• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vapor-Liquid Equilibrium Prediction of Ammonia-Ionic Liquid Working Pairs of Absorption Cycle Using UNIFAC Model*

    2014-07-18 11:56:05SUNGuangming孫光明HUANGWeijia黃維佳ZHENGDanxing鄭丹星DONGLi董麗andWUXianghong武向紅
    關(guān)鍵詞:光明

    SUN Guangming (孫光明), HUANG Weijia (黃維佳), ZHENG Danxing (鄭丹星)**, DONG Li (董麗) and WU Xianghong (武向紅)

    College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    Vapor-Liquid Equilibrium Prediction of Ammonia-Ionic Liquid Working Pairs of Absorption Cycle Using UNIFAC Model*

    SUN Guangming (孫光明), HUANG Weijia (黃維佳), ZHENG Danxing (鄭丹星)**, DONG Li (董麗) and WU Xianghong (武向紅)

    College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient (1γ∞) and the absorption potential (1Ψ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of1γ∞and1Ψ of 16 sets of NH3-ionic liquid (IL) systems. The work found that the1Ψ gradually increases following the impact order: Ψ1([Cnmim][BF4])<Ψ1([Cnmim]EtOSO3)<Ψ1([Cnmim]DMP)<Ψ1([Cnmim]Ac) (n=1, 2, 3, …) at a given cation of IL species and constant temperature, and Ψ1([Mmim]X)<Ψ1([Emim]X)<Ψ1([Pmim]X)<Ψ1([Bmim]X) (X=Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the Ψ1gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[Bmim]Ac has the best potential research value relatively.

    absorption cycle working pairs, vapor-liquid equilibrium, UNIFAC model, ammonia, ionic liquid

    1 INTRODUCTION

    With the continuous increasing of energy consumption, low-grade heat, such as waste heat, solar energy, biomass and etc., has been attracting more and more attentions. One efficient method of using low-grade heat is the absorption heat pump technology [1]. Presently, NH3-H2O is one of the most common working pairs for low-temperature refrigeration system and air-conditioning system respectively [2]. However, one problem researchers faced with is the strong affinity between NH3and H2O, which costs great heat consumption to separate NH3and H2O [3]. One solution is to develop novel absorbent species instead of H2O.

    In the last decade, the room temperature ionic liquids (ILs) have aroused considerable interest because of their perfect feature, e.g. ignorable vapor pressure and environment-friendly characteristic [4].

    Many researchers have investigated NH3-IL systems including 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) [5], 1-ethyl-3-methylimidazolium ethylsulfate ([Emim]EtOSO3) [5], 1-ethyl-3-methylimidazolium thiocyanate ([Emim][SCN]) [5], N,N-dimethylethanolammonium acetate ([DMEA]Ac) [5], 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) [6], 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) [6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf2N]) [6], 1-hexyl-3-methylimidazolium chloride ([Hmim]Cl) [6], ([Cnmim][BF4]) (n=2, 4, 6, 8) [7] and 1,3-dimethylimidazolium dimethyl phosphate ([Mmim]DMP) [8]. Hu et al. reported their work [9] on molecular characteristics dominating the solubility of gases in ionic liquids, in which the interaction between gases and ionic liquids was summarized and explicated at a deeper level. By assessing literatures, it can be found that there are just few sets of experimental data about vapor-liquid equilibrium (VLE) of NH3-IL binary systems. Furthermore, the reported working pairs are not always to cover the research requirements. Therefore, it will do researchers a big favor in selecting IL, if there is an approach to predict the affinity between NH3and IL with a sufficient accuracy.

    Fortunately, the group contribution methods [10, 11] based on the essential information of working pairs species have been developed to get more information about the systems, which have not been determined experimentally before, by using the known VLE data of other related systems. Among these methods, the most frequently used one is the UNIFAC model. Dong et al. [12] had predicted the activity coefficients of hydrofluorocarbon-IL systems. Wang et al. [13] had calculated benzene-IL, water-IL, acetone-IL, ethylene- IL and methanol-IL systems, and the infinite dilution activity coefficient (γ∞) of mixtures had been obtained.Kato et al. [14] had forecasted the thermodynamic behavior of some mixtures containing IL species.

    In order to select potential working pairs, as an affinity criterion between the absorbent and absorbate, the absorption potential(Ψ1) of a binary system had been proposed by Wu et al. [15] on the basis of selectivity factor defined as the reciprocal of γ∞presented by Kolbe et al [16]. The bigger the Ψ1of the absorbent species is, the better the absorption effect will be [15]. The UNIFAC model is a rigorous method to calculate the activity coefficient upon the group-contribution concept, in which the mixtures are treated as consisting of functional groups instead of molecules. Hence, the desired value of the activity coefficient of a binary system can be predicted reasonably based on the strength of the known interactions of the limited number of functional groups, even if the related experimental data are limited.

