• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perfect Reconstructable Decimated One-Dimensional Empirical Mode Decomposition Filter Banks

    2014-07-14 01:20:22MinSungKohandEstebanRodriguezMarek

    Min-Sung Koh and Esteban Rodriguez-Marek

    1. Introduction

    Since the one-dimensional empirical mode decomposition (1D-EMD) was introduced in [1], it has been applied and extended into many applications such as seismic signal analysis[2], EEG signal analysis[3], signal denoising[4], and speech enhancement[5]. Although the EMD is well suited for analyzing non-stationary and/or non-linear signals, it has a major drawback in that it generates data expansion, as every decomposition level adds a signal of the same length as the original signal.Decomposition levels in the context of the EMD are denominated intrinsic mode functions (IMFs), which can be thought as the frequency components ordered from high to low frequencies. At each decomposition step, the EMD decomposes the signal into a high-frequency component(i.e. the IMF) and a low-frequency component (i.e. the residual).

    The IMF is the result of subtracting the average of two envelopes (upper and lower) from the original signal. These envelopes are determined by connecting the maxima and minima of the signal, respectively. The residual is further decomposed to obtain the next high-frequency components.This operation continues iteratively until either a stopping condition has been met or when the residual is monotonic.The synthesis part of the decomposition, i.e. the reconstruction of the original signal, is achieved simply by adding all IMFs and the residual. Without any further processing, the reconstructed and original signals are identical. Since the EMD decomposes a signal into low and high frequency components at each decomposition step, it can be thought as having a filter bank structure. Flandrin et al. showed in [6] that the EMD indeed acts like a dyadic filter bank. However, unlike wavelet filter banks based on perfectly reconstructable analysis/synthesis filters in a tree structure, the EMD does not include downsampling. In fact,if simple downsampling and upsampling operations are performed in EMD data, perfect reconstruction no longer holds. Hence, incorporating downsampling into the EMD requires a special approach. One technique to overcome the problem is presented in this paper, i.e. we generate downsampled IMFs and a residual while keeping the perfect reconstruction property. The resulting structure is very similar to that of wavelet filter banks, which can be applicable to arbitrary tree structures.

    Perfect reconstruction, decimated EMD filter banks are introduced in Section 2 (for analysis filter banks) and Section 3 (for synthesis filter banks). The effect of data reduction of the proposed EMD filter banks is analyzed in Section 4. Experimental results are shown in Section 5 and conclusions follow in Section 6.

    2. Analysis EMD Filter Banks

    It was shown in [6] that the EMD has a behavior similar to that of a dyadic filter bank. This concept is extended here to allow any arbitrary tree structure to be used with the EMD. To achieve this, we consider only one high-frequency component and one low-frequency component at each decomposition level. In other words, we consider only one IMF and the residual in each decomposition level. Each one of the output signals may be further decomposed into any desired tree structure. At this point, let’s consider the case without downsampling, i.e., still maintaining the perfect reconstruction property. It is clear that forsaking downsampling results in data expansion at each level.However, traditional linear filters that perform the EMD do not exist. Thus, a simple downsampling in an EMD tree structure does not keep the perfect reconstruction property.A special perfect-reconstruction filter set (e.g., perfect reconstructable quadrature mirror filters, or QMFs) is required to achieve perfect reconstruction with downsampling in traditional filter banks. One of these examples is wavelet filter banks. However, if we consider traditional perfect-reconstruction filters (e.g., a QMF) in EMD filter banks, with downsamplers to achieve perfect reconstruction, then the desirable properties of EMD dealing with non-stationary and non-linear signals are limited.

    To overcome this problem, this paper takes a different approach, namely, it applies decimation by using“odd”/“even” samples, and the merging operation. Consider the filter structure shown in Fig. 1, displaying one stage of the proposed decomposition. Signal Xi,jis the (i, j)th node of the tree, or the jth node of the ith decomposition level.A length-M signal, Xi,j, can be written as

    where R[n] denotes the residual and I [n] denotes the first IMF obtained by the EMD. Note that i=0, 1, 2, …, L and j=0, 1, 2,…, 2L-1, where we are assuming L decomposition levels. Each R[n] and I[n] is split into “even” and “odd”samples, clearly denoted by Re, Ro, Ie, and Io. Note that signal Xi,jcan be either Ieor Refrom a previous level or the original signal. The delay element, denoted by Z-1in Fig. 1,is included when the downsampling process considers only the odd indexed samples. Since the low frequency signals,Roand Re, are very similar to each other, only one low frequency signal, Re, is maintained as the lowpass signal,and defined as Xi+1,2j[m]. This signal may be further decomposed in the next level. Regarding the high frequency signals, Ioand Ie, only the latter is maintained,and is called Xi+1,2j+1[m]. This is the high frequency signal and may also be further decomposed.

