• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Retrieval of High Resolution Satellite Images Using Texture Features

    2014-07-14 01:20:24SamiaBouteldjaandAssiaKourgli

    Samia Bouteldja and Assia Kourgli

    1. Introduction

    In the past few years, with the development of imaging techniques, satellites with very high spatial resolution imaging systems have been launched, e.g. IKONOS,QuickBird, World-View-1, and GeoEye-1, which are providing more accurate earth observations. The increasing availability of high resolution images (HRSI) has led to the problem of managing the image databases. A content based image retrieval system (CBIR) is a system which based on a query image, retrieves the images from the image database. The query image is an image provided by the user,in which he is interested, and he wants to extract similar images from the image collection. “Content-based” means that the search will analyze the actual contents of the image rather than the metadata such as keywords and tags. In a typical CBIR, the features of the images in the database are extracted and indexed accordingly, as well as the image features of the query image. The system measures the similarity distance between the query image features and those from the database. Relevant images are retrieved from the database based on the best similarity distance.

    The choice of indexing features of remote sensing images recives a great attention. These features depend on the type and resolution of the sensor, as well as the task we want to achieve. So many different techniques have been proposed in the literature to retrieve satellite images.

    In the case of low-resolution satellite images, color,texture, and intensity cues have been proved to be efficient for recognition[1],[2]. Shape features have been particularly used in weather imagery to determine the type of clouds[3],[4]. With multi-spectral and hyper-spectral low resolution satellite images (Noaa, Landsat), efficient features issued from the combination of channels like the vegetation index (NDVI), brightness index (BI) or urban index (ISU) are used together with color, shape, and texture features[5]. With mid resolution images, textural and shape properties are known to be highly discriminating[6],[7].However, the indexing and retrieval of high resolution satellite images is still a new area of research. Recent work has shown the ability of texture description in segmenting and retrieving HRSI[8],[9], where the texture feature is generally combined with other features. In this paper, we investigate the performance of texture features alone in retrieving high resolution satellite imagery by using the local binary pattern (LBP) operator. The LBP operator is a texture operator which is gaining increasing interest in many areas of image processing and computer vision and has shown its effectiveness in a number of applications.

    The paper is organized as follows. Section 2 will briefly describe the LBP operator. The preprocessing chain is detailed in Section 3. The block division scheme is provided in Section 4. Section 5 reports the experimental results and conclusions are drawn in Section 6.

    2. LBP Texture Operator

    LBP is a simple but a very efficient method for analyzing textures. Due to its discriminative power and its computational simplicity, the LBP texture operator has become a popular approach in various applications. Some of these applications include face recognition[10], biometric recognition[11], iris recognition[12], fingerprint recognition[13],inspection of surfaces[14], image classification[15], image segmentation[7], and image retrieval[16],[17]. The most important property of the LBP operator in real-world applications is its robustness to monotonic gray-scale changes, for example the changes caused by illumination variations. Another important property is its computational simplicity.

    The LBP operator was first introduced in 1994 by Ojala et al.[18]. Originally, it operated with 3×3 rectangular neighborhood using the center pixel as a threshold. The LBP code associated with the central pixel was calculated by multiplying thresholded values by weights given by the power of two and adding the results as depicted by (1):

    where and gcis the gray value of the central pixel, gpis the value of its neighbor, P is the number of neighbors, and R is the radius of the neighborhood. For a digital image, the coordinates of the neighbors gpare given by

    where (xc, yc) are the coordinates of the center pixel. The values of neighbors that do not fall exactly on the pixel grid of the image are estimated by bilinear interpolation. Thus LBP8,1is approximately equivalent to 3×3 LBP. For an image of dimension M×N, and after computing the LBP code for each pixel (i, j), the LBP histogram can be built by using

    where

    and K is the maximal LBP pattern value. The K bin histogram of the obtained LBP image is then used as a texture descriptor for further image analysis. Each bin of the LBP histogram codifies the occurrence of a given texture primitive presented in the image. Texture primitives include different types of edges, spots, flat areas, line ends,corners, etc.

