membranes with pore sizes of 200 and 500 nm, it was increased by 69.1% and 78.3%, respectively. Compare with dead-end filtration, in micro-cross-flow mode, the contamination on the membrane surface was limited, increasing the flux [27]. The flux increase in MF processes was higher than that in UF processes with the same increase of CFV. The MF processes are significantly affected by concentration polarization. As the CFV increases, the thickness of the gel layer decreases, and the concentration polarization is alleviated. Without consideration for water recovery and energy consumption, microcross-flow filtration is more suitable for river water purification than dead-end filtration.

    Figure 5 The relationship between pseudo-steady flux and CFV (TMP=0.1 MPa, 20 °C)

    4.4 Pilot-scale study for river water purification

    A pilot-scale study was conducted to determine the long-term performance of ceramic membranes for river water purification. The production capacity was set to 1.84 m3·h?1. 19-Channel ceramic membrane modules were employed throughout the experiments. The membrane area was approximately 12 m2and the pore size was 200 nm. For obtaining a high water recovery rate and low energy consumption, dead-end filtration was employed. The backwashing period was set to 1 h, and the membrane was backwashed with permeate for 30 s each time. The temperature of the feed water was (15±1) °C. The proposed process was operated steadily for more than a week at a constant flux of 150 L·m?2·h?1(1.84 m3·h?1). Water recovery rate was more than 92%, calculated by

    Figure 6 shows the TMP as a function of time. In the pilot-scale study, the maximum TMP was 0.17 MPa and the minimum TMP was 0.05 MPa. The average growth rate of TMP was 3.71 kPa·h?1. The TMP after backwashing was about 0.5 times that before backwashing. Thus backwashing can effectively reduce membrane fouling. The calculated result by Hermia model is consistent with the experimental results. The chemical cleaning was carried out after every 70 h filtration. The aqueous solutions of sodium hypochlorite with volume concentration of 0.1% and sodium hydroxide with mass concentration of 0.1% were employed.

    Figure 6 TMP of ceramic membrane for pilot-scale experiment (constant flux=150 L·m?2·h?1)

    Water quality of Hengjing River and permeate is shown in Table 4. The removal efficiency of turbidity, UV254and TOC was higher than 99%, 45% and 48%, respectively. Al3+could be removed completely while the removal efficiency of Fe3+was 99.7%. A suitable dosage of coagulates can improve the pseudo-steady flux and retention rate of NOM [28]. Fe3+and Al3+make NOM molecules aggregate and are encapsulated by NOM. The Fe3+-NOM and Al3+-NOM are intercepted by the membranes, so the membrane has a high retention rate for Fe3+and Al3+. Similar results has been reported for ceramic membrane with pore size of 100 nm, with Fe added as coagulates [29]. The membrane filtration can not remove Ca2+and Mg2+from feed water. In this work, the concentration of Ca2+in the feed water was 64.56 mg·L?1, higher than that reported in literature, and Ca2+makes the gel layer denser [30].Turbidity/NTU UV254/cm?1TOC/mg·L?1Fe/mg·L?1Al/mg·L?1Total hardness (CaCO3)/mg·L?1

    Table 4 Water quality analysis for the river water and permeate

    The results for variation of TMP and water quality show that the ceramic membranes coupled with coagulation are steady for river water purification with long-term operation.

    5 CONCLUSIONS

    The coagulation-porous ceramic membrane hybrid process was used to purify Hengjing River water. The results show that this hybrid process is an effective way for purify micro-polluted source water. The MF process is more efficient than UF with the same increase of CFV. The membrane pore size in the range of 20 nm to 500 nm has a small effect on the pseudosteady flux for dead-end filtration and has little influence on the water quality of permeate. The analysis on membrane fouling shows that the cake filtration plays an important role in this process for the membrane with pore size of 50, 200 and 500 nm. The water quality is significantly influence by the cake on the membrane surface. In a pilot scale study, for the membrane with pore size of 200 nm with backwashing, stable operation at a constant flux of 150 L·m?2·h?1was attained, and the removal efficiency of turbidity, TOC and UV254 was higher than 99%, 45% and 48%, respectively. In summary, the proposed coagulationceramic membrane process is a potential process for the purification of surface water.