    This paper aims at striving to predict the VLE data of the NH3-IL systems through the UNIFAC method, and assessing alternative working pairs of absorption heat pump cycle using the evaluation criteria of1γ∞and1Ψ. Four binary systems, NH3-[Mmim]Ac, NH3-[Mmim][BF4], NH3-[Mmim]DMP and NH3-[Mmim]EtOSO3, were determined as research objects and investigated, respectively.

    2 VAPOR-LIQUID EQUILIBRIUM METHOD OF NH3-ILS SYSTEMS

    2.1 VLE modeling of NH3-IL binary system

    For binary system, the activity coefficient can be written as Eq. (1) [17].

    where yiand χiare the mole fractionsof i species invapor and liquid phases, respectively, stands for the fugacity coefficient of i species in vapor phase, p is thesystempressure, γi expresses the activitycoefficient ofispeciesanddenotes the fugacity ofispeciesat the saturated vapor pressure and system temperature.

    The absorption potential is defined as [15]

    For NH3(1)-IL (2) system, owing to the concentration of the IL species in the vapor phase can be neglected [17, 18], the activity coefficient can be described as [18]

    2.2 UNIFAC model

    It is Fredenslund [20] that came up with the UNIFAC model in 1975 for the first time. The UNIQUAC model was built on the basis of the group-contribution method. In the theory, the definition of the activity coefficient can be written as follows [21].

    The combinatorial term thinks about the different sizes and shapes of the molecules. The residual term embodies the intermolecular attractive force.

    where the parameters φiand Fiare defined asThe parameters riand qiare the volume and surface area of i species, respectively. They are calculated by the van der Waals volumes Rkand surface areas Qkof the individual functional group k using equations ofandwhere()ikν is the number of group k in i species. The parameters rjand qjcan be obtained by the same way as like as riand qi.

    where anm(K?1) is the adjustable group interaction parameter of the difference of short range interaction between group-group. For each group-group interaction, the two parameters exhibit relation of anm≠amn.

    2.3 Group parameters of ammonia-ILs

    The ILs have to be decomposed to functional group when using the UNIFAC model. In this work, the method of division is the same as Kim et al. [22], which is listed in Table 1.

    Table 1 Group division of ILs

    The group volume parameters (Rk) and group surface area parameters (Qk) of CH3, CH2, [mim]DMP, [mim][BF4], NH3, [mim]Ac and [mim]EtOSO3used in this work are listed in Table 2, which were cited from references [13, 23-25], respecitively.

    The new group interaction parameters anmand amnof CH2-[mim][BF4] and CH2-[mim]DMP can be obtained from reference [13, 23]. The new anmand amnof other groups were determined by means of correlating literature data. The objective function F is

    Table 2 Parameters of Rkand Qk

    Table 3 Group interaction parameters amn

    Thus, the VLE data of NH3-[Emim]Ac [5], NH3-[Bmim][BF4] [6], NH3-[Mmim]DMP [8] and NH3-[Emim]EtOSO3[5] systems were predicted by the UNIFAC model. For the four systems, the comparisons of experimental data and predicted data plotted as several p-χ1curves at different temperatures are illustrated in Figs. 1-4. For example, Fig. 1 shows the comparison for NH3(1) in [Emim]Ac (2). The diagrams exhibit that the results predicted by the UNIFAC interaction parameters have good agreement with experimental data of NH3-IL binary systems generally.

    In addition, the average relative deviation (ΔARD) values of pressure between the predicted and experimental data of the four systems are listed in Table 4. It shows that the results are in essential agreement with the cited experimental data. Because the ΔARDvalues of less than 3% indicate data of a high degree of consistency; the ΔARDvalues of less than 10% are probablyacceptable [16]. The distribution of deviation of all points in the four NH3-IL systems is presented in Fig. 5. The maximal value of the ΔARDof pressure is 9.35%, which proves that the approach adopted in this work , i.e. the UNIFAC model, may be an appropriate tool to predict the VLE data for the NH3-[Emim]Ac, NH3-[Bmim][BF4], NH3-[Mmim]DMP and NH3-[Emim]EtOSO3systems.

    Figure 1 p-x1diagram of comparison of experimental and predicted data for NH3(1)-[Emim]Ac (2) systemsymbols: experimental data; lines: data calculated by UNIFAC model; ☆ 348.5 K; △ 324.5 K; 298.3 K; □ 298.2 K;○ 282.5 K

    Figure 2 p-x1diagram of comparison of experimental and predicted data for NH3(1)-[Bmim][BF4] (2) systemsymbols: experimental data; lines: data calculated by UNIFAC model; ☆ 347.5 K; △ 323.6 K; □ 298.4 K; ○ 282.2 K

    Figure 4 p-x1diagram of comparison of experimental and predicted data for NH3(1)-[Emim]EtOSO3(2) systemsymbols: experimental data; lines: data calculated by UNIFAC model; ☆ 372.3 K;347.5K; △ 322.3 K; 298.1 K;□ 297.6 K; ○ 282.7 K

    Table 4 Comparison of experimental and predicted values

    3 RESULTS AND DISCUSSION

    Figure 5 Distribution of deviation of all points in the four NH3-IL systems■ NH3-[Emim]Ac; □ NH3-[Bmim][BF4];▲ NH3-[Mmim]DMP ; △ NH3-[Emim]EtOSO3

    Wang et al. pointed that the affinity between H2O and IL species is influenced by the structural variations such as changing the length of the alkyl chain in the cation and replacing the anion of IL species [13]. Similarly, changing the length of the alkyl chain in the cation of IL species can influence the affinity between NH3and IL species. The1γ∞of NH3in IL species can be derived by the UNIFAC model through setting χ1→0 and χ2→1. The parameter Ψ1can be used as an evaluation criterion for absorption cycle working pairs [15]. In this work, the Ψ1values of NH3in 16 IL species have been predicted and listed in Table 5.