    The LBP8,1operator produces 256 (28) different codes.When the image is rotated, the gray values gpwill correspondingly move along the perimeter of the circle around gc. Rotating a particular binary pattern naturally results in a different LBP value. This does not apply to patterns 00000000 and 11111111 which remain constant at all rotation angles. The LBP operator can be made rotation invariant by bitwise rotating the code so that the bits represent the minimum integer value, referring to (4):

    where ROR(LBP, i) performs a circular bit-wise right shift on the LBP code i times until the code represents its minimum integer value. For the LBP8,1operator we have only 36 unique rotation invariant local binary patterns.With larger neighborhoods, the number of possible LBP codes increases exponentially. The increase in the number of codes by considering only a subset of the codes is called uniform patterns. Uniform patterns are LBPs that have a binary description with no more than two binary level transitions. For example, we can consider only those LBP codes where U=2 (U refers to the measure of uniformity,that is the number of 0/1 and 1/0 transitions in the circular binary code pattern).

    It has been observed that uniform patterns are presented a lot more frequently than non-uniform patterns. Giving more weight to uniform patterns provides better discrimination of textures. This can be done by grouping all non-uniform patterns into a single bin of the distribution. In the case of a 3×3 operator () we get 58 codes instead of 256 codes with the remaining patterns accumulated to a single code. The image histogram becomes containing 59 bins. The histogram generated by an LBP operator can then be reduced without a significant loss in its discrimination capability. Uniform patterns describe fundamental features such as bright spots, flat area, dark spots, and edges. For example, when P=8, there are 9 uniform patterns out of 36 unique rotation invariant patterns.

    Texture is distinguished not only by texture patterns,but also by another important property which is its contrast.However, the LBP operator by itself totally ignores the magnitude of gray level differences. In [18], Ojala et al.used the joint distribution of LBP codes and a local contrast measure VARP,Ras a texture descriptor. The local contrast is invariant against shifts in the gray scale and is rotation invariant. It is measured in a circularly neighborhood just like the LBP:

    where

    The variance VARP,Rhas continuous values and has to be quantized. In this work instead of computing the joint histogram of LBPP,Rand VARP,R, we use the LBP variance(LBPV) histogram proposed in [15]. The LBPV histogram is a simplified but efficient joint histogram computed by accumulating the variance measures of the neighborhood to the LBP bin. Simple LBP histogram calculation assigns the same weight 1 to each LBP pattern. Usually the high textured images will have higher variances and contribute more to the discrimination of texture images. Therefore,VARP,Rcan be used as an adaptive weight to adjust the contribution of the LBP code. Compared to the 2-dimensional joint histogram of LBPP,RVARP,R, the LBPV operator can reduce greatly the computational time.The LBPV histogram is computed by (6), where K is the maximal LBP pattern value:

    3. Preprocessing

    An RGB color image is an array of color pixels composed of triplets corresponding to the red, green, and blue components (RGB components). To keep only texture information within the images, the 3-dimensional RGB satellite images are converted into one-dimensional gray scale images by

    A drawback of the LBP operator is that a small change in the input image would cause a change in the output. LBP may not work properly for noisy images. This is due to the thresholding scheme of the operator. In order to make the LBP more robust against these negligible changes in pixel values, we propose to reduce the color depth of the image.A series of experiments were conducted by using different quantification values (q=128, q=64, q=32, and q=16 colors),and the quantification was applied to the database images as well as the query image.

    4. Block Based CBIR

    The texture features for most of the current CBIR systems are calculated for full images even though texture appears usually only in some parts of the image. The full image approach is well justified as it generally keeps the size of the feature database reasonably low. However,extracting the feature vector for the image globally will result in an incorrect representation for the textures within the image, and hence will decrease the retrieval efficiency.In order to pay attention to local properties, the local features from the texture regions should be extracted instead of using global features. This can be achieved by using either image segmentation or image subdivision.Image segmentation is usually prone to errors as it is difficult to obtain an accurate segmentation, especially around the boundary of the textured region, which can later affect the retrieval result. The other way is to divide the image into areas without using any type of segmentation.

    where B represents the total number of bins in the histograms, and it is related to the values of parameters of P and R used. For example (P, R)=(8, 1), B=10, for (P,R)=(16, 2), B=18, and for (P, R)=(24, 3), B=26. The query and database images are compared by calculating the Chi-square distance between the ith query and the jth database block histograms. The final image similarity distance D for retrieval is the sum of minimum distances depicted by (9):

    In this paper the second approach is used. Each 512×512 pixels database image is divided into 16 non overlapping fixed size blocks. The LBP histogram is calculated for each block. In the query phase the same is done for the query image.