    NOMENCLATURE

    J flux, L·m?2·h?1

    Jppseudo-steady flux, L·m?2·h?1

    J0initial flux, L·m?2·h?1

    k constant

    ΔP trans-membrane pressure, Pa

    R water recovery rate

    Rffouling resistance of fouled membrane, m?1

    Rmintrinsic resistance of new membrane, m?1

    RTtotal resistance of fouled membrane, m?1

    R2correlation coefficient

    t filtration time, h

    V filtrate volume, L

    Vfeedvolume of feed water, L

    Vpermeatevolume of permeate, L

    μ viscosity of feed water, Pa?s

    REFERENCES

    1 Shannon, M.A., Bohn, W.P., Elimelech, M., Georgiadis G.J., Marinas, J.B., Mayes, M.A., “Science and technology for water purification in the coming decades”, Nature, 452, 301-310 (2008).

    2 Xu, W.D., Chellam, S., “Initial stages of bacterial fouling during dead-end microfiltration”, Environ. Sci. Technol., 39 (17), 6470-6476 (2005).

    3 Meyn, T., Leiknes, T.O., Koenig, A., “MS2 removal from high NOM content surface water by coagulation-ceramic microfiltration, for potable water production”, AIChE J., 58 (7), 2270-2281 (2012).

    4 Sentana, I., Puche, R.D.S., Sentana, E., Prats, D., “Reduction of chlorination byproducts in surface water using ceramic nanofiltration membranes”, Desalination, 277, 147-155 (2011).

    5 Hajdu, I., Bodnár, M., Csikós, Z., Wei, S., Daróczi, L., Kovács, B., Zoltán,G., Tamás, J., Borbély, J., “Combined nano-membrane technology for removal of lead ions”, J. Membr. Sci., 409-410, 44-53 (2012).

    6 Hashino, M., Hirami, K., Katagiri, T., Kubota, N., Ohmukai, Y., Ishigami, T., Maruyama, T., Matsuyama, H., “Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling”, J. Membr. Sci., 379, 233-238 (2011).

    7 Qiao, X.L., Zhang, Z.J., Wang, N.C., Wee, V., Low, M., Loh, C.S., Hing, N.T., “Coagulation pretreatment for a large-scale ultrafiltration process treating water from the Taihu River”, Desalination, 230, 305-313 (2008).

    8 Song, Y.L., Dong, B.Z., Gao, N.Y., Xia, S.J., “Huangpu River water treatment by microfiltration with ozone pretreatment”, Desalination, 250 (1), 71-75 (2010).

    9 Li, M., Wu, G., Guan, Y., Zhang, X., “Treatment of river water by a hybrid coagulation and ceramic membrane process”, Desalination, 280, 114-119 (2011).

    10 Muhammad, N., Sinha, R., Krishnan, E.R., Patterson, C.L., “Ceramic filter for small system drinking water treatment: evaluation of membrane pore size and importance of integrity monitoring”, J. Environ. Eng. ASCE, 135 (11), 1181-1191 (2009).

    11 Hofs, B., Ogier, J., Vries, D., Beerendonk, E.F., Cornelissen, E.R.,“Comparison of ceramic and polymeric membrane permeability and fouling using surface water”, Sep. Purif. Technol., 79 (3), 365-374 (2011).

    12 Cui, Z., Xing, W., Fan, Y., Xu, N., “Pilot study on the ceramic membrane pre-treatment for seawater desalination with reverse osmosis in Tianjin Bohai Bay”, Desalination, 279, 190-194 (2011).