    Figure 6 has been plotted to express the impact of different anion with the same cation [Mmim] visually in a working pair combination [Mmim]X. It can be found that the Ψ1gradually increases following the impact order: Ψ1([Mmim][BF4])<Ψ1([Mmim]EtOSO3)< Ψ1([Mmim]DMP)<Ψ1([Mmim]Ac) at the same temperature, meanwhile the Ψ1gradually decreases with increasing temperature. According to the scaled particle theory used by Hu and co-workers [9], the partial molar Gibbs free energy of cavity formation and solute-solvent interaction may increase in the order of [BF4]

    Generally, Table 5 shows that the Ψ1gradually increases with increasing length of the alkyl chain inthe cation of IL species at a given anion of IL species and constant temperature. However, the increase degree of Ψ1is much smaller than that of alternation in anion type. In other words, the solubility of NH3in [Cnmim]X (n=1, 2, 3, 4, X=Ac, [BF4], DMP or EtOSO3) increases slightly with the cation chain length, which is essential in agreement with conclusion of Hu and co-workers [9]. Additionally, the Ψ1gradually decreases with increasing temperature at a given IL species.

    Table 5 Ψ1of NH3(1)-ILs (2)

    Figure 6 Ψ1of NH3in [Mmim]X□ [Mmim]Ac; ▲ [Mmim]DMP; ☆ [Mmim]EtOSO3;● [Mmim][BF4]

    Finally, it can be found that Ψ1([Bmim]Ac) exhibits the biggest value of absorption potential among the 16 NH3-IL binary systems. Therefore, it could be concluded that the working pair of NH3-[Bmim]Ac possesses potential for putting relevant research forward relatively.

    4 CONCLUSIONS

    In this work, 14 new group interaction parameters were obtained by the UNIFAC model on the basis of the available data of NH3-[Emim]Ac, NH3-[Bmim][BF4], NH3-[Mmim]DMP, and NH3-[Emim]EtOSO3systems cited from the literatures, and then were used to predict the VLE data of these four systems. The maximal value of the average relative deviation of pressure between the predicted and experimental data for the four systems was 9.35%, which proved that the UNIFAC model might be used to predict the VLE data of NH3-ionic liquid (IL) systems. The UNIFAC model was implemented to predict the values of infinite dilution activity coefficient and the absorption potential Ψ1of 16 sets of NH3-IL systems.

    It was found that Ψ gradually increases with increasing the length of the alkyl chain in the cation of IL species at a given anion and constant temperature. The order is Ψ1([Mmim]X)<Ψ1([Emim]X)<Ψ1([Pmim]X)< Ψ1([Bmim]X), which is similar to the viewpoint of Hu and co-workers [9]. Also, Ψ gradually increases following the impact order: Ψ1([Cnmim][BF4])< Ψ1([Cnmim]EtOSO3)<Ψ1([Cnmim]DMP)<Ψ1([Cnmim]Ac) at a given cation of IL species and constant temperature. It might be due to the charge density, size and steric effects of the anion [9]. Meanwhile, Ψ1gradually increases with increasing temperature at a given IL species. In addition, this work proposed that the working pair of NH3-[Bmim]Ac has the best potential research value relatively.

    Definitely, it is easier to separate NH3from ionic liquids instead of water. However, the viscosity of ionic liquids is much higher than that of water, leading to a certain impact on the absorption kinetics of NH3, and thereby the efficiency of the heat pump will be influenced. Furthermore, ionic liquids are more expensive than water. The two cases above have to be taken into account if engineers want to improve a heat pump performance.

    REFERENCES

    1 Zheng, D.X., Meng, X.L., “Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption-compression hybrid refrigeration cycle”, Energy Convers. Manage., 56, 166-174 (2012).

    2 Balamuru, V.G., Ibrahim, O.M., Barnett, S.M., “Simulation of ternary ammonia-water-salt absorption refrigeration cycles”, Int. J. Refrigeration., 23 (1), 31-42 (2000).

    3 Mclinden, M.O., Radermacher, R., “Experimental comparison of ammonia-water and ammonia-water lithium bromide mixtures in an absorption heat pump”, http://fire.nist.gov/bfrlpubs/build85/art005.html.