    In the similarity measure, a distance measure is needed for comparing images through their LBP features. There are many different dissimilarity measures to choose from. In this study, the Chi-square distance is chosen to evaluate the similarity between two LBPV histograms H1and H2, due to its performance in terms of both speed and good retrieval rates, referring to (8):

    5. Experiments and Discussion

    In the experiments, we computed L BPwith (P, R)values of (8, 1), (16, 2), and (24, 3), respectively. The image retrieval system was implemented by using the interactive data language (IDL) which is an image processing language. Some visual results are shown in Fig.1 (a), (b), and (c), where the query image is in the first position. The results show that different kinds of textured and structured images can be correctly retrieved. The effectiveness of a CBIR system can be specified by several objective measures. A standard measure of performance named recall (Re) is defined as

    In this section, we illustrate the recognition capability of our retrieval scheme for HRSI.

    5.1 Testing Database

    The experiments were carried out by considering the database used by Xia et al.[19]. The database has been extracted from Google Earth and is available at the author webpage. It includes 12 categories each containing 50 samples, and it has been selected so that it includes the low textured, highly textured, low structured, and highly structured regions with different illuminations and different spatial resolutions. We resized the images to 512×512 pixels in order to have 16 blocks of 128×128 pixels each.

    5.2 Retrieval Results

    where N is the number of retrieved relevant objects and Mt is the number of the total relevant objects.

    Fig. 1. Visual results: (a) for pond category, (b) for viaduct category, and (c) for forest category.

    To plot the recall curve, all the 600 images in the database were used as query images. An average recall was then computed to the number of retrieval images. In Fig. 2,the curves reveal that for the first 200 matches more than 70% of the images are correctly retrieved. By comparing these results with those using features extracted by the Gabor filter and reported in [19], the performance of our system for retrieving HRSI images outperforms considerably that using the Gabor filter by about 13.62%.In addition, the LBP feature extraction algorithm complexity is much simpler than that of the Gabor technique.

    In order to evaluate the effect of P, R parameters on the retrieval results, the average recall has been computed for the whole database by using different values of P, R parameters: (8, 1), (16, 2), and (24, 3). (See Fig. 3).

    We have noticed that the performance of (8, 1)neighborhood with its 8 bins histogram is poorer than that of the (16, 2) one, because it is too small to capture the texture patterns present in the image. The (24, 3)neighborhood with its 26 bins histogram improves slightly the discrimination capability. The (16, 2) neighborhood seems to be more adequate in terms of the feature length and performance. In addition, through the experimental analysis we have noticed that dividing the image into 16 blocks increases considerably computing time for large neighborhoods, e.g. (24, 3), and therefore decreasing the retrieval speed. This can be avoided by giving the opportunity to users to select only some significant parts within the image.

    Different color depths also have been considered, such as {q=128, 64, 32, 16}. By comparing the recall curves without using quantification with those using the quantification of q=128, q=64, q=32, q=16 colors, we found that the performance improves slightly for using the quantification of 16 colors or greater than 16 colors. Fig. 4 shows the effect of 16 colors quantification on the retrieval results.

    Fig. 2. Retrieval performance.

    Fig. 3. Effect of (P, R) parameters on the retrieval results.

    Fig.4. Effect of the quantification on the retrieval results.

    6. Conclusions

    In this paper, we have developed a CBIR systme for indexing high-resolution satellite images based on LBP and a block division scheme. The experimental results show that the LBP texture features in HRSI retrieval, although the HRSI are compacted, can provide good image retrieval performance. As future work and by considering the fact that HRSI contains both structures and textures, most likely the inclusion of some structural features would lead to higher performances.

    [1] P. Maheswary and N. Srivastava, “Retrieval of remote sensing images using colour&texture attribute,” Int. Journal of Computer Science and Information Security, vol. 4, no. 1& 2, pp. 1-5, 2009.

    [2] R. Tebourbi and Z. Belhadj, “A texture based multispectral images indexing,” in Proc. of the 12th IEEE Int. Conf. on Electronics, Circuits, and Systems, Gammarth, 2005, pp.1-4.

    [3] A. L. Ma, “Indexing and retrieval of satellite images,” M.S.thesis, Oakland University, Rochester, 2005.

    [4] D. Upreti, “Content-based satellite cloud image retrieval,”M.S. thesis, University of Delhi, New Delhi, 2011.

    [5] P. Mmaheshwary and N. Srivastava, “Retrieval of remote sensing images using color, texture and spectral features,”Int. Journal of Engineering Science and Technology, vol. 2,no. 9, pp. 4306-4311, 2010.

    [6] H. Ma?tre, “Indexing and retrieval in large satellite image databases, ” Proc. of SPIE, doi: 10.1117/12.775018.