    13 Liu, Z., Chu, H., Dong, B., Liu, H., “Characterization of natural organic foulants removed by microfiltration”, Desalination, 277, 370-376 (2011).

    14 Barbot, E., Moustier, S., Bottero, J.Y., Moulin, P., “Coagulation and ultrafiltration: Understanding of the key parameters of the hybrid process”, J. Membr. Sci., 325 (2), 520-527 (2008).

    15 Liu, T., Chen, Z.L., Yu, W.Z., Shen, J. M., Gregory, J., “Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water”, Water Research, 45 (14), 4260-4268 (2011).

    16 Meyn, T., Altmann, J., Leiknes, T., “In-line coagulation prior to ceramic microfiltration for surface water treatment-minimisation of flocculation pre-treatment”, Desalination and Water Treatment, 42, 163-176 (2012).

    17 Lerch, A., Panglisch, S., Buchta, P., Tomitac, Y., Yonekawa, H., Hattori, K., Gimbel, R., “Direct river water treatment using coagulation/ceramic membrane microfiltration”, Desalination, 179, 41-50 (2005).

    18 Li, W.X., Zhou, L.Y., Xing, W.H., Xu, N.P., “Coagulation-microfiltration for lake water purification using ceramic membranes”, Desalination and Water Treatment, 18, 239-244 (2010).

    19 Hermia, J., “Constant pressure blocking filtration laws-application to power-lawnon-newtonian fluids”, Transactions of the Institution of Chemical Engineers, 60 (3), 193-187 (1982).

    20 Tian, Y., Chen, L., Zhang, S., Zhang, S., “A systematic study of soluble microbial products and their fouling impacts in membrane bioreactors”, Chem. Eng. J., 168 (3), 1093-1102 (2011).

    21 Jacob, J., Prádanos, P., Calvo, J.I., Hernández, A., Jonsson, G.,“Fouling kinetics and associated dynamics of structural modifications”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138, 173-183 (1998).

    22 Yuan, W., Zydney, A.L., “Humic acid fouling during microfiltration”, J. Membr. Sci., 157 (1), 51-62 (1999).

    23 Zydney, A.L., Yuan, W., Kocic, A., “Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model”, J. Membr. Sci., 198 (1), 51-62 (2002).

    24 Salahi, A., Abbasi, M., Mohammadi, T., “Permeate flux decline during UF of oily wastewater: Experimental and modeling”, Desalination, 251, 153-160 (2010).

    25 Beatriz, C.M., Rene, R., Castro, C.A., Torrico, J.S., Riquelme, M.L.,“Analysis of the membrane fouling mechanisms involved in clarified grape juice ultrafiltration using statistical tools”, Ind. Eng. Chem. Res., 51 (10), 4017-4024 (2012).

    26 Li, M., Zhao, Y., Zhou, S., Xing, W., Wong, F.S., “Resistance analysis for ceramic membrane microfiltration of raw soy sauce”, J. Membr. Sci., 299, 122-129 (2007).

    27 Wang, L., Wang, X.D., Fukushi, K.I., “Effects of operational conditions on ultrafiltration membrane fouling”, Desalination, 229, 181-191 (2008).

    28 Lee, J.D., Lee, S.H., Jo, M.H., Park, P.K., Lee, C.H., Kwak, J.W.,“Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment”, Environ. Sci. Technol., 34 (17), 3780-3788 (2000).

    29 Konieczny, K., Bodzek, M., Rajca, M., “A coagulation-MF system for water treatment using ceramic membranes”, Desalination, 198, 92-101 (2006).

    30 Costa, A.R., Pinho, M.N., Elimelech, M., “Mechanisms of colloidal natural organic matter fouling in ultrafiltration”, J. Membr. Sci., 281, 716-725 (2006).

    10.1016/S1004-9541(14)60014-8

    2012-12-06, accepted 2013-02-26.