    Fig. 1. One stage of the analysis filter bank for the proposed algorithm (at the ith decomposition level).

    The odd indexed signal, O[m], is the result of the addition of Ro[m] and Io[m]. An error signal, ?i+1,j[m], is formed from the difference between O[m] and its estimate,O?. This idea is similar to the technique shown in [7] to obtain multiple resolutions of an original image. Note that the estimated odd-indexed signal, O?, is obtained by interpolating Reand taking out the odd-indexed samples.Thus, a single stage of the proposed EMD filter bank generates three outputs, Re, Ie, and ?, described by for m = 0, 1, 2, …, ?M/2」-1, where the input signal is assumed to have length M, and symbol ?」 and 「? denote floor and ceiling operations, respectively. Note that if index j is zero or even, then Xi,j[m] implies Re. Otherwise, it implies Ie. Note that while Reand Iecan be further decomposed, ? is simply stored to later obtain perfect reconstruction. In addition, all three output signals have length M/2, i.e. half the length of the input signal. Since?i+1,j[m ] has high frequency components when compared with Re(which has the even-indexed samples of the lowpass residual, R), it is similar to Ie. In other words,?i+1,j[m ], is similar to Xi+1,2j+1[m]. The similarity between these two signals will be shown in Section 5. Note that if Reand Ieundergo further decomposition, then the length of the decomposed signals keeps getting reduced, i.e. the data length of Xi,j[m] becomes M/2iat the ith decomposition level.

    Fig. 2. Octave tree structure with L=3.

    If we cascade the same decomposition structure shown in Fig. 1 based on a tree structure, then the proposed algorithm generates a decimated, perfect-reconstruction EMD filter bank similar to traditional wavelet filter banks,as shown in Fig. 2. In Fig. 2, the original length-M signal to be decomposed at the root node is denoted as X00[n].Boxes labeled “Fig. 1” denote the decomposition structure shown in Fig. 1. Note that Reand Iecan be identified by the“j” index in the node subscript. In other words, if j is 0 or even number, then Xi,j[ m ] = Re[ m], (i.e. the lowpass signal). Otherwise, Xi,j[ m ] = Ie[ m], i.e. the highpass signal. Note that the data length of all Reand Iesignals in Fig. 2 (i.e. X22[m] , X23[m] , X30[m] , X31[m ] ,X32[m ] , and X33[m]) is no longer M. This, of course, is a result of all Reand Iesignals being decimated by 2i, where i=0, 1, 2, 3. However, in addition to the decomposition coefficients, we must store the error data represented by ?.For the example in Fig. 2, the additional data kept are?10[m ], ?20[m], ?21[m], ?30[m], and ?31[m], having lengths M/2ifor i=0, 1, 2, 3. For example, ?30[m] has M/23=M/8 coefficients to be stored, etc. This structure is more efficient than traditional EMD filter banks without decimation, which generates an M-length signal for each decomposed signal. For instan3ce, EMD filter banks without decimations would generate 2M = 8M data for a full binary tree with three decomposition levels. A more detailed discussion on data size will be presented in Section 4.

    3. Synthesis EMD Filter Banks

    Traditional EMD requires a simple summation of all IMFs and the residual to recover the original signal.Conversely, the proposed algorithm needs a synthesis part to recover both Ioand Rofrom the combined ?i,j[ m] and to process the decimated signals at each decomposition level. The structure of a single synthesis stage, shown in Fig. 3, is essentially the reverse of the analysis stage.However, a slight modification must be done, as the original signal is simply recovered through the additions.As shown in Fig. 3, to recover the signal at node (i, j),denoted by Xi,j[m], we need to add the even and odd parts of the signal, properly shifted for correct placement. Note that the even indexed signal is simply obtained by E[ m ] = Re[ m] + Ie[ m]. The synthesis filter bank should be made by cascading the structure of Fig. 3 in the same tree used in the analysis. Note that the estimated signal O? must be generated by the same interpolation technique used in the analysis. As the tree advances towards the root node, X00[m], from node Xi,j[m], intermediate nodes(ik, jk) are identified by

    Fig. 3. One stage of the synthesis filter bank at the ith decomposition level.

    where i=0, 1, 2, …, L and j=0, 1, 2, …, 2L-1, for L decomposition levels.