    4 Dong, L., Zheng, D.X., Wei, Z., Wu, X.H., “Synthesis of 1, 3-dimethylimidazolium chloride and volumetric property investigations of its aqueous solution”, Int. J. Thermophys., 30 (5), 1480-1490 (2009).

    5 Yokozeki, A., Shiflett, M.B., “Vapor-liquid equilibria of ammonia + ionic liquid mixtures”, Appl. Energy., 84 (12), 1258-1273 (2007).

    6 Yokozeki, A., Shiflett, M. B., “Ammonia solubilities in roomtemperature ionic liquids”, Ind. Eng. Chem. Res., 46 (5), 1605-1610 (2007).

    7 Li, G.H., Zhou, Q., Zhang, X.P., Wang, L., Zhang, S.J., Li, J.W.,“Solubilities of ammonia in basic imidazolium ionic liquids”, Fluid Phase Equilib., 297 (1), 34-39 (2010).

    8 Sun, G.M., Zheng, D.X., Huang, W.J., Dong, L., “The measurement of ammonia solubility in ionic liquid [Dmim]DMP”, Journal of Beijing University of Chemical Techchnology (Natural Science)., 39 (4), 17-21 (2012). (in Chinese)

    9 Hu, Y. F., Liu, Z. C., Xu, C. M., Zhang, X. M., “The molecular characteristics dominating the solubility of gases in ionic liquids”, Chem. Soc. Rev., 40, 3802-3823 (2011).

    10 Klamt, A., “Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena”, J. Phys. Chem., 99 (7), 2224-2235 (1995).

    11 Langmir, I., “The distribution and orientation of molecules”, In: Third Colloid Symposium Monogragh, Chemical Catalog Company, New York, 48 (1925).

    12 Dong, L., Zheng, D.X., Wu, X.H., “Working pair selection of compression and absorption hybrid cycles through predicting the activity coefficients of hydrofluorocarbon + ionic liquid systems by the UNIFAC model”, Ind. Eng. Chem. Res., 51 (12), 4741-4747 (2012).

    13 Wang, J.F., Sun, W., Li, C.X. Wang, Z.H., “Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model”, Fluid Phase Equilib., 264 (1-2), 235-241 (2008).

    14 Kato, R., Gmehling, J., “Systems with ionic liquids: Measurement of VLE and γ∞data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(OL)”,J. Chem. Thermodyn., 37 (6), 603-619 (2005).

    15 Wu, X.H., Zheng, D.X., “A new approach for appropriate absorbent selection with excess Gibbs function”, In: 18th European Conference on Thermophysical Properties, Pau, France, 413 (2008).

    16 Kolbe, B., Gmehling, J., Onken, U., “Auswahl von Loesungsmitteln fuer die Extraktiv-Rektifikation mittels vorrausberechneter Gleichgewichtsdaten”, Ber. Bunsenges. Phys. Chem., 83 (11), 1133-1136 (1979).

    17 Smith, J.M., Ness, H.C., Abbott, M.M., Chemical Engineering Thermodynamics, Chemical Industry Press, Beijing (2002).

    18 Dong, L., Zheng, D.X., Sun, G.M., Wu, X.H., “Vapor-liquid equilibrium measurements of difluoromethane + EmimOTf, difluoromethane + BmimOTf, difluoroethane + EmimOTf, and difluoroethane + BmimOTf systems”, J. Chem. Eng. Data, 56 (9), 3663-3668 (2011).

    19 Lemmon, E.W., Huber, M.L., McLinden, M.O., National Institute of Standards and Technology, Gaithersburg, Maryland, 2007.

    20 Fredenslund, A., Jones, R.L., Prausnitz, J.M., “Group-contribution estimation of activity coefficients in nonideal liquid mixtures”, AIChE J., 21 (6), 1086-1099 (1975).

    21 Wittig, R., Lohmann, J., Gmehling, J., “Vapor-liquid equilibria by UNIFAC group contribution, revision and extension”, Ind. Eng. Chem. Res., 42 (1), 183-188 (2003).

    22 Kim, Y.S., Choi, W.Y., Jang, J.H., Yoo, K.P., Lee, C.S., “Solubility measurement and prediction of carbon dioxide in ionic liquids”, Fluid Phase Equilib., 228-229, 439-445 (2005).

    23 Lei, Z.G., Zhang, J.G., Li, Q.S., Chen, B.H., “UNIFAC model for ionic liquids”, Ind. Eng. Chem. Res., 48 (5), 2697-2704 (2009).

    24 Thomsen, K., Rasmussen, P., “Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems”, Chem. Eng. Sci., 54 (12), 1787-1802 (1999).

    25 Bondi, A., “Physical properties of molecular crystals, liquids and glasses”, Science, 163 (3868), 666-666 (1969).

    26 Fredenslund, A., Gmehling, J., Rasmussen, P., “Vapor-liquid equilibria using UNIFAC a group contribution method”, J. Chem. Thermodyn., 10 (9), 901-902 (1978).

    10.1016/S1004-9541(14)60008-2

    2012-09-17, accepted 2013-02-07.

    * Supported by the National Natural Science Foundation of China (50890184, 51276010) and the National Basic Research Program of China (2010CB227304).

