• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cu(Ⅱ),Ni(Ⅱ),Co(Ⅱ),Mn(Ⅱ),Zn(Ⅱ)和Cd(Ⅱ)的乙基3-(2-氨硫化亞肼基)-2-(羥胺基)丁烯酸酯配合物:合成、表征和細(xì)胞毒性

    2014-07-14 05:19:42RamadanElBahnasawyAbdouElTablMohamadShakdofaNoranAbdElWahed埃及
    關(guān)鍵詞:酸酯胺基丁烯

    Ramadan M El BahnasawyAbdou S El-Tabl*,Mohamad M E Shakdofa Noran M Abd El-Wahed(埃及)

    (1Chemistry Department,Faculty of Science,Menoufia University,Shebin El-Kom,Egypt)

    (2Chemistry Department,Faculty of Science and Arts,Khulais,King Abdulaziz University)Saudi Arabia)

    (3Inorganic Chemistry Department,National Research Center,P.O.12622 Dokki,Cairo,Egypt)

    0 Introduction

    Oximes[1-3]and thiosemicarbazones[4-6]are the two important classes of reagents considerable interest because of their chemistry and potentially biological activities.Thiosemicarbazones have a wide range of biological activities such as antitumor[7],antimalarial[8],antileukemic properties[9], antiviral activity[10],antibacterial[11]and antifertility property[12]because of theirreduction capability.The thiosemicarbazone moiety is planar and adopts an extended (E)conformation.This planar conformation is due to the extensive electron delocalization throughout the moiety.In general, the N, S-donor ligands of thiosemicarbazones are attributed to their ability to form metal chelates[13].Oxime metal complexes are biologically active and have been reported to possess semiconducting properties[14].Also,oximes reveal some interesting features including:

    ⅰ-The ability of the oximato group to stabilize higher oxidation states of metals.

    ⅱ-The development of bioinorganic models.

    ⅲ-The design of selective receptors for Ca(Ⅱ) and Ba(Ⅱ) ions.

    ⅳ-The development of new oxygen activation catalysis.

    ⅴ-The mechanistic study of corrosion inhibition on iron surfaces.

    All these stimulate our interestin metal complexes of oxime ligands.It should be of interest to design,synthesize and use a new type of reagent containing both functional groups viz oxime and thiosemicarbazone.Oxime-Thiosemicarbazone may be considered as functional groups (Two-in-one)viz Oxime and thiosemicarbazone.

    1 Experimental

    1.1 Instrumentation

    All chemicals and solvents were reagent grade commercial materials and used as received.C,H,N,S and Cl analyses were performed at the Analytical Unit of Cairo University,Egypt.Standard methods were used for determining the metal (Ⅱ) ions[15].All complexes were dried in vacuo over P2O5.IR spectra(as KBr pellets)and as Nujol mull between CsBr prisms were recorded on a Perkin-Elmer581 spectrophotometer (4 000 ~200 cm-1).Electronic spectra (qualitative)in the 200~900 nm range were recorded on a Perkin-Elmer 550 spectrophotometer Magnetic susceptibilities were measured at 25℃by the Gouy method using mercuric tetrathiocyanato cobalt(Ⅱ) as the magnetic standard.The magnetic susceptibilities were calculated from the equation μeff=where χMCorris the corrected molar susceptibility.Diama gnetic corrections were made using pascal′s constant[16].Molar conductance were measured on a tacussel type CD6NG conductivity bridge using 10-3mol·L-1DMF.DTA analysis was carried out in air using a Schimadzu DT-30 thermal analyzer.1HNMR spectra (ligand and its Zn(Ⅱ)complex)were obtained with Bruker Avance 200 MHz spectrometer using Me4Si as internal standard.Mass spectra(ligand and its Zn(Ⅱ)complex)were recorded using JEULJMSAX-500 mass spectrometer provided with data system.The ESR spectra ofsolid complexes atroom temperature were recorded using a Varian E-109 spectrometer and DPPH (2,2-diphenyl-1-picrylhydrazyl)was used as the marker.The TLC of the ligand and its complexes confirmed their purity.