    * Supported by the National Natural Science Foundation of China (21276124, 21125629,21076102), Research Project of Natural Science for Universities Affiliated with Jiangsu Province (10KJB530002), Key Projects in the National Science & Technology Pillar Program (2011BAE07B09-3), Jiangsu Province Industrial Supporting Project (BE2011831).

    ** To whom correspondence should be addressed. E-mail: xingwh@njut.edu.cn

    猜你喜歡
    衛(wèi)星
    把衛(wèi)星甩上天
    miniSAR遙感衛(wèi)星
    如何確定衛(wèi)星的位置?
    軍事文摘(2021年16期)2021-11-05 08:48:58
    滿天都是小衛(wèi)星
    靜止衛(wèi)星派
    科學家(2019年3期)2019-08-18 09:47:43
    衛(wèi)星掠影
    咣當! 天上掉衛(wèi)星
    Puma" suede shoes with a focus on the Product variables
    競射導航衛(wèi)星為哪般
    太空探索(2015年6期)2015-07-12 12:48:29
    我國成功發(fā)射遙感衛(wèi)星二十五號
    河北遙感(2014年4期)2014-07-10 13:54:59
    18在线观看网站| 91麻豆精品激情在线观看国产 | 一边摸一边抽搐一进一小说 | 天天影视国产精品| 久久精品人人爽人人爽视色| 亚洲色图 男人天堂 中文字幕| 色综合欧美亚洲国产小说| 久久精品国产综合久久久| 亚洲三区欧美一区| 中文字幕人妻丝袜一区二区| a在线观看视频网站| 精品欧美一区二区三区在线| 精品高清国产在线一区| 亚洲全国av大片| 午夜福利,免费看| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 欧美国产精品va在线观看不卡| 国产深夜福利视频在线观看| 亚洲人成77777在线视频| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 女同久久另类99精品国产91| 国产又色又爽无遮挡免费看| 亚洲av欧美aⅴ国产| 18禁观看日本| 高清视频免费观看一区二区| 波多野结衣一区麻豆| 欧美大码av| 又黄又粗又硬又大视频| 国产不卡一卡二| 国内毛片毛片毛片毛片毛片| 亚洲人成伊人成综合网2020| 色播在线永久视频| 精品亚洲成国产av| 国产一区二区三区在线臀色熟女 | 成人三级做爰电影| 激情在线观看视频在线高清 | 欧美国产精品一级二级三级| 亚洲精品一卡2卡三卡4卡5卡| tube8黄色片| 午夜福利免费观看在线| 免费在线观看亚洲国产| 国产1区2区3区精品| 妹子高潮喷水视频| 国产不卡一卡二| 成年动漫av网址| av一本久久久久| 精品久久蜜臀av无| 在线播放国产精品三级| 午夜91福利影院| 又黄又粗又硬又大视频| 精品一区二区三区视频在线观看免费 | 在线永久观看黄色视频| 亚洲人成77777在线视频| 51午夜福利影视在线观看| а√天堂www在线а√下载 | 国产精品国产高清国产av | 欧美日韩成人在线一区二区| 亚洲五月婷婷丁香| 久久人妻福利社区极品人妻图片| 亚洲av欧美aⅴ国产| 99精品在免费线老司机午夜| 久久草成人影院| 高清av免费在线| 国产精品久久电影中文字幕 | 午夜两性在线视频| 好男人电影高清在线观看| 欧美午夜高清在线| 麻豆国产av国片精品| 91老司机精品| 天堂俺去俺来也www色官网| 国产蜜桃级精品一区二区三区 | 国产亚洲av高清不卡| 久热这里只有精品99| 亚洲av第一区精品v没综合| 精品久久蜜臀av无| 一边摸一边抽搐一进一出视频| av在线播放免费不卡| 日韩欧美免费精品| 熟女少妇亚洲综合色aaa.