    ** To whom correspondence should be addressed. E-mail: dxzh@mail.buct.edu.cn

    猜你喜歡
    光明
    遇見光明
    姚玉峰:給3萬人帶來光明
    杭州(2022年7期)2022-05-07 23:57:05
    砥礪前行光明路 人民軍隊(duì)忠于黨
    黑暗中的光明
    黑暗中的光明
    中英雙語閱讀 假如給我三天光明
    秋天 一個絢麗、光明的季節(jié)
    文苑(2019年22期)2019-12-07 05:28:58
    僑愛執(zhí)燈 復(fù)刻光明
    華人時刊(2019年23期)2019-05-21 03:31:32
    用心呵護(hù)光明
    海峽姐妹(2018年11期)2018-12-19 05:18:12
    走向光明
    久久久久国产一级毛片高清牌| 一级黄片播放器| 少妇精品久久久久久久| 久久精品熟女亚洲av麻豆精品| 国产在线免费精品| 欧美日韩一级在线毛片| 久久影院123| 黄色a级毛片大全视频| 老司机在亚洲福利影院| 青春草视频在线免费观看| 色网站视频免费| 亚洲人成电影免费在线| 99久久99久久久精品蜜桃| 欧美亚洲日本最大视频资源| 久久鲁丝午夜福利片| 亚洲一区二区三区欧美精品| 国产激情久久老熟女| 一区二区三区乱码不卡18| 纯流量卡能插随身wifi吗| 久久av网站| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 男人舔女人的私密视频| 大香蕉久久网| 亚洲国产av新网站| 高清欧美精品videossex| 嫩草影视91久久| 国产成人一区二区在线| 美女主播在线视频| 精品高清国产在线一区| 成人国产一区最新在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 午夜免费鲁丝| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 国产精品一国产av| 久久国产亚洲av麻豆专区| 精品国产超薄肉色丝袜足j| 久久久欧美国产精品| 久久久久久久久久久久大奶| 一边亲一边摸免费视频| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 亚洲av欧美aⅴ国产| 啦啦啦在线观看免费高清www| 一本综合久久免费| 欧美在线黄色| 麻豆av在线久日| 亚洲国产中文字幕在线视频| 久久人人爽人人片av| 考比视频在线观看| 国产成人影院久久av| 一级毛片电影观看| 亚洲精品在线美女| 五月开心婷婷网| 日韩伦理黄色片| 亚洲 欧美一区二区三区| 超碰97精品在线观看| 欧美老熟妇乱子伦牲交| 久久99精品国语久久久| 人人澡人人妻人| 国产精品一二三区在线看| 1024香蕉在线观看| 成人手机av| 亚洲情色 制服丝袜| 亚洲五月色婷婷综合| 精品人妻在线不人妻| 欧美在线一区亚洲| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 亚洲第一青青草原| 国产国语露脸激情在线看| 国产免费视频播放在线视频| 天天躁夜夜躁狠狠躁躁| 国产精品.久久久| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 免费少妇av软件| 久久精品国产亚洲av高清一级| 午夜激情久久久久久久| 久久精品久久久久久久性| 欧美黑人欧美精品刺激| 国产麻豆69| 国产成人精品久久二区二区免费| 国产在线观看jvid| 色精品久久人妻99蜜桃| 国产高清videossex| 99热全是精品| 国产精品.久久久| 极品人妻少妇av视频| av国产久精品久网站免费入址| 新久久久久国产一级毛片| 亚洲九九香蕉| 久久ye,这里只有精品| 韩国高清视频一区二区三区| 亚洲av日韩精品久久久久久密 | 精品少妇一区二区三区视频日本电影| 啦啦啦 在线观看视频| 精品国产乱码久久久久久小说| 啦啦啦在线免费观看视频4| 999久久久国产精品视频| av有码第一页| 欧美日韩亚洲国产一区二区在线观看 | 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 亚洲成国产人片在线观看| 2021少妇久久久久久久久久久| 精品一品国产午夜福利视频| 99香蕉大伊视频| 中文字幕高清在线视频| 国产精品麻豆人妻色哟哟久久| 日本a在线网址| 高清av免费在线| 97精品久久久久久久久久精品| 久久天堂一区二区三区四区| 精品免费久久久久久久清纯 | 人人澡人人妻人| 97精品久久久久久久久久精品| 日韩电影二区| 黄频高清免费视频| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 日韩免费高清中文字幕av| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 日韩 欧美 亚洲 中文字幕| 岛国毛片在线播放| 