    Although the EMD behaves like a dyadic filter bank,the exact cutoff frequency is not known, as it is a datadriven decomposition. However, the filter banks shown in Fig. 1 and Fig. 3 provide perfect reconstruction, as well as no aliasing.

    Theorem 1. The decimated EMD filter banks in Fig. 1 and Fig. 3 have perfect reconstruction and cancel aliasing,provided the same interpolation technique is used for analysis and synthesis.

    Knowing that E ( z) = Re( z) + Ie(z ), we apply all identities to get

    4. Data Reduction Ratio of the Proposed Algorithm

    Like wavelet filter banks, the proposed EMD filter bank structure can also be applied into any arbitrary tree structure, including decimation, although with the additional ?i,j[ m] coefficients. Even after combining Roand Iointo ?i,j[ m] , the proposed algorithm presents no loss of data, as Roand Iomay be recovered through the interpolation of Reand the addition of ?i,j[ m]. Hence,perfect reconstruction is guaranteed. Comparing it with wavelet filter banks, the proposed filter banks lead to data being expanded by the size of ?i,j[ m] for each decomposition level. Considering a full binary tree,2l-1[m]are generated at a decomposition level l,because each R, I pair makes one ?i,j[ m]. Thus, if we add all size-M /2i[m] data generated at each decomposition level i=0, 1, 2,… , L then. Note that there is no?i,j[ m ] term for i=0, i.e. the root node. The total number LM/2 of coefficients for all ?i,j[ m] is the upper bound of additional data needed compared with wavelet filter banks,as we arrive to that value considering all possible decompositions in a full binary tree.

    Comparing with traditional EMD, the proposed algorithm reduces the amount of data needed to be stored,as decimation is incorporated. Let's consider a length-M signal. Then traditional EMD generates (L+1)M signals (L IMFs and a residual). If we want to extend the traditional EMD into an arbitrary tree structure, then only one IMF and one residual at each decomposition level can be considered for further decomposition. Therefore, an arbitrary full binary tree with L decomposition levels can generate 2Lpossible nodes. Thus, arbitrary EMD filter banks without decimation results in 2LM coefficients to be stored (each node also has a length-M signal).However, the structure presented in Fig. 1 and Fig. 2 resulting in arbitrary EMD filter banks with decimation yields length-M signals for all possible nodes. Including the additional data for?i,j[ m ] at each node in each decomposition level, the proposed algorithm generates a total M + LM/2 coefficients for a full binary tree. Thus, the total data generated by the proposed algorithm is significantly less than the 2LM data size of the EMD without decimation. Needless to say,for filter banks not having full tree structures, such as an octave filter bank, the additional data to be stored is less than the upper limit LM/2. Compared to traditional EMD filter banks without decimation, the proposed EMD filter bank has a computational reduction ratio (RR) for L decomposition levels equal to

    Forsaking the arbitrary tree structure option in traditional EMD,numerator is the ( 1)L M+ data from traditional,undecimated EMD. The denominator is the data generated from the proposed algorithm, i.e.term is needed from only one ?i,j[m] at each decomposition level.For instance, for L=5, the reduction ratio is RR≈3, implying that the proposed decimated1D-EMD filter bank needs to store three times less data than traditional1D-EMD. For the same number of decomposition levels, a full binary tree results in RR≈9.1. The RR factor is much higher when applied into 2D-EMD filter banks, as shown in [9].

    5. Experimental Results

    The system in Fig. 1 was implemented with the 1D-EMD provided in [8], and was applied into arbitrary tree structures. In every case tested, SNRs of over 300 dB were achieved, thereby proving the algorithm yields perfect reconstruction.

    Fig. 4 compares decimated and undecimated EMD when applied to speech data. The left column of Fig. 4 (a)corresponds to traditional EMD, i.e. without decimation.The speech frame has 4 IMFs and a residual. All signals have the same length. The rightmost column of Fig. 4 (a)shows the effect of simple decimation after the EMD is performed (it is provided only for comparison purposes).The results of the proposed algorithm are shown in Fig. 4(b). The leftmost column of Fig. 4 (b) shows the signal decomposed by the proposed decimated EMD filter bank,where a tree structure with nodes (1, 1), (2, 1), (3, 1), (4, 1),and (4, 0), i.e. X11[m] through X40[m], respectively.