    1.2 Preparation of the ligand The ligand,ethyl-3-(2-carbamothioylhydrazono)-

    2-(hydroxyimino)butanoate was prepared by adding dropwise the suspension of thiosemicarbazide(3.14 g,0.034 mol)in hot 50 cm3ethanol to the solution of ethyl 2-(hydroxyimino)-3-oxobutanoate (5.0 g,0.034 mol)in 50 cm3ethanol(Scheme 1).The mixture was refluxed for 2 h with stirring,then left to cool at room temperature.The yellow precipitate was filtered off,washed with ethanol,dried and recrystallized from ethanol(Scheme 1).Elemental microanalyses.Calcd.for ligand (H2L)=C19H15N5O2(FW=232.26):C,36.20;H,5.21;N,24.12,S.13.81%.Found:C,35.78,H,5.20,N,23.80;S,13.51%.IR data:3 600,3 400,3 250,1 740,1 626,1 612,1 100,1 050,1 018,875 cm-1assigned to ν(OH,NH2,NH,C=O,C=N,N=C-O,N-OH,C=S).1H NMR (characterization(DMSO-d6,200 MHz):=12.90(s,1H,OH(15)),7.23(s,1H,NH(4)),2.86(s,2H,NH2(1)),3.11(m,2H,CH2(13)),3.11(s,3H,CH3(7)),1.87(T,3H,CH3(14)),Yield:75%,Color:yellow.The mass spectrum of the ligand(H2L)reveals molecular ion peak at m/z=232.

    1.3 Preparation of metal complexes(2~4),(6),(7),(9-13),(15),(16-20)

    A filtered ethanolic (50 cm3)of 0.01 mol metal salts Cu(CH3COO)2·H2O(1.99 g)complex(2),CuCl2(1.70 g)complex(3),Cu(NO3)2·3H2O(2.42 g)complex(4),NiCl2·4H2O(2.38 g)complex(6),Ni(CH3COO)2·4H2O (2.49.g)complex(7),Ni(NO3)2·6H2O (2.90 g)complex(9),Co(CH3COO)2·4H2O(2.49 g)complex(10),Co(NO3)2·6H2O (2.91 g)complex (11),CoCl2·6H2O(2.38 g)complex(12),MnCl2·4H2O (1.97 g)complex(13),Mn(CH3COO)2·4H2O (2.45 g)complex (15),Zn(CH3COO)2·2H2O(2.19 g),complex(16),Zn(NO3)2·6H2O(2.97 g)complex(17),ZnCl2(1.36 g)complex(18),Cd(CH3COO)2(3.19 g)complex(19),CdCl2(1.83 g)complex(20)were added to an ethanolic(50 cm3)of the ligand(1)(2.32 g,0.01 mol)in presence or absence of 3 mL triethyl amine.The mixtures were refluxed with stirring for 3 h.The colored complexes were filtered off,washed several times with ethanol and dried under vacuum over P2O5.The analytical and physical data are given in Table 1.

    1.4 Preparation of metal complexes(5),(8),(14)

    A filtered ethanolic(50 cm3)of 0.01 mol metal salts Cu(CH3COO)2·H2O(1.99 g)complex(5),Ni(CH3COO)2·4H2O(2.49.g)complex(8),Mn(CH3COO)2·4H2O(2.45 g)complex(14),were added to an ethanolic(50 cm3)of the ligand (1)(4.64 g,0.02 mol)in presence or absence of 3 mL triethyl amine.The mixtures were refluxed with stirring for 3 h.The colored complexes were filtered off,washed several times with ethanol and dried under vacuum over P2O5.The analytical and physical data are given in Table 1.

    1.5 Biological studies

    The cytotoxicity activity was measured in-vitro for the synthesized complexes according to Sulfo-Rhodamine-B-stain (SRB)assay using the published methods against HePG-2 and MCF-7 tumoral cell lines[17].Cells were plated in 96-multiwell plate(104cells/well)for24 h before treatmentwith the complexes to allow attachment of cell to the wall of the plate.Different concentrations of the complexes in DMSO (12.5,25 and 50 μg·mL-1)were added to the cellmonolayer triplicate.Monolayer cells were incubated with the complexes for 48 h at 37°C under atmosphere of 5%CO2.After 48 h,cells were fixed,washed and stained with Sulfo-Rhodamine-B-stain.Excess stain was washed with acetic acid and attached stain was recovered with Tris EDTA buffer(10 mmol·L-1Tris HCl+1 mmol·L-1Disodium EDTA,pH value of 7.5 ~8).Color intensity was measured by ELISA reader.The relation between surviving fraction and complex concentration is plotted to get the survival curve of each tumor cell line after the specified complex treatment.