欧美xxⅹ黑人| 久久性视频一级片| 欧美成人精品欧美一级黄| 青春草视频在线免费观看| 免费看十八禁软件| 亚洲欧美日韩高清在线视频 | 日韩 亚洲 欧美在线| 亚洲第一青青草原| 亚洲国产av影院在线观看| 午夜91福利影院| 欧美在线黄色| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| avwww免费| 纵有疾风起免费观看全集完整版| 免费久久久久久久精品成人欧美视频| 少妇猛男粗大的猛烈进出视频| 国产精品免费视频内射| 日本91视频免费播放| 日韩电影二区| 美国免费a级毛片| 欧美性长视频在线观看| tube8黄色片| 免费看不卡的av| 国产成人精品久久久久久| 国产精品偷伦视频观看了| 免费在线观看黄色视频的| 国产高清videossex| 日韩免费高清中文字幕av| 韩国高清视频一区二区三区| 女人高潮潮喷娇喘18禁视频| 日韩视频在线欧美| 国产精品一区二区在线观看99| 亚洲精品久久久久久婷婷小说| 亚洲av男天堂| 黑人欧美特级aaaaaa片| 色播在线永久视频| 亚洲欧美日韩另类电影网站| 在线观看一区二区三区激情| 亚洲人成网站在线观看播放| 男女之事视频高清在线观看 | 国产成人欧美在线观看 | 免费在线观看影片大全网站 | 嫁个100分男人电影在线观看 | 男女下面插进去视频免费观看| 搡老乐熟女国产| 久久久久久久国产电影| 久久国产精品大桥未久av| www.精华液| 欧美成人精品欧美一级黄| 中文字幕人妻丝袜制服| 脱女人内裤的视频| 久热这里只有精品99| 大香蕉久久成人网| 我要看黄色一级片免费的| 亚洲成人国产一区在线观看 | 久久亚洲精品不卡| 精品一区二区三区四区五区乱码 | 天天添夜夜摸| svipshipincom国产片| 国产高清视频在线播放一区 | e午夜精品久久久久久久| 9热在线视频观看99| 国产欧美日韩精品亚洲av| 日韩大片免费观看网站| 老司机靠b影院| 中文字幕人妻丝袜制服| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 91麻豆av在线| 国产精品久久久久久精品古装| 天天添夜夜摸| 国产高清国产精品国产三级| 天天影视国产精品| 免费在线观看黄色视频的| 一边摸一边抽搐一进一出视频| 中文字幕人妻丝袜一区二区| 日本猛色少妇xxxxx猛交久久| 女人被躁到高潮嗷嗷叫费观| 美女大奶头黄色视频| 国产99久久九九免费精品| 日韩视频在线欧美| 久久这里只有精品19| 97精品久久久久久久久久精品| 久久精品人人爽人人爽视色| 天堂8中文在线网| 国产成人系列免费观看| 国产极品粉嫩免费观看在线| 99热全是精品| 天天操日日干夜夜撸| svipshipincom国产片| www.自偷自拍.com| 婷婷色麻豆天堂久久| av国产久精品久网站免费入址| 国产不卡av网站在线观看| 国产一区二区在线观看av| 久热爱精品视频在线9| 老司机影院毛片| 欧美大码av| videos熟女内射| 中国美女看黄片| 久久精品国产综合久久久| 欧美老熟妇乱子伦牲交| 午夜久久久在线观看| 三上悠亚av全集在线观看| 亚洲七黄色美女视频| 日日夜夜操网爽| 午夜免费观看性视频| 午夜老司机福利片| 久久人人爽人人片av| 人体艺术视频欧美日本| 国产成人免费无遮挡视频| 国产午夜精品一二区理论片| 久久免费观看电影| 久久女婷五月综合色啪小说| 两个人免费观看高清视频| 免费观看av网站的网址| 成年女人毛片免费观看观看9 | 国产精品偷伦视频观看了| 久久青草综合色| 999久久久国产精品视频| 亚洲av美国av| 免费黄频网站在线观看国产| 久久国产精品大桥未久av| 极品人妻少妇av视频| 精品卡一卡二卡四卡免费| 日本五十路高清| 美女大奶头黄色视频| 精品一区二区三区av网在线观看 | 国产一区二区激情短视频 | 久热爱精品视频在线9| 99国产综合亚洲精品| 欧美日韩视频高清一区二区三区二| 搡老岳熟女国产| 18禁黄网站禁片午夜丰满| 亚洲五月色婷婷综合| 亚洲九九香蕉| 91精品伊人久久大香线蕉| 国产不卡av网站在线观看| 一本—道久久a久久精品蜜桃钙片| 悠悠久久av| 一级,二级,三级黄色视频| 最近手机中文字幕大全| 精品久久久久久久毛片微露脸 | 丰满少妇做爰视频| 国产免费现黄频在线看| 免费一级毛片在线播放高清视频 | 国产野战对白在线观看| 婷婷色综合大香蕉| 日韩中文字幕欧美一区二区 | 亚洲精品中文字幕在线视频| 这个男人来自地球电影免费观看| 午夜激情av网站| 一级毛片黄色毛片免费观看视频| 国产成人av激情在线播放| 亚洲国产看品久久| 国产成人欧美在线观看 | 国产男人的电影天堂91| videos熟女内射| 精品国产乱码久久久久久小说| 国产视频一区二区在线看| 日本a在线网址| 王馨瑶露胸无遮挡在线观看| 午夜福利一区二区在线看| 麻豆国产av国片精品| 国产免费视频播放在线视频| 国产精品香港三级国产av潘金莲 | 欧美 亚洲 国产 日韩一| 欧美变态另类bdsm刘玥| 久久久精品国产亚洲av高清涩受| 97人妻天天添夜夜摸| 