    A visual comparison of the left column of Fig. 4 (b) and right column of Fig. 4 (a) shows that the proposed decimated EMD filter bank has similar results to the downsampled version of the original EMD. This implies that the characteristics of the EMD are not affected by the proposed decimation. The indices of left column of Fig. 4(b) demonstrate that the size of the signals is reduced by half with every decomposition level. The right column of Fig. 4 (b) is the error signal, where each row corresponds to(1, 0), (2, 0), (3, 0), and (4, 0), respectively. In other words,?10[ m] obtained from X10[m] and X11[m] is on the first row,obtained from X20[m] and X21[m] is on the second row, etc.As mentioned, ?i,j[ m] is equivalent to the highpass signal for odd-indexed signals. Note that the ?i,j[ m]s (right column of Fig. 4 (b), are similar to the left column of Fig. 4(b), which are the highpass signals for even-indexed values,Ie.

    Fig. 4. Comparison of the proposed decimated EMD filter bank with traditional EMD: (a) signals decomposed by the traditional EMD (left column: traditional EMD, right column: downsampled traditional EMD) and (b) signals decomposed by the decimated EMD filter bank (left column: decimated EMD filter bank, right column: ? in EMD filter bank).

    6. Conclusions

    This paper presents an EMD filter bank that allows the generation of any arbitrary tree structure. Moreover, the algorithm allows for perfect reconstruction to be maintained even with the inclusion of decimation. This differs from traditional EMD, which loses the perfectreconstruction capability when downsampled. The obvious benefit from this is the reduction of the amount of data generated by the algorithm. Furthermore, the developed EMD filter banks can be extended into a full binary tree,which results in EMD packets. The proposed EMD filter bank can be applied into any different implementation of traditional 1D-EMD, although only the one reported in [8]is tested in this paper. When the proposed algorithm is applied into 2D-EMD, data reduction is much higher because 2D signals permit row and column decimation.

    [1] N.-E. Huang, Z. Shen, S.-R. Long, M.-C. Wu, H.-H. Shih, Q.Zheng, N.-C. Yen, C.-C. Tung, and H.-H. Liu, “The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. of the Royal Society London A, vol. 454, no. 1971, pp. 903–995,Mar. 1998.

    [2] R.-C. Zhang, S. Ma, E. Safak, and S. Hartzell,“Hilbert-Huang transform analysis of dynamic and earthquake motion recordings,” Journal of Engineering Mechanics-ASCE, vol. 129, pp. 861–875, Aug. 2003.

    [3] C. Park, D. Looney, P. Kidmose, M. Ungstrup, and D. P.Madic, “Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition,” IEEE Trans. on.Neural Systems and Rehab. Eng., vol. 19, no. 4, pp. 366–373,2011.

    [4] O. A. Omitaoumu, V. A. Protopopescu, and A. R. Ganguly,“Empirical mode decomposition technique with conditional mutual information for denoising operational sensor data,”IEEE Sensors Journal, vol. 11, no. 10, pp. 2565–2575, 2011.

    [5] N. Chatlani and J. J. Soraghan, “EMD-based filtering(EMDF) of low-frequency noise for speech enhancement,”IEEE Trans. on Audio, Speech, and Lang. Proc., vol. 20, no.4, pp. 1158–1166, 2012.

    [6] P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filter bank,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112–114, 2004.

    [7] P. J. Burt and E. H. Adelson, “The laplacian pyramid as a compact image code,” IEEE Trans. on Comm., vol. 31, no. 4,pp. 532–540, 1983.

    [8] Y. Kopsinis and S. McLaughlin, “Improved EMD using doubly-iterative sifting and high order spline interpolation,”EURASIP Journal on Advances in Signal Processing,doi:10.1155/2008/128293.

    [9] M. S. Koh and E. Rodriguez-Marek, “Perfect reconstructable decimated two-dimensional empirical mode decomposition filter banks,” presented at the IEEE Int. Conf.on Acoustics, Speech, and Signal Processing, Vancouver,Canada, 2013.