    Scheme 1 Synthesis of the ligand H2L(1)

    Table 1 Analytical and physical characteristics for the ligand(H2L)and its complexes

    2 Results ad discussion

    The analytical and physical data(Tables 1 and 5),and spectral data (Tables 2,3 and 4)are compatible with the proposed structures(Figures 1,2 and 3).The complexes are colored,stable in air,insoluble in waterand partially soluble in organic solvents as CHCl3but soluble in DMF and DMSO.Many attempts have been made to grow single crystal but unfortunately it was failed.

    Table 2 IR spectral(cm-1)assignment for the ligand H2L and their metal complexes

    Table 3 Electronic absorption spectra and magnetic moments for ligand and its complexes

    Table 4 ESR parameter for copper(Ⅱ),cobalt(Ⅱ) and manganese(Ⅱ) complexes

    2.1 Mass spectra of the ligand(1)and its Zn(Ⅱ)complex(17)

    The mass spectrum of the ligand (H2L),(1)reveals the molecular ion peak at m/z=232 which is coincidentwith the formula weight232.26 and supports the identity of the structure. The fragmentation pattern splits a parent ion peak at m/z=166 corresponding to C3H6N3S while the fragments at m/z=45 and 104 corresponding to C2H5O and C3H6NO3,respectively.However Zn(Ⅱ)complex(17)shows m/z=493 coincident with the formula weight 493.74 a.m.u.The fragments appear at m/z of 73,116 and 128 are due to C3H5O,C3H6N3S and C4H6N3S,respectively.

    Fig.1 Suggested structure of the Cu(Ⅱ),Ni(Ⅱ),Co(Ⅱ),Mn(Ⅱ) and Zn(Ⅱ) complexes(2),(3),(4),(9),(10),(15)and(18)

    Fig.2 Suggested structure of the Ni(Ⅱ),complexes(6),(7),and(8)

    Fig.3 Suggested structure of the Co(Ⅱ),Mn(Ⅱ),Zn(Ⅱ) and Cd(Ⅱ) complexes(11),(12),(13),(14),(16),(17),(19)and(20)

    2.2 Conductivity measurements

    The molar conductance values of the complexes in DMF (10-3mol·L-1)lie in the 11.91~19.8 S·cm2·mol-1range (Table 1),indicating thatallthe complexes are not electrolytes[18].This confirms that the anion is coordinated to the metal ion.