| 黑人操中国人逼视频| 午夜视频精品福利| 国产精品自产拍在线观看55亚洲 | 亚洲美女黄片视频| 天堂中文最新版在线下载| 成年女人毛片免费观看观看9 | 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 亚洲av成人一区二区三| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看 | 18禁美女被吸乳视频| 免费在线观看亚洲国产| 老司机深夜福利视频在线观看| www.自偷自拍.com| 天天添夜夜摸| 午夜成年电影在线免费观看| 曰老女人黄片| 亚洲av成人av| tocl精华| 男男h啪啪无遮挡| 极品少妇高潮喷水抽搐| 国产亚洲精品久久久久5区| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 国产av一区二区精品久久| 老鸭窝网址在线观看| 老司机福利观看| 国产在视频线精品| 精品一品国产午夜福利视频| 一级,二级,三级黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 韩国精品一区二区三区| 精品免费久久久久久久清纯 | 午夜福利,免费看| 成年人黄色毛片网站| 人人妻人人添人人爽欧美一区卜| 日韩免费av在线播放| 午夜福利免费观看在线| 操美女的视频在线观看| 国产精品1区2区在线观看. | 久久久精品国产亚洲av高清涩受| 在线十欧美十亚洲十日本专区| 精品国产一区二区三区四区第35| 高清黄色对白视频在线免费看| 国产成人精品无人区| 变态另类成人亚洲欧美熟女 | 国产成人欧美| 麻豆av在线久日| 91av网站免费观看| 别揉我奶头~嗯~啊~动态视频| 精品无人区乱码1区二区| 男女高潮啪啪啪动态图| 国产激情欧美一区二区| 欧美精品亚洲一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲成av片中文字幕在线观看| 少妇裸体淫交视频免费看高清 | 久久久久久亚洲精品国产蜜桃av| 人妻久久中文字幕网| 亚洲国产欧美网| 一边摸一边抽搐一进一出视频| 好男人电影高清在线观看| 一进一出好大好爽视频| www.999成人在线观看| 日韩熟女老妇一区二区性免费视频| 香蕉丝袜av| 在线观看免费午夜福利视频| 欧美国产精品一级二级三级| 久久 成人 亚洲| 777久久人妻少妇嫩草av网站| 超碰97精品在线观看| 天天躁夜夜躁狠狠躁躁| 午夜免费成人在线视频| 黑人巨大精品欧美一区二区蜜桃| 涩涩av久久男人的天堂| 天堂动漫精品| av网站免费在线观看视频| 国产极品粉嫩免费观看在线| 人妻久久中文字幕网| 黄色怎么调成土黄色| 国产精品电影一区二区三区 | 午夜福利乱码中文字幕| 国产精品一区二区在线观看99| 久久九九热精品免费| 中出人妻视频一区二区| 色播在线永久视频| 久久久精品区二区三区| 午夜视频精品福利| 韩国精品一区二区三区| 另类亚洲欧美激情| 满18在线观看网站| 欧美日韩视频精品一区| 桃红色精品国产亚洲av| 日本vs欧美在线观看视频| 99国产精品99久久久久| 国产真人三级小视频在线观看| 亚洲精品中文字幕一二三四区| 正在播放国产对白刺激| 18禁观看日本| 欧美日韩乱码在线| 最近最新中文字幕大全电影3 | 一级a爱片免费观看的视频| 母亲3免费完整高清在线观看| av一本久久久久| 国产一区二区三区视频了| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影 | 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久久久久久大奶| 黄片播放在线免费| 嫩草影视91久久| 亚洲九九香蕉| 欧美另类亚洲清纯唯美| 大型黄色视频在线免费观看| 久久人妻熟女aⅴ| 欧美大码av| 999久久久国产精品视频| 免费观看人在逋| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三区在线| a级毛片在线看网站| 欧美最黄视频在线播放免费 | 欧美在线黄色| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| av欧美777| 国产欧美日韩一区二区精品| 欧美乱色亚洲激情| 91精品三级在线观看| 亚洲人成伊人成综合网2020| 