    成人免费观看视频高清| 国产精品一区二区在线不卡| 免费在线观看日本一区| av电影中文网址| 国产精品免费视频内射| 女人高潮潮喷娇喘18禁视频| 欧美亚洲日本最大视频资源| 99re在线观看精品视频| 叶爱在线成人免费视频播放| 亚洲天堂av无毛| 热99re8久久精品国产| 美女扒开内裤让男人捅视频| 99国产精品一区二区三区| 激情视频va一区二区三区| 国产男靠女视频免费网站| 精品乱码久久久久久99久播| 视频在线观看一区二区三区| 成人三级做爰电影| 精品国产国语对白av| 国产日韩欧美视频二区| 国产不卡一卡二| 亚洲av日韩精品久久久久久密| 1024视频免费在线观看| www.精华液| 精品少妇内射三级| 在线亚洲精品国产二区图片欧美| 人妻一区二区av| 亚洲av日韩在线播放| 女警被强在线播放| 国产在线精品亚洲第一网站| 欧美日韩av久久| 丁香六月天网| 亚洲av日韩精品久久久久久密| 汤姆久久久久久久影院中文字幕| 色尼玛亚洲综合影院| 丰满少妇做爰视频| 亚洲国产欧美日韩在线播放| 人人妻人人爽人人添夜夜欢视频| 天堂中文最新版在线下载| 日韩有码中文字幕| 久久青草综合色| 久热爱精品视频在线9| 日韩成人在线观看一区二区三区| 亚洲人成77777在线视频| 制服诱惑二区| 亚洲情色 制服丝袜| 国产在视频线精品| 免费看a级黄色片| 国产不卡av网站在线观看| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 女人爽到高潮嗷嗷叫在线视频| 丝袜在线中文字幕| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 日本wwww免费看| 国产成人av激情在线播放| 少妇 在线观看| 国产xxxxx性猛交| 露出奶头的视频| 男女边摸边吃奶| 桃花免费在线播放| 欧美乱码精品一区二区三区| 成年版毛片免费区| 国产亚洲精品第一综合不卡| 大香蕉久久网| 成年人黄色毛片网站| www.精华液| 欧美人与性动交α欧美软件| 国产一区有黄有色的免费视频| 亚洲av电影在线进入| 亚洲人成电影免费在线| 久久 成人 亚洲| 久久久精品区二区三区| 一进一出好大好爽视频| 国产免费福利视频在线观看| 91麻豆av在线| 欧美日韩精品网址| 一进一出好大好爽视频| 欧美精品一区二区免费开放| 国产精品一区二区在线不卡| 日韩中文字幕欧美一区二区| 日本精品一区二区三区蜜桃| 久久性视频一级片| 国产精品一区二区在线不卡| 999久久久精品免费观看国产| 午夜福利一区二区在线看| 成人亚洲精品一区在线观看| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| 日本黄色视频三级网站网址 | 三上悠亚av全集在线观看| 久久中文看片网| 欧美在线一区亚洲| 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| 丁香六月天网| 久久精品国产亚洲av高清一级| aaaaa片日本免费| 日日爽夜夜爽网站| 男人舔女人的私密视频| 天天添夜夜摸| 成年女人毛片免费观看观看9 | 脱女人内裤的视频| 久久人人97超碰香蕉20202| 精品人妻熟女毛片av久久网站| 日韩大码丰满熟妇| 黄色a级毛片大全视频| 老司机深夜福利视频在线观看| 乱人伦中国视频| 捣出白浆h1v1| 午夜精品久久久久久毛片777| 国产1区2区3区精品| 一边摸一边做爽爽视频免费| 精品人妻在线不人妻| 男女下面插进去视频免费观看| 亚洲成a人片在线一区二区| 亚洲中文日韩欧美视频| 涩涩av久久男人的天堂| 国产成人精品久久二区二区91| 男人操女人黄网站| 最近最新中文字幕大全电影3 | 日韩大片免费观看网站| 曰老女人黄片| 日韩视频在线欧美| 一边摸一边抽搐一进一小说 | 热re99久久国产66热| 亚洲三区欧美一区| 国产午夜精品久久久久久| tocl精华| 亚洲精品久久午夜乱码| 欧美+亚洲+日韩+国产| 欧美性长视频在线观看| 免费在线观看影片大全网站| 亚洲性夜色夜夜综合| 中文字幕色久视频| 777久久人妻少妇嫩草av网站| 午夜福利一区二区在线看| 国产精品偷伦视频观看了| 日日摸夜夜添夜夜添小说| 国产日韩欧美亚洲二区| 在线看a的网站| 久久久精品94久久精品| 老熟女久久久| 一级,二级,三级黄色视频| 色视频在线一区二区三区| 好男人电影高清在线观看| 久久中文字幕一级| 成人18禁高潮啪啪吃奶动态图| 美女视频免费永久观看网站| 天天添夜夜摸| 老司机福利观看| 精品少妇一区二区三区视频日本电影| 成在线人永久免费视频| 久久ye,这里只有精品| 亚洲精品国产区一区二| 国产精品自产拍在线观看55亚洲 | 热re99久久国产66热| 搡老岳熟女国产| 中国美女看黄片| 看免费av毛片| 国产精品香港三级国产av潘金莲| 又大又爽又粗| 精品久久久精品久久久| 欧美黄色片欧美黄色片| 老司机午夜福利在线观看视频 | 国产又爽黄色视频| 国产又色又爽无遮挡免费看| 