高清视频免费观看一区二区| 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| 亚洲国产看品久久| 日韩一本色道免费dvd| svipshipincom国产片| 国产成人欧美| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 乱人伦中国视频| 一级,二级,三级黄色视频| 中文字幕高清在线视频| h视频一区二区三区| 操出白浆在线播放| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 国产欧美日韩综合在线一区二区| 国产在视频线精品| 国产91精品成人一区二区三区 | 欧美精品高潮呻吟av久久| 高清黄色对白视频在线免费看| 男女国产视频网站| 一区二区三区激情视频| 亚洲久久久国产精品| 啦啦啦在线观看免费高清www| 婷婷成人精品国产| 精品久久久久久久毛片微露脸 | 成人免费观看视频高清| 制服诱惑二区| 黑人猛操日本美女一级片| 亚洲精品一区蜜桃| cao死你这个sao货| 亚洲,一卡二卡三卡| 蜜桃国产av成人99| 高清视频免费观看一区二区| 汤姆久久久久久久影院中文字幕| 夫妻午夜视频| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| 69精品国产乱码久久久| a级毛片黄视频| 亚洲av美国av| 大香蕉久久成人网| 亚洲欧洲精品一区二区精品久久久| 中文乱码字字幕精品一区二区三区| 新久久久久国产一级毛片| 色网站视频免费| 91麻豆av在线| 老熟女久久久| 欧美精品一区二区大全| 丝袜美足系列| 欧美在线黄色| 国产一区二区三区av在线| 一级毛片我不卡| 精品人妻在线不人妻| 中文欧美无线码| 啦啦啦在线免费观看视频4| 亚洲少妇的诱惑av| 少妇裸体淫交视频免费看高清 | 母亲3免费完整高清在线观看| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 午夜影院在线不卡| 成年美女黄网站色视频大全免费| 电影成人av| 国产片内射在线| 啦啦啦啦在线视频资源| 男女床上黄色一级片免费看| 亚洲色图 男人天堂 中文字幕| 脱女人内裤的视频| 亚洲 国产 在线| 最近中文字幕2019免费版| 两人在一起打扑克的视频| 我要看黄色一级片免费的| 国产免费又黄又爽又色| 伊人亚洲综合成人网| 又粗又硬又长又爽又黄的视频| 老司机在亚洲福利影院| 国产欧美日韩一区二区三 | 成人午夜精彩视频在线观看| 日韩一本色道免费dvd| 亚洲国产精品一区三区| 丝袜在线中文字幕| 五月开心婷婷网| 一级毛片 在线播放| 老司机亚洲免费影院| 精品视频人人做人人爽| 亚洲精品自拍成人| 9色porny在线观看| 亚洲精品国产av蜜桃| 99精国产麻豆久久婷婷| 成年女人毛片免费观看观看9 | 在线观看国产h片| 亚洲精品在线美女| 欧美激情极品国产一区二区三区| 久久这里只有精品19| 免费在线观看视频国产中文字幕亚洲 | 精品第一国产精品| 欧美成人精品欧美一级黄| 午夜福利免费观看在线| 爱豆传媒免费全集在线观看| 国产精品一区二区精品视频观看| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 一本综合久久免费| 国产主播在线观看一区二区 | 亚洲欧美精品综合一区二区三区| 久久av网站| 国产成人一区二区三区免费视频网站 | 国产成人av激情在线播放| 男人舔女人的私密视频| 少妇裸体淫交视频免费看高清 | 日韩制服骚丝袜av| 欧美人与性动交α欧美软件| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 国产黄色视频一区二区在线观看| 久久精品人人爽人人爽视色| 熟女少妇亚洲综合色aaa.| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 亚洲欧美精品综合一区二区三区| 大陆偷拍与自拍| 十分钟在线观看高清视频www| 色婷婷久久久亚洲欧美| 男女无遮挡免费网站观看| 久久精品成人免费网站| 久久综合国产亚洲精品| 搡老岳熟女国产| 性少妇av在线| 老司机在亚洲福利影院| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 久久精品亚洲熟妇少妇任你| 好男人电影高清在线观看| 成人黄色视频免费在线看| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 国产精品免费大片| 国产高清视频在线播放一区 | 国产不卡av网站在线观看| 观看av在线不卡| 国产在视频线精品| 精品人妻在线不人妻| 亚洲熟女精品中文字幕| 国产免费一区二区三区四区乱码| 欧美精品高潮呻吟av久久| 一本—道久久a久久精品蜜桃钙片| 在现免费观看毛片| 亚洲成人国产一区在线观看 | 亚洲熟女毛片儿| 成年人免费黄色播放视频| 老司机午夜十八禁免费视频| 热99国产精品久久久久久7| 少妇被粗大的猛进出69影院| 国产精品一国产av| 