999久久久精品免费观看国产| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 无遮挡黄片免费观看| 麻豆av在线久日| 黑人欧美特级aaaaaa片| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 国产欧美日韩一区二区精品| 午夜激情av网站| 久久久国产精品麻豆| 色尼玛亚洲综合影院| ponron亚洲| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 国产不卡一卡二| 成年人黄色毛片网站| 美国免费a级毛片| 少妇被粗大的猛进出69影院| 日本vs欧美在线观看视频| 亚洲欧美激情在线| а√天堂www在线а√下载 | 国产av精品麻豆| 国产片内射在线| 免费看a级黄色片| 久久精品成人免费网站| 亚洲国产精品合色在线| 亚洲中文av在线| 亚洲avbb在线观看| 久久精品国产a三级三级三级| 一边摸一边抽搐一进一小说 | 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 午夜福利欧美成人| 人人妻人人澡人人看| 久久精品亚洲熟妇少妇任你| 国产欧美日韩精品亚洲av| 大片电影免费在线观看免费| 亚洲精品在线观看二区| 精品熟女少妇八av免费久了| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 他把我摸到了高潮在线观看| 国产区一区二久久| 欧美 日韩 精品 国产| 久久久久久久精品吃奶| 黄色毛片三级朝国网站| 国产一卡二卡三卡精品| 少妇的丰满在线观看| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 窝窝影院91人妻| av视频免费观看在线观看| 女人精品久久久久毛片| 丝瓜视频免费看黄片| 桃红色精品国产亚洲av| 中文字幕精品免费在线观看视频| 久久久久久久午夜电影 | 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 美女扒开内裤让男人捅视频| 亚洲第一av免费看| 国产亚洲欧美98| 国产成人欧美| 欧美乱妇无乱码| 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 丁香六月欧美| 亚洲av成人av| 在线播放国产精品三级| 国产精品香港三级国产av潘金莲| 国产成人一区二区三区免费视频网站| 动漫黄色视频在线观看| 在线观看午夜福利视频| 欧美性长视频在线观看| 成人亚洲精品一区在线观看| 国产激情欧美一区二区| 欧美在线黄色| 中文欧美无线码| 国产成+人综合+亚洲专区| 一区福利在线观看| 欧美日韩成人在线一区二区| 久久精品亚洲精品国产色婷小说| 99热网站在线观看| 国产高清国产精品国产三级| 999久久久精品免费观看国产| 电影成人av| 亚洲av片天天在线观看| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 女性被躁到高潮视频| 国产不卡av网站在线观看| 久久香蕉激情| 免费日韩欧美在线观看| 亚洲av第一区精品v没综合| 国产欧美日韩一区二区精品| 国产精品亚洲一级av第二区| 精品免费久久久久久久清纯 | 免费在线观看日本一区| 久久狼人影院| 人人妻人人澡人人看| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 黄色怎么调成土黄色| 国产免费av片在线观看野外av| 精品人妻熟女毛片av久久网站| 免费观看a级毛片全部| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 国产单亲对白刺激| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜制服| 多毛熟女@视频| 无遮挡黄片免费观看| 欧美激情 高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 黑人操中国人逼视频| 精品亚洲成国产av| 巨乳人妻的诱惑在线观看| 69精品国产乱码久久久| 日韩视频一区二区在线观看| 日日爽夜夜爽网站| 人人妻人人爽人人添夜夜欢视频| av有码第一页| 久久青草综合色| av线在线观看网站| 人人妻人人澡人人看| 