日本av手机在线免费观看| 一边摸一边抽搐一进一出视频| 午夜免费成人在线视频| 一进一出好大好爽视频| 中文字幕另类日韩欧美亚洲嫩草| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 婷婷丁香在线五月| 免费在线观看影片大全网站| 久久免费观看电影| 91九色精品人成在线观看| 欧美在线黄色| 一进一出抽搐动态| 一二三四在线观看免费中文在| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 热re99久久精品国产66热6| 91成年电影在线观看| 亚洲综合色网址| 亚洲精品成人av观看孕妇| 一二三四社区在线视频社区8| 国产成人一区二区三区免费视频网站| 国产视频一区二区在线看| 日韩熟女老妇一区二区性免费视频| 亚洲第一欧美日韩一区二区三区 | 亚洲成av片中文字幕在线观看| 午夜老司机福利片| 精品国产亚洲在线| 国产精品一区二区在线观看99| 人妻久久中文字幕网| 精品国产超薄肉色丝袜足j| 亚洲人成77777在线视频| www.熟女人妻精品国产| 男女午夜视频在线观看| 久久香蕉激情| 美女国产高潮福利片在线看| 国产成人精品在线电影| 久久久久精品国产欧美久久久| 欧美亚洲日本最大视频资源| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 亚洲全国av大片| av网站免费在线观看视频| 久久99热这里只频精品6学生| 丝袜喷水一区| 欧美日韩视频精品一区| 水蜜桃什么品种好| 91成年电影在线观看| 国产精品 欧美亚洲| 美女视频免费永久观看网站| 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 久久中文看片网| 18禁裸乳无遮挡动漫免费视频| 757午夜福利合集在线观看| 亚洲男人天堂网一区| 成人国产av品久久久| 人成视频在线观看免费观看| 窝窝影院91人妻| 久久狼人影院| 国产成人一区二区三区免费视频网站| 热re99久久精品国产66热6| 狠狠婷婷综合久久久久久88av| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 国产成人欧美在线观看 | 高清视频免费观看一区二区| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 91国产中文字幕| 中文字幕精品免费在线观看视频| 国产精品一区二区在线观看99| 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| 国产精品98久久久久久宅男小说| 欧美日韩亚洲综合一区二区三区_| 91老司机精品| 久热这里只有精品99| 亚洲伊人久久精品综合| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站 | 18禁裸乳无遮挡动漫免费视频| 蜜桃国产av成人99| 亚洲一区二区三区欧美精品| 午夜91福利影院| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 老熟妇仑乱视频hdxx| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 99国产精品免费福利视频| 欧美日韩亚洲国产一区二区在线观看 | 国产成人精品久久二区二区免费| 亚洲精品美女久久久久99蜜臀| 老司机福利观看| 日韩欧美国产一区二区入口| 一区在线观看完整版| 手机成人av网站| 国产精品一区二区在线观看99| 9色porny在线观看| 国产精品国产av在线观看| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区视频在线观看免费 | 一级黄色大片毛片| av网站免费在线观看视频| 欧美乱码精品一区二区三区| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三| 99热网站在线观看| 国产深夜福利视频在线观看| 日本一区二区免费在线视频| 精品国产亚洲在线| 嫁个100分男人电影在线观看| 岛国在线观看网站| 男女之事视频高清在线观看| 夜夜骑夜夜射夜夜干| 99在线人妻在线中文字幕 | 侵犯人妻中文字幕一二三四区| 日日爽夜夜爽网站| 69精品国产乱码久久久| 丁香六月欧美| 一本久久精品| 少妇被粗大的猛进出69影院| 69精品国产乱码久久久| 9191精品国产免费久久| 精品视频人人做人人爽| 精品一区二区三区四区五区乱码| 在线观看66精品国产| 午夜福利在线免费观看网站| 黄片播放在线免费| av欧美777| 99热国产这里只有精品6| 国产精品一区二区精品视频观看| 叶爱在线成人免费视频播放| 国产av国产精品国产| 80岁老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 国产av一区二区精品久久| 精品一品国产午夜福利视频| 