女人爽到高潮嗷嗷叫在线视频| 美女午夜性视频免费| 欧美亚洲 丝袜 人妻 在线| 亚洲,一卡二卡三卡| 亚洲国产毛片av蜜桃av| 国产成人影院久久av| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 亚洲av成人精品一二三区| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| 亚洲国产av新网站| 九色亚洲精品在线播放| 久久久久精品人妻al黑| 在线av久久热| 天堂俺去俺来也www色官网| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久| 国产一级毛片在线| 性色av乱码一区二区三区2| 中文字幕最新亚洲高清| 99久久人妻综合| 一级,二级,三级黄色视频| 黄色毛片三级朝国网站| 美女中出高潮动态图| 欧美人与性动交α欧美精品济南到| 我要看黄色一级片免费的| 国语对白做爰xxxⅹ性视频网站| 国产真人三级小视频在线观看| 两性夫妻黄色片| av电影中文网址| 午夜福利,免费看| 18禁裸乳无遮挡动漫免费视频| 一边摸一边做爽爽视频免费| 亚洲人成77777在线视频| 国产人伦9x9x在线观看| 日韩制服丝袜自拍偷拍| 一级,二级,三级黄色视频| 亚洲av片天天在线观看| 免费看不卡的av| 七月丁香在线播放| 亚洲精品在线美女| 狠狠婷婷综合久久久久久88av| 久久午夜综合久久蜜桃| 97在线人人人人妻| 两性夫妻黄色片| 欧美国产精品va在线观看不卡| 久久久久精品人妻al黑| 一边亲一边摸免费视频| 91字幕亚洲| 麻豆av在线久日| 一本久久精品| 高清视频免费观看一区二区| 可以免费在线观看a视频的电影网站| 亚洲精品国产区一区二| 永久免费av网站大全| 美女福利国产在线| 久久毛片免费看一区二区三区| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 久久人妻福利社区极品人妻图片 | 午夜福利乱码中文字幕| 最黄视频免费看| 又紧又爽又黄一区二区| 你懂的网址亚洲精品在线观看| 亚洲精品久久午夜乱码| 国产主播在线观看一区二区 | 悠悠久久av| 亚洲激情五月婷婷啪啪| 午夜福利影视在线免费观看| 精品少妇黑人巨大在线播放| 国产激情久久老熟女| 亚洲av成人不卡在线观看播放网 | 大型av网站在线播放| 亚洲成人手机| 亚洲精品美女久久久久99蜜臀 | 国产亚洲精品第一综合不卡| 成年人黄色毛片网站| 777久久人妻少妇嫩草av网站| 大陆偷拍与自拍| 日日夜夜操网爽| 亚洲第一青青草原| 一边亲一边摸免费视频| 女人高潮潮喷娇喘18禁视频| 日本色播在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲 国产 在线| 国产一区二区三区av在线| 国产精品免费视频内射| 男女免费视频国产| 亚洲中文日韩欧美视频| 国产精品二区激情视频| 欧美另类一区| 国产xxxxx性猛交| 一级毛片 在线播放| 好男人电影高清在线观看| 如日韩欧美国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 免费观看av网站的网址| 色播在线永久视频| www.av在线官网国产| 青青草视频在线视频观看| 考比视频在线观看| 美女扒开内裤让男人捅视频| 国产精品麻豆人妻色哟哟久久| 菩萨蛮人人尽说江南好唐韦庄| 飞空精品影院首页| 中文欧美无线码| 国产日韩欧美视频二区| 国产精品av久久久久免费| 精品少妇内射三级| www.av在线官网国产| 校园人妻丝袜中文字幕| 国产伦理片在线播放av一区| 久久久精品94久久精品| 美女午夜性视频免费| 各种免费的搞黄视频| 精品亚洲成a人片在线观看| 日本wwww免费看| 成年av动漫网址| 免费在线观看黄色视频的| 老司机靠b影院| 欧美日韩视频精品一区| 激情视频va一区二区三区| 久久天躁狠狠躁夜夜2o2o | 免费高清在线观看日韩| 99国产精品99久久久久| 国产精品九九99| 啦啦啦在线免费观看视频4| 日本黄色日本黄色录像| 亚洲精品久久午夜乱码| www.999成人在线观看| 久久热在线av| 高清视频免费观看一区二区| 黄片播放在线免费| 亚洲成av片中文字幕在线观看| 欧美久久黑人一区二区| 国产不卡av网站在线观看| 国产人伦9x9x在线观看| 1024香蕉在线观看| 亚洲av电影在线观看一区二区三区| 考比视频在线观看| 国产人伦9x9x在线观看| 亚洲精品一二三| 国产精品一区二区免费欧美 | 久久亚洲精品不卡| 免费av中文字幕在线| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 久久久欧美国产精品| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看 | 精品视频人人做人人爽| 国产精品免费大片| 国产av一区二区精品久久| 一级毛片电影观看| 亚洲视频免费观看视频| 9色porny在线观看| 欧美日本中文国产一区发布|