    2.3 IR spectra

    The mode of bonding between the ligand and the metal ion can be revealed by comparing the IR spectra of the solid complexes with that of the ligand.The IR spectral data of the ligand and its metal complexes are presented in Table 2.In principle the ligand can exhibit thione-thiol tautomerism and it contains a thioamide-NH-C=S functional group.The ν(S-H)band at 2 565 cm-1is absent in the IR spectrum of the ligand but ν(N-H)band at 3 250 cm-1is present,indicating that the ligand remains as the thione tautomer (Scheme 1)in the solid state.The ligand shows two bands in the 3 650~3 300 and 3 280~2 800 cm-1ranges,commensurate the presence of two types of intra-and inter-molecular hydrogen bonds of OH,NH and NH2groups with imine,thione or carbonyl group[19],thus the higher frequency band is associated with a weaker hydrogen bond and the lower frequency band with a strong hydrogen bond.The medium band at 3 250 cm-1is assigned to ν(NH)group[18-19].The ν(NH)frequency of NH2group in the free ligand appears at 3 400 cm-1and not affected by complexation,indicating that,the terminal NH2group is not involved in the coordination to the metal ion[4].The band characteristic to carbonyl group ν(C=O)appears at 1 740 cm-1,identical to that of the noncoordinated carbonyl group in metal complexes of isonitrosoactylacetone and its derivatives[20-21]and more significantly to the related Schiffbase N,N-diisonitrosoacetylacetonemine 1,2-ethylenediamine and its metal complexes[21-22].However,the ν(C=N)imine and ν(C=N)oxime are at 1 626 and 1 612 cm-1.The oxime bands at 1 100,1 050 and 1 018 cm-1are assigned to ν(NO)[23-24]and ν(OH)of oxime group appears at 3 600 cm-1[23-24].Strong bands appear in the 3140 ~2890 cm-1range,are attributed to the ν(CH)vibrations.The band at 875 cm-1is attributed to ν(C=S)vibration[4,25].The mode of bonding between the ligand and the metalion can be revealed by comparing the IR spectra of the solid complexes with that of the ligand.By comparing the IR spectra of the complexes (2)~(20)with that of the free ligand,it is found thatthe position ofν(C=N)band of thiosemicarbazone is shifted 5~31 cm-1towards lower wavenumber (Table 2)in the complexes,indicating coordination through nitrogen of thiosemicarbazide moiety[4,25].This is also confirmed by the appearance of new bands in the 615~425 cm-1range,this has been assigned to the ν (M-N)[22].Strong bands found around 1 100 cm-1in the ligand and its metal complexes is due to ν(N-N)group of the thiosemicarbazone.The position of this band is slightly shifted towards higher wavenumber in the spectra of the complexes;it is due to the increase in the bond strength,which again confirms the coordination via the azomethane nitrogen.The band due to ν(C=S)appears in the 860~790 cm-1range in the complexes shifted to lower wavenumber,indicating that thione sulphur coordinates to the metal ion[22].Complexes(16)and(19)show bands at 750 and 730 cm-1which can be assigned to ν(C-S)[4,25].N-coordination of the oximato group is indicated by ν(C=N)oxime which appears in the 1 610~1 550 cm-1range,the shift of this band to lower wavenumber indicating coordination of nitrogen of oximino group to the metal ion[23-24].Whereas,the ν(C=O)appears in the 1 740 ~1 650 cm-1range.These assignments are consistentwith those reported forthe metal(Ⅱ)complexes of the dioximato ligands[24].Also,the complexes show ν(N-O)bands in the 1 245 ~1 100 and 1 090~1 005 cm-1ranges(Table 2),indicating N-coordination of the oximato group[20-21].Characteristic bands in the 640~540,615~425 and 385~320 cm-1ranges observed in the complexes may be tentatively assigned to ν(M-O), ν(M-N)and ν(M-S)vibrations,respectively[24].The strong broad bands in the 3 620~3 090 cm-1are due to hydrated or coordinated water molecules[18],however,broad bands in the 3 650~3 020 and 3 200~2 500 cm-1ranges,are corresponding to intra-and intermolecular hydrogen bonding[19,26].Complexes(2),(7),(10),(14),(15),(16)and(19)show bands in the 1 570~1 538 and 1 465~ 1 370 cm-1ranges,assigned to the symmetric and asymmetric stretches of the COO group with a ν value[ν(COO)asyν(COO)sy]more than 100 cm-1,which is consistent with the monodentate coordination of carboxylate oxygen[19,27].Complexes(4),(9),(11)and(17)show bands at 1 330,1 260,860 and 750,1 380,1 290,765 and 725,1 390,1 310,880 and 775 and 1 380,1 315,870 and 760 cm-1,respectively which are assigned to the monodentate mode of the nitrate group[24,26].However,complexes(3),(12),(13),(18)and(20)show bands at 370,360,430,375 and 410 cm-1are due to ν(M-Cl).

    2.4 1H-NMR spectra of ligand(1)and its Zn(Ⅱ)complex(17)

    The1H-NMR spectrum of the ligand (H2L)in DMSO-d6shows signals consistent with the proposed structure (Scheme 1).The peaks observed at 7.23(s,1H,NH(4)),2.86 (s,2H,NH2(1))are assigned to protons of NH and NH2groups[19-21].The signal appeared at 12.90 (s,1H,OH(15))is assigned to hydroxyl oxime proton[23].However the signals at 3.11(m,2H,CH2(13)),1.87(T,3H,CH3(14)),2.33(s,3H,CH3(7))are due to ethoxy and methyl groups respectively[18-19].Zn (Ⅱ) complex (20)shows oxime proton at 12.21 (s,1H,OH),which appears at lower valueindicatingcoordination ofnitrogen oximato group to Zn(Ⅱ) ion.The protons of NH and NH2groups appear at 7.11(s,1H,NH(4)),2.75(s,2H,NH2(1)),respectively.However the signals at 3.11(m,2H,CH2(13)),2.01(T,3H,CH3(14)),3.31(s,3H,CH3(7)),are due to ethoxy and methyl groups,respectively[18-19].