    [7] A. Bhattacharya, M. Roux, H. Ma?tre, I. Jermyn, X.Descombes, and J. Zerubia, “Indexing of mid-resolution satellite images with structural attributes,” in Proc. of Int.Society for Photogrammetry and Remote Sensing Congress,Beijing, 2008, pp. 187-192.

    [8] S. Wang and A. Wang, “Segmentation of high-resolution satellite imagery based on feature combination,” in Proc. of Int. Society for Photogrammetry and Remote Sensing Congress, Beijing, 2008, doi: 10.1.1.158.6997.

    [9] Q.-M. Wan, M. Wang, X.-Y. Zhang, and D.-Q. Zhang,“Two-stage high resolution remote sensing image retrieval combining semantic and visual features,” Proc. of SPIE, doi:10.1117/12.832727.

    [10] C.-Y. Jo. Face detection using LBP features. [Online].Available: http://cs229.stanford.edu/proj2008/Jo-Face DetectionUsingLBPfeatures.pdf.

    [11] K. Saxena and P. Misha, “Human gait recognition using local binary pattern variance,” Int. Journal of Advanced Engineering Sciences and Technologies, vol. 7, no. 2, pp.234-238, 2011.

    [12] M. Z. Rashad, M. Y. Shams, O. Nomir, and R. M. El-Awady,“Iris recognition based on LBP and combined LVQ classifier,” Int. Journal of Computer Science and Information Technology, vol. 3, no. 5, pp. 6–7, 2011.

    [13] L. Nanni and A. Lumini, “Local binary patterns for a hybrid fingerprint matcher,” Pattern Recognition, vol. 41, no. 11,pp. 3461–3466, 2008.

    [14] M. Pietikainen, T. Nurmela, T. Maenpaa, and M. Turtinen,“View-based recognition of real-world textures,” Pattern Recognition, vol. 37, no. 2, pp. 313–323, 2004.

    [15] Z.-H. Guo, L. Zhang, and D. Zhang, “Rotation invariant texture classification using LBP variance (LBPV) with global matching,” Pattern Recognition, vol. 43, no. 3, pp.706-719, 2010.

    [16] D. Connah and G. D. Finlayson, “Using local binary pattern operators for colour constant image indexing,” in Proc. of the 3rd European Conf. on Colour in Graphics, Imaging and Vision, Leeds, 2006, pp. 1-5.

    [17] V. Takala, T. Ahonen, and M. Pietik?inen, “Block-based methods for image retrieval using local binary patterns,”Image Analysis LNCS, doi: 10.1007/11499145_89.

    [18] T. Ojala, M. Pietik?inen, and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,” in Proc. of the 12th IAPR Int. Conf. on Pattern Recognition,Jerusalem,1994, pp. 582-585.

    [19] G.-S. Xia, W. Yang, J. Delon, Y. Gousseau, H. Sun, and H.Ma?tre, “Structural high-resolution satellite image indexing,”in Prof. of Int. Society for Photogrammetry and Remote Sensing Congress, Vienna, doi: 10.1.1.400.9110.