亚洲色图av天堂| 在线看a的网站| 一夜夜www| 天天躁日日躁夜夜躁夜夜| 午夜福利一区二区在线看| 久久久国产一区二区| 国产精品影院久久| 日本wwww免费看| 真人做人爱边吃奶动态| 国产欧美亚洲国产| 日日爽夜夜爽网站| 一级毛片精品| 99国产极品粉嫩在线观看| 亚洲av欧美aⅴ国产| 色婷婷久久久亚洲欧美| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美软件| 国产精品二区激情视频| 国产精品一区二区在线不卡| 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| 国产激情欧美一区二区| 捣出白浆h1v1| 90打野战视频偷拍视频| 精品高清国产在线一区| 亚洲av成人一区二区三| 丝袜美腿诱惑在线| 这个男人来自地球电影免费观看| 激情在线观看视频在线高清 | 新久久久久国产一级毛片| 亚洲黑人精品在线| 一级毛片高清免费大全| 69精品国产乱码久久久| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 91字幕亚洲| 免费在线观看视频国产中文字幕亚洲| 91麻豆av在线| 超碰97精品在线观看| 亚洲精品在线观看二区| 18禁观看日本| 欧美激情高清一区二区三区| 99re6热这里在线精品视频| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| 亚洲av成人一区二区三| 夜夜夜夜夜久久久久| 国产成+人综合+亚洲专区| 久久国产精品影院| 他把我摸到了高潮在线观看| 又大又爽又粗| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 欧美成狂野欧美在线观看| 欧美日韩国产mv在线观看视频| 国产精品一区二区在线观看99| 亚洲精品美女久久久久99蜜臀| 免费观看精品视频网站| 女人被狂操c到高潮| 亚洲国产毛片av蜜桃av| e午夜精品久久久久久久| 天堂俺去俺来也www色官网| 亚洲五月天丁香| 热99re8久久精品国产| 久久人人97超碰香蕉20202| 高清视频免费观看一区二区| 久99久视频精品免费| 精品一区二区三区av网在线观看| 国产一区二区三区综合在线观看| 黄频高清免费视频| 国产免费男女视频| 国产亚洲欧美在线一区二区| 久久精品国产综合久久久| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 精品少妇一区二区三区视频日本电影| 视频在线观看一区二区三区| 欧美成人午夜精品| 午夜精品久久久久久毛片777| 免费av中文字幕在线| 1024香蕉在线观看| 欧美大码av| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 国产精品乱码一区二三区的特点 | 欧美日韩瑟瑟在线播放| 亚洲一区二区三区欧美精品| 免费人成视频x8x8入口观看| 欧美日韩乱码在线| 男女之事视频高清在线观看| www日本在线高清视频| 少妇 在线观看| 大香蕉久久成人网| 美女扒开内裤让男人捅视频| 欧美亚洲日本最大视频资源| 亚洲熟女精品中文字幕| 99久久人妻综合| 激情视频va一区二区三区| 成人手机av| 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 亚洲成人手机| 久久国产精品大桥未久av| 久久草成人影院| 国产不卡一卡二| 狠狠狠狠99中文字幕| 久久国产精品人妻蜜桃| 真人做人爱边吃奶动态| 亚洲精品美女久久av网站| 精品熟女少妇八av免费久了| av免费在线观看网站| 99精国产麻豆久久婷婷| 亚洲av欧美aⅴ国产| 真人做人爱边吃奶动态| 国产一区二区三区综合在线观看| cao死你这个sao货| 亚洲熟女毛片儿| av中文乱码字幕在线| 一边摸一边做爽爽视频免费| 国产免费现黄频在线看| 欧美一级毛片孕妇| 亚洲国产毛片av蜜桃av| 亚洲人成电影观看| 欧美激情久久久久久爽电影 | 99精品久久久久人妻精品| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 啦啦啦 在线观看视频| 91九色精品人成在线观看| 男女高潮啪啪啪动态图| 黄色视频不卡| 欧美精品人与动牲交sv欧美| 亚洲在线自拍视频| 国产精品98久久久久久宅男小说| 久久久久久久精品吃奶| 女警被强在线播放| 91成人精品电影| 午夜成年电影在线免费观看| 亚洲欧美色中文字幕在线| 亚洲精品中文字幕一二三四区| 久久久久国内视频| 午夜福利影视在线免费观看| 人妻一区二区av| 色尼玛亚洲综合影院| 久久久国产成人精品二区 | 99riav亚洲国产免费| 久久婷婷成人综合色麻豆| 在线观看午夜福利视频| 麻豆乱淫一区二区| 后天国语完整版免费观看| 一区二区三区激情视频| 视频区图区小说| www.