日韩精品免费视频一区二区三区| 午夜免费成人在线视频| 美女福利国产在线| 国产av国产精品国产| 午夜免费鲁丝| bbb黄色大片| 精品熟女少妇八av免费久了| 久久精品人人爽人人爽视色| 久久毛片免费看一区二区三区| 欧美黑人精品巨大| 久久亚洲精品不卡| 国产免费现黄频在线看| 高清毛片免费观看视频网站 | 国产精品亚洲一级av第二区| 亚洲成人免费av在线播放| 国产亚洲欧美在线一区二区| 欧美大码av| 日韩精品免费视频一区二区三区| 大片电影免费在线观看免费| 搡老岳熟女国产| 黄色片一级片一级黄色片| 精品国产超薄肉色丝袜足j| 亚洲av欧美aⅴ国产| 一本久久精品| 免费观看av网站的网址| 一本久久精品| 免费女性裸体啪啪无遮挡网站| 99九九在线精品视频| 日韩三级视频一区二区三区| 脱女人内裤的视频| 亚洲精品美女久久av网站| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看 | 午夜成年电影在线免费观看| 久久精品熟女亚洲av麻豆精品| 久久久久久亚洲精品国产蜜桃av| 男女午夜视频在线观看| 99热网站在线观看| 国产野战对白在线观看| 一本—道久久a久久精品蜜桃钙片| 日韩制服丝袜自拍偷拍| 日韩有码中文字幕| 狠狠精品人妻久久久久久综合| 久久午夜亚洲精品久久| 另类精品久久| 如日韩欧美国产精品一区二区三区| 在线观看66精品国产| a级毛片在线看网站| 美女国产高潮福利片在线看| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 最新的欧美精品一区二区| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 色老头精品视频在线观看| 精品免费久久久久久久清纯 | 丁香六月天网| 欧美一级毛片孕妇| 日韩精品免费视频一区二区三区| 色尼玛亚洲综合影院| 久久精品国产亚洲av香蕉五月 | 午夜激情av网站| 亚洲黑人精品在线| av免费在线观看网站| 男女免费视频国产| 777久久人妻少妇嫩草av网站| cao死你这个sao货| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 中文亚洲av片在线观看爽 | 丰满人妻熟妇乱又伦精品不卡| 国产又爽黄色视频| 国产亚洲午夜精品一区二区久久| 两个人免费观看高清视频| 国产男女内射视频| 人妻 亚洲 视频| 大片电影免费在线观看免费| 国产精品久久久人人做人人爽| 午夜成年电影在线免费观看| 久久中文看片网| 久久午夜综合久久蜜桃| 捣出白浆h1v1| 91精品国产国语对白视频| 黄色视频不卡| 99精品在免费线老司机午夜| 国产一区二区三区在线臀色熟女 | 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久av网站| 国精品久久久久久国模美| 五月开心婷婷网| 啦啦啦视频在线资源免费观看| 国产三级黄色录像| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕一级| 在线十欧美十亚洲十日本专区| 亚洲av第一区精品v没综合| 欧美乱码精品一区二区三区| 亚洲九九香蕉| 夜夜骑夜夜射夜夜干| 国产91精品成人一区二区三区 | 日韩免费高清中文字幕av| 亚洲 国产 在线| 精品免费久久久久久久清纯 | 欧美日韩视频精品一区| 高清在线国产一区| 757午夜福利合集在线观看| 久久久欧美国产精品| 69精品国产乱码久久久| 久久免费观看电影| av视频免费观看在线观看| 免费看十八禁软件| 国产精品一区二区在线不卡| 人人妻,人人澡人人爽秒播| 久久av网站| 国产单亲对白刺激| 变态另类成人亚洲欧美熟女 | 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| 少妇精品久久久久久久| 国产色视频综合| 色综合婷婷激情| 精品亚洲成a人片在线观看| 国产精品久久久久久人妻精品电影 | 日本av免费视频播放| 人人澡人人妻人| 亚洲全国av大片| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| 精品一区二区三卡| 制服诱惑二区| 夜夜骑夜夜射夜夜干| 99国产精品免费福利视频| 人妻久久中文字幕网| 欧美 日韩 精品 国产| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| 丁香六月天网| 日本av免费视频播放| 久久久久网色| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 国产精品久久久av美女十八| 精品国产乱码久久久久久小说| 侵犯人妻中文字幕一二三四区| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 女人久久www免费人成看片| 亚洲午夜理论影院| 纵有疾风起免费观看全集完整版| 欧美日韩国产mv在线观看视频| 蜜桃在线观看..