    三级毛片av免费| 久久久久久久久久久丰满| 美女内射精品一级片tv| 噜噜噜噜噜久久久久久91| a级毛片a级免费在线| 久久久久久久久久黄片| 亚洲av.av天堂| 最新中文字幕久久久久| 欧美日韩精品成人综合77777| 亚洲精品日韩在线中文字幕 | 亚洲精华国产精华液的使用体验 | 老熟妇乱子伦视频在线观看| 欧美日韩精品成人综合77777| 91久久精品国产一区二区三区| 国产亚洲精品久久久com| 可以在线观看的亚洲视频| 在线观看美女被高潮喷水网站| 中国国产av一级| 一个人观看的视频www高清免费观看| 久久6这里有精品| 插阴视频在线观看视频| 日本一二三区视频观看| 成人二区视频| 国产免费男女视频| 国产精品无大码| 女生性感内裤真人,穿戴方法视频| 国模一区二区三区四区视频| 久久久色成人| 热99re8久久精品国产| 国产色爽女视频免费观看| 色综合色国产| 日本色播在线视频| 男女之事视频高清在线观看| 91精品国产九色| 久久久久久久久中文| 国产午夜福利久久久久久| 国内揄拍国产精品人妻在线| 日日摸夜夜添夜夜爱| 久久久久性生活片| 欧美日本视频| 人人妻,人人澡人人爽秒播| 欧美精品国产亚洲| 日韩欧美精品免费久久| 久久人妻av系列| 国产精品亚洲一级av第二区| 99久久中文字幕三级久久日本| 国模一区二区三区四区视频| 国产探花在线观看一区二区| 久久欧美精品欧美久久欧美| av在线天堂中文字幕| 久久精品国产亚洲网站| 免费看光身美女| av在线观看视频网站免费| 日韩强制内射视频| 久久草成人影院| 欧美绝顶高潮抽搐喷水| 最新中文字幕久久久久| 俺也久久电影网| 观看免费一级毛片| 22中文网久久字幕| 少妇的逼好多水| 国产欧美日韩一区二区精品| 成人鲁丝片一二三区免费| 中文资源天堂在线| 一a级毛片在线观看| 亚洲av熟女| 午夜精品国产一区二区电影 | 亚洲中文字幕日韩| 国产精品一及| 一进一出抽搐动态| 国内久久婷婷六月综合欲色啪| 天堂网av新在线| 天堂网av新在线| 国产精品99久久久久久久久| 在线观看66精品国产| 日本免费一区二区三区高清不卡| 97人妻精品一区二区三区麻豆| av免费在线看不卡| 九九热线精品视视频播放| 国产成人a∨麻豆精品| 欧美国产日韩亚洲一区| 美女被艹到高潮喷水动态| 亚洲色图av天堂| 97碰自拍视频| 国产男人的电影天堂91| 国产一区二区三区在线臀色熟女| 一级毛片我不卡| 亚洲一区高清亚洲精品| 黄色一级大片看看| 在线免费观看的www视频| 久久九九热精品免费| 黄色欧美视频在线观看| 亚洲精品亚洲一区二区| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 一级黄色大片毛片| 床上黄色一级片| 国产精品美女特级片免费视频播放器| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 久久人妻av系列| 国产女主播在线喷水免费视频网站 | 我的女老师完整版在线观看| 欧美xxxx性猛交bbbb| 免费av观看视频| 亚洲自拍偷在线| 丝袜美腿在线中文| 亚洲欧美日韩高清在线视频| 国产一区二区三区av在线 | 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 精品久久国产蜜桃| 亚洲av电影不卡..在线观看| 日本黄大片高清| 女生性感内裤真人,穿戴方法视频| aaaaa片日本免费| 欧美人与善性xxx| 少妇丰满av| 最后的刺客免费高清国语| 精品国内亚洲2022精品成人| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 亚洲丝袜综合中文字幕| 亚洲精品日韩av片在线观看| 亚洲五月天丁香| 久久人妻av系列| 日本免费一区二区三区高清不卡| 丝袜美腿在线中文| 国产精品野战在线观看| 日韩欧美精品v在线| 亚洲国产精品成人综合色| 欧美国产日韩亚洲一区| 日韩人妻高清精品专区| 超碰av人人做人人爽久久| 成人亚洲精品av一区二区| 九九在线视频观看精品| 偷拍熟女少妇极品色| 色av中文字幕| 成年女人看的毛片在线观看| 中国国产av一级| 一卡2卡三卡四卡精品乱码亚洲| 小说图片视频综合网站| 日韩强制内射视频| 国产精品永久免费网站| 欧美一区二区精品小视频在线| av在线天堂中文字幕| 蜜桃久久精品国产亚洲av| 国产极品精品免费视频能看的| 国国产精品蜜臀av免费| 亚洲美女搞黄在线观看 | 国产69精品久久久久777片| 欧美不卡视频在线免费观看| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 