自偷自拍.com| 黄色女人牲交| av线在线观看网站| 亚洲第一欧美日韩一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产1区2区3区精品| 国产成人欧美| av有码第一页| 久久久久久久久久久久大奶| 亚洲国产欧美日韩在线播放| 国产不卡一卡二| 黄色视频,在线免费观看| 热99re8久久精品国产| 人人妻人人澡人人看| 日韩成人在线观看一区二区三区| 国产片内射在线| 免费观看精品视频网站| 男女之事视频高清在线观看| 91九色精品人成在线观看| 丰满饥渴人妻一区二区三| 精品国产亚洲在线| 日本欧美视频一区| 高清av免费在线| 午夜免费观看网址| 热re99久久国产66热| 午夜91福利影院| 另类亚洲欧美激情| 三级毛片av免费| 亚洲片人在线观看| 久久 成人 亚洲| 搡老岳熟女国产| 人人澡人人妻人| 日本欧美视频一区| svipshipincom国产片| 19禁男女啪啪无遮挡网站| 男女床上黄色一级片免费看| 国产成人av激情在线播放| tube8黄色片| 欧美久久黑人一区二区| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 日本欧美视频一区| 久久国产精品大桥未久av| 亚洲熟女精品中文字幕| 成熟少妇高潮喷水视频| 十分钟在线观看高清视频www| 一二三四在线观看免费中文在| 在线国产一区二区在线| 亚洲美女黄片视频| 日韩欧美三级三区| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 免费在线观看视频国产中文字幕亚洲| a在线观看视频网站| www.自偷自拍.com| 啪啪无遮挡十八禁网站| 国产乱人伦免费视频| 男女床上黄色一级片免费看| 成人国语在线视频| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一出视频| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 极品教师在线免费播放| 国产乱人伦免费视频| 欧美激情 高清一区二区三区| 精品久久久久久久久久免费视频 | 国产精品久久久久久人妻精品电影| 精品电影一区二区在线| 国产色视频综合| 国产精品久久久av美女十八| 夜夜夜夜夜久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 18禁观看日本| 黑人猛操日本美女一级片| 成人18禁高潮啪啪吃奶动态图| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 老司机靠b影院| 91精品三级在线观看| 亚洲精品久久午夜乱码| 天天操日日干夜夜撸| 亚洲五月婷婷丁香| 美女国产高潮福利片在线看| 女性被躁到高潮视频| 免费在线观看黄色视频的| 免费在线观看日本一区| 免费女性裸体啪啪无遮挡网站| 亚洲一区中文字幕在线| 色精品久久人妻99蜜桃| 国产亚洲av高清不卡| 女人被狂操c到高潮| 在线国产一区二区在线| 大香蕉久久成人网| 国产熟女午夜一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲av成人一区二区三| 久久精品人人爽人人爽视色| netflix在线观看网站| 青草久久国产| 国产在线精品亚洲第一网站| 男女下面插进去视频免费观看| 男人舔女人的私密视频| 国产精品 国内视频| 亚洲国产精品合色在线| 视频在线观看一区二区三区| 国产亚洲精品久久久久久毛片 | 国产日韩一区二区三区精品不卡| 精品久久久久久,| 久久影院123| 国产成人精品无人区| 搡老乐熟女国产| 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 村上凉子中文字幕在线| 777米奇影视久久| 国产三级黄色录像|