| 在线天堂中文资源库| 免费看十八禁软件| 中文字幕av电影在线播放| 人妻 亚洲 视频| 十分钟在线观看高清视频www| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 激情在线观看视频在线高清 | 国产91精品成人一区二区三区 | 日韩视频在线欧美| 欧美日韩一级在线毛片| 免费一级毛片在线播放高清视频 | 欧美精品啪啪一区二区三区| 亚洲久久久国产精品| 法律面前人人平等表现在哪些方面| 日韩免费av在线播放| 18在线观看网站| 色播在线永久视频| 老汉色av国产亚洲站长工具| 亚洲国产中文字幕在线视频| 极品少妇高潮喷水抽搐| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 国产欧美日韩精品亚洲av| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 精品国产乱子伦一区二区三区| 自线自在国产av| 成人手机av| 欧美精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 成人精品一区二区免费| 亚洲第一青青草原| 夜夜夜夜夜久久久久| 在线亚洲精品国产二区图片欧美| 亚洲五月婷婷丁香| 欧美精品啪啪一区二区三区| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 久久午夜亚洲精品久久| 国产日韩欧美视频二区| 汤姆久久久久久久影院中文字幕| 一级a爱视频在线免费观看| 人成视频在线观看免费观看| av不卡在线播放| 久久久久久久精品吃奶| 超碰成人久久| 国产亚洲精品久久久久5区| 热re99久久国产66热| 99re6热这里在线精品视频| www.精华液| 亚洲少妇的诱惑av| 精品国产乱码久久久久久小说| 老汉色∧v一级毛片| 精品免费久久久久久久清纯 | 久久久久精品国产欧美久久久| 久久久国产欧美日韩av| 夜夜夜夜夜久久久久| 悠悠久久av| 成人手机av| 999久久久精品免费观看国产| 亚洲av国产av综合av卡| 国产精品亚洲一级av第二区| 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩视频一区二区在线观看| 91老司机精品| 亚洲第一青青草原| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 国产精品成人在线| 操美女的视频在线观看| 久久久精品区二区三区| 精品福利永久在线观看| 国产成+人综合+亚洲专区| 男女之事视频高清在线观看| 精品久久久精品久久久| 丝袜美腿诱惑在线| 色综合婷婷激情| 视频区欧美日本亚洲| 国产99久久九九免费精品| kizo精华| 多毛熟女@视频| 天天影视国产精品| 十分钟在线观看高清视频www| 极品少妇高潮喷水抽搐| 超色免费av| 午夜两性在线视频| 国产成人精品久久二区二区91| 成人永久免费在线观看视频 | 国产精品电影一区二区三区 | 亚洲中文av在线| 美女福利国产在线| 欧美激情极品国产一区二区三区| 美女扒开内裤让男人捅视频| 久久精品国产a三级三级三级| 麻豆国产av国片精品| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 国产精品久久久久成人av| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美在线精品| 亚洲综合色网址| 久热这里只有精品99| 欧美精品av麻豆av| 日韩欧美三级三区| 欧美大码av| 国产在线视频一区二区| 国产99久久九九免费精品| 亚洲av电影在线进入| 美国免费a级毛片| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女 | 国产三级黄色录像| 亚洲中文日韩欧美视频| videosex国产| 国产免费视频播放在线视频| 国产在线免费精品| 亚洲av片天天在线观看| 久久中文字幕一级| 老司机在亚洲福利影院| 青草久久国产| 精品国产亚洲在线| 后天国语完整版免费观看| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器 | 欧美在线黄色| 欧美一级毛片孕妇| 国产又爽黄色视频| 大码成人一级视频| avwww免费| 91老司机精品| 90打野战视频偷拍视频| 老司机深夜福利视频在线观看| 免费观看av网站的网址| 无限看片的www在线观看| 最近最新免费中文字幕在线| 久久久久久免费高清国产稀缺| av福利片在线| 丁香六月天网| 首页视频小说图片口味搜索| 国产淫语在线视频| 国产精品一区二区在线不卡| www.999成人在线观看| 中文字幕av电影在线播放| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 一级片免费观看大全| 精品国产超薄肉色丝袜足j|