免费av不卡在线播放| 床上黄色一级片| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 精品久久久久久久久av| 日本三级黄在线观看| 身体一侧抽搐| 99国产精品一区二区蜜桃av| 国产欧美日韩精品一区二区| 99久久精品热视频| 亚洲人与动物交配视频| 国产精品亚洲一级av第二区| 我要搜黄色片| 久久久久久久亚洲中文字幕| 深夜a级毛片| 一本久久中文字幕| 不卡视频在线观看欧美| 麻豆国产97在线/欧美| 亚洲精品456在线播放app| 在线观看66精品国产| 久久久久久国产a免费观看| 老司机午夜福利在线观看视频| 欧美区成人在线视频| 久久精品综合一区二区三区| 亚洲美女搞黄在线观看 | 女的被弄到高潮叫床怎么办| 麻豆久久精品国产亚洲av| 综合色丁香网| 可以在线观看毛片的网站| 国产真实伦视频高清在线观看| 成人无遮挡网站| 麻豆一二三区av精品| 国产一区二区在线观看日韩| 男人和女人高潮做爰伦理| 久久亚洲国产成人精品v| www.色视频.com| 亚洲成人久久爱视频| 日韩,欧美,国产一区二区三区 | 搡女人真爽免费视频火全软件 | 熟女电影av网| 男女之事视频高清在线观看| 赤兔流量卡办理| 最新中文字幕久久久久| 夜夜夜夜夜久久久久| 熟女电影av网| 美女xxoo啪啪120秒动态图| 国产大屁股一区二区在线视频| 又粗又爽又猛毛片免费看| 少妇猛男粗大的猛烈进出视频 | av天堂在线播放| 夜夜爽天天搞| 免费av观看视频| 香蕉av资源在线| 一级黄片播放器| 黄色日韩在线| 日本a在线网址| 亚洲三级黄色毛片| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 偷拍熟女少妇极品色| 国产高清三级在线| 国产伦精品一区二区三区视频9| 久久午夜亚洲精品久久| 国产午夜精品论理片| 日日撸夜夜添| 精品日产1卡2卡| 三级国产精品欧美在线观看| 午夜福利在线观看吧| 国产精品人妻久久久久久| 91麻豆精品激情在线观看国产| 桃色一区二区三区在线观看| 中文字幕av成人在线电影| 午夜福利在线观看吧| 国产亚洲精品av在线| 日韩欧美三级三区| 亚洲不卡免费看| 22中文网久久字幕| 男人和女人高潮做爰伦理| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩| 简卡轻食公司| 久久久久国产精品人妻aⅴ院| 亚洲精品日韩av片在线观看| 国产人妻一区二区三区在| 黄色配什么色好看| 黄色视频,在线免费观看| 亚洲天堂国产精品一区在线| 在线观看一区二区三区| 国产单亲对白刺激| 日韩一本色道免费dvd| 午夜老司机福利剧场| 久久亚洲国产成人精品v| 亚洲av免费在线观看| 极品教师在线视频| 最好的美女福利视频网| 在线免费十八禁| 亚洲av二区三区四区| 99九九线精品视频在线观看视频| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲网站| 男女啪啪激烈高潮av片| 久久久国产成人免费| 黄色日韩在线| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 久久久精品欧美日韩精品| 精品一区二区三区av网在线观看| 99热网站在线观看| 成年av动漫网址| 亚洲乱码一区二区免费版| 亚洲四区av| 国产黄片美女视频| 一级毛片久久久久久久久女| 久久久久久久久中文| 亚洲精品色激情综合| 欧美高清性xxxxhd video| 国产精品久久久久久亚洲av鲁大| 国产片特级美女逼逼视频| 在线a可以看的网站| 免费大片18禁| 97超碰精品成人国产| 国产男人的电影天堂91| 中文字幕人妻熟人妻熟丝袜美| av国产免费在线观看| 国产麻豆成人av免费视频| 全区人妻精品视频| 亚洲国产精品成人综合色| 国产精品人妻久久久久久| 亚洲av成人av| 精品日产1卡2卡| av中文乱码字幕在线| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线| 午夜亚洲福利在线播放| 欧美高清成人免费视频www| 国产亚洲91精品色在线| 精品久久久噜噜| 菩萨蛮人人尽说江南好唐韦庄 | 69av精品久久久久久| 搡老熟女国产l中国老女人| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| 哪里可以看免费的av片| 久久久a久久爽久久v久久| 久久亚洲精品不卡| 特大巨黑吊av在线直播| 成人三级黄色视频| 欧美3d第一页| 国产 一区精品| 一进一出抽搐动态| 又粗又爽又猛毛片免费看| 日韩亚洲欧美综合| 悠悠久久av| 日本一二三区视频观看| 国产午夜福利久久久久久| 国模一区二区三区四区视频| 在线观看免费视频日本深夜| 俺也久久电影网| 欧美最新免费一区二区三区| 久久午夜福利片| 成年版毛片免费区| 亚洲五月天丁香| 婷婷亚洲欧美| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 日韩欧美免费精品| 尾随美女入室| 免费观看人在逋| 18+在线观看网站| 久久精品综合一区二区三区| 亚洲中文日韩欧美视频| 激情 狠狠 欧美| 99久久精品一区二区三区| 国产亚洲91精品色在线| 欧美潮喷喷水| 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 国产亚洲91精品色在线| 成人欧美大片| АⅤ资源中文在线天堂| 国产精品电影一区二区三区| 有码 亚洲区| 青春草视频在线免费观看| 亚州av有码| 国产在视频线在精品| 成人国产麻豆网| 中文字幕免费在线视频6| 日韩欧美精品v在线| 最新在线观看一区二区三区| 国产 一区精品| 成人鲁丝片一二三区免费| 亚洲精品一区av在线观看| 热99re8久久精品国产| 日韩人妻高清精品专区| 免费在线观看成人毛片| 亚洲真实伦在线观看| 美女 人体艺术 gogo| 国产精品综合久久久久久久免费| 久99久视频精品免费| 三级国产精品欧美在线观看| 人妻少妇偷人精品九色| 国产三级中文精品| 非洲黑人性xxxx精品又粗又长| 国产精品综合久久久久久久免费| 三级毛片av免费| 又粗又爽又猛毛片免费看| 国产精品美女特级片免费视频播放器| 男人舔奶头视频| 狂野欧美白嫩少妇大欣赏| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| av在线观看视频网站免费| 桃色一区二区三区在线观看| 亚洲精品成人久久久久久| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久噜噜老黄 | 美女高潮的动态| 村上凉子中文字幕在线| 人妻久久中文字幕网| 色噜噜av男人的天堂激情| 午夜福利成人在线免费观看| 国产精品av视频在线免费观看| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 久久久a久久爽久久v久久| 亚州av有码| 国产色婷婷99| 一级毛片电影观看 | 啦啦啦啦在线视频资源| 美女免费视频网站| 国产精品永久免费网站| 日韩三级伦理在线观看| 国产精品野战在线观看| 美女xxoo啪啪120秒动态图| 熟妇人妻久久中文字幕3abv| 亚洲av熟女| 一个人看的www免费观看视频| 天天躁日日操中文字幕| 九九在线视频观看精品| 国产真实乱freesex| 日韩一本色道免费dvd| 99热全是精品| 少妇被粗大猛烈的视频| 午夜久久久久精精品| 美女黄网站色视频| 国产精品野战在线观看| 超碰av人人做人人爽久久| 亚洲成人精品中文字幕电影| 性欧美人与动物交配| 国产精品无大码| 特大巨黑吊av在线直播| 一进一出好大好爽视频| 亚洲三级黄色毛片| 嫩草影院精品99| 国产成人一区二区在线| 一个人观看的视频www高清免费观看| 黄色日韩在线| 亚洲四区av| 午夜福利高清视频| 日本撒尿小便嘘嘘汇集6| 成人三级黄色视频| 国产乱人偷精品视频| 亚洲一级一片aⅴ在线观看| 日韩大尺度精品在线看网址| 欧美性猛交黑人性爽| 日日摸夜夜添夜夜添av毛片| 亚洲七黄色美女视频| 中文字幕av在线有码专区| 深夜精品福利| av专区在线播放| 亚洲内射少妇av| 99久久成人亚洲精品观看| av国产免费在线观看| 直男gayav资源| 国产成年人精品一区二区| 啦啦啦韩国在线观看视频| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 日日摸夜夜添夜夜爱| 女同久久另类99精品国产91| av女优亚洲男人天堂| 神马国产精品三级电影在线观看| 亚洲av不卡在线观看| 国产精品av视频在线免费观看| 乱码一卡2卡4卡精品| 床上黄色一级片| 亚洲无线观看免费| 男女视频在线观看网站免费| av在线蜜桃| 非洲黑人性xxxx精品又粗又长| 久久国产乱子免费精品| 老师上课跳d突然被开到最大视频| 亚洲熟妇中文字幕五十中出| 久久久久免费精品人妻一区二区| 六月丁香七月| 国产精品综合久久久久久久免费| 男人狂女人下面高潮的视频| 久久精品国产清高在天天线| 午夜视频国产福利| 久久6这里有精品| 中文亚洲av片在线观看爽| 国产精品一区www在线观看| 午夜影院日韩av| 免费黄网站久久成人精品| 日韩三级伦理在线观看| 中文资源天堂在线| 精品久久久久久久末码| 日韩欧美 国产精品| 国产日本99.免费观看| 精华霜和精华液先用哪个| 中文字幕人妻熟人妻熟丝袜美| 床上黄色一级片| 国产成人一区二区在线| 丰满乱子伦码专区| 18+在线观看网站| 国产高清有码在线观看视频| av.在线天堂| 亚洲欧美中文字幕日韩二区| 97人妻精品一区二区三区麻豆| 久久久久精品国产欧美久久久| 变态另类丝袜制服| 国产精品亚洲美女久久久| 中国美女看黄片| ponron亚洲| 中出人妻视频一区二区| 亚洲一级一片aⅴ在线观看| 久久久久久久久中文| 欧美激情在线99| 国产成人精品久久久久久| 99热全是精品| 日韩欧美一区二区三区在线观看| 免费一级毛片在线播放高清视频| 69人妻影院| 日本-黄色视频高清免费观看| 免费在线观看成人毛片| 国产蜜桃级精品一区二区三区| 国产精品电影一区二区三区| 日日干狠狠操夜夜爽| 精品熟女少妇av免费看| 最新在线观看一区二区三区| 我的女老师完整版在线观看| 国产精品不卡视频一区二区| 亚洲精品久久国产高清桃花| 国产精品久久久久久亚洲av鲁大| 欧美国产日韩亚洲一区| a级毛片免费高清观看在线播放| 久久鲁丝午夜福利片| 国内精品宾馆在线| 少妇人妻一区二区三区视频| 亚洲第一电影网av| 噜噜噜噜噜久久久久久91| 婷婷精品国产亚洲av| 在线免费十八禁| 精品久久久久久久久亚洲| 老女人水多毛片| 综合色av麻豆| 欧美最新免费一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产精品av视频在线免费观看| 国产伦精品一区二区三区四那| 亚洲欧美日韩卡通动漫| 一区二区三区高清视频在线| 成年女人毛片免费观看观看9| 亚洲精品色激情综合| 国产伦一二天堂av在线观看| 久久国内精品自在自线图片| 亚洲真实伦在线观看| 精品人妻一区二区三区麻豆 | 精品一区二区三区av网在线观看| 观看美女的网站| 午夜福利在线观看免费完整高清在 | 特大巨黑吊av在线直播| 天堂√8在线中文| 久久久久国产网址| 午夜爱爱视频在线播放| 精品国产三级普通话版| 亚洲中文日韩欧美视频| 在线观看午夜福利视频| 亚洲精品一区av在线观看| 午夜久久久久精精品| 黄色视频,在线免费观看| 国产亚洲精品久久久久久毛片| 国产中年淑女户外野战色| 国产精品久久久久久精品电影| 亚洲欧美成人精品一区二区| 亚洲精品国产av成人精品 | 又爽又黄a免费视频| 中国国产av一级| 全区人妻精品视频| 男人狂女人下面高潮的视频| 久久人人爽人人爽人人片va| 国产精品国产高清国产av| 国产精品一区www在线观看| 热99在线观看视频| 午夜免费男女啪啪视频观看 | 精品人妻偷拍中文字幕| 中文字幕免费在线视频6| 久久久久久久午夜电影| 精品不卡国产一区二区三区| 国产视频内射| 99久久中文字幕三级久久日本| 国产伦一二天堂av在线观看| 国产精品嫩草影院av在线观看| eeuss影院久久| 国产精品野战在线观看| 一区二区三区免费毛片| 亚洲精品一区av在线观看| 亚洲人成网站高清观看| 两个人视频免费观看高清| 日本免费一区二区三区高清不卡| 亚洲第一电影网av| 一级毛片久久久久久久久女| 免费在线观看影片大全网站| 高清毛片免费看| 亚洲性夜色夜夜综合| 中文亚洲av片在线观看爽| 一级av片app| 国产av不卡久久| 亚洲色图av天堂| aaaaa片日本免费| 亚洲自偷自拍三级| 婷婷亚洲欧美| 久久久久性生活片| 亚洲熟妇中文字幕五十中出| 看十八女毛片水多多多| a级毛色黄片| 波多野结衣高清作品| 精品福利观看| 麻豆精品久久久久久蜜桃| 亚洲一级一片aⅴ在线观看| 国产精品乱码一区二三区的特点| 国产精品美女特级片免费视频播放器| 久久久久久久久大av| 日韩国内少妇激情av| 亚洲成人久久爱视频| 高清日韩中文字幕在线| 伊人久久精品亚洲午夜| 乱系列少妇在线播放| 国产成人91sexporn| 日韩国内少妇激情av| 狂野欧美白嫩少妇大欣赏| 亚洲一级一片aⅴ在线观看| 不卡视频在线观看欧美| 99久久精品国产国产毛片| 蜜臀久久99精品久久宅男| 国产久久久一区二区三区| 麻豆国产97在线/欧美| 婷婷精品国产亚洲av| 女人被狂操c到高潮| 国国产精品蜜臀av免费| 你懂的网址亚洲精品在线观看 | 亚洲成a人片在线一区二区| 亚洲av成人av| 三级男女做爰猛烈吃奶摸视频| 国产精品伦人一区二区| 久久久精品94久久精品| 日本-黄色视频高清免费观看| 欧洲精品卡2卡3卡4卡5卡区|