    2.5 Magnetic moments

    The magnetic moments of metal(Ⅱ)complexes are shown in Table 3.Copper(Ⅱ) complexes (2),(3),(4)and (5)show values in the 1.69 ~1.65 B.M.range corresponding to one unpaired electron in an octahedral geometry around the copper(Ⅱ) ion[19,28].These values are below the spin only value (1.73 B.M.),indicating that spin-exchange interactions take place between the copper(Ⅱ)ions through hydrogen bonding.Nickel(Ⅱ) complexes(7),(8),and (9)show values 3.11,2.98 and 3.18 B.M.,confirming T2g6lg2electronic configuration with two unpaired electrons in an octahedralnickel(Ⅱ) complexes[21,29],however,complex(6)shows a diamagnetic value in accordance with the square planar nickel(Ⅱ) complexes.Manganese(Ⅱ)complexes (13),(14)and (15)show values 5.6,5.32 and 5.82 B.M.indicating high spin octahedral geometry[18].Cobalt(Ⅱ) complexes(10),(11)and (12)show values 4.75,4.92,4.73 and 4.90 B.M.,respectively,indicating high spin octahedral structure[19,25,30].Zinc(Ⅱ) complexes (16)~(18)and cadmium(Ⅱ)complexes(19)and(20)show diamagnetic value.

    2.6 Electronic spectra

    The electronic spectra of the ligand (1)and its metal complexes are summarized in Table 3.The spectrum of the ligand in DMF solution exhibits three bands at 263 nm(ε=0.34×10-2L·mol-1·cm-1),298 nm(ε=0.38×10-2L·mol-1·cm-1)and 340 nm(ε=0.35×10-2L·mol-1·cm-1).The first one may be assigned to π→π* transition which is nearly unchanged on complexation,whereas the second and third bands are assigned to the n→π*and charge transfer transitions of the azomethine,iminoxime and carbonyl groups[31-33].These bands are shifted to lower energy on complex formation,indicating participation of these groups in coordination with the metal ions or hydrogen bonding formation.In addition,the spectra of the complexes show new bands in 405~395 nm range,which may be attributed to the charge transfer transition[21].The spectra of copper(Ⅱ)complexes(2),(3),(4)and(5)show bands in 265~260,295~290 and 320~310 nm ranges,these bands are within the ligand,however,the other bands observed in 645~625,590~570 and 495~465 nm ranges are assigned to2B→2B2g,2B2g→2Egand2B1B→2A1gtransitions respectively,indicating tetragonal distorted octahedral geometry[34-35].Nickel(Ⅱ)complexes(7),(8)and(9)show bands at 770,620 and 550,780,650 and 560,775,650 and 535 nm,respectively,corresponding to2A2g(F)→3T2g(F),(ν1),3A2g(F)→3T1g(F),(ν2),3A2g(F)→3T1g(P),(ν3),transitions,indicating octahedral nickel(Ⅱ) complexes[36-37].The ν2/ν1ratios are 1.24,1.20 and 1.19,respectively,which are less than the usual range of 1.5~1.75,indicating distorted octahedral nickel(Ⅱ)complexes[36-37],however,complex (6)shows bands at 260,360,405,450 and 520 nm,the first two bands are within the ligand and the other bands are due to1A1g→1Eg,1A1g→1A1gand1A1g→1A2gtransitions respectively,consistent with square planar geometry[20-21].Cobalt(Ⅱ) complexes(10),(11)and(12)show bands in 268~260,310~280,330,460~450,590~575 and 650~610 nm ranges,respectively,the first band is within the ligand and the other bands are assigned to4T1g(F)→4T2g(P),(ν3),4T1g(F)→4A2g(F),(ν2)and4T1g(F)→4T2g(F),(ν1)transitions respectively,corresponding to cobalt(Ⅱ) octahedral structure[31].The lower value of ν2/ν1at 1.28 1.22,1.17 and 1.28 indicates distorted octahedral Co(Ⅱ) complexes[18,30].Manganese(Ⅱ)complexes (13),(14)and (15)show bands in 265~262,290~285,310~320,450~400,580~560 and 635~615 nm,ranges,the first three bands are within the ligand and the other bands are corresponding to6A1g→4Eg,6A1g→4T2gand6A1g→4T1gtransitions which are compatible to an octahedral geometry around Mn (Ⅱ) ion[38].However,zinc(Ⅱ)complexes(16)~(18)and cadmium(Ⅱ),complexes(19)and(20)show bands in 270~260,330~270 and 400~395 nm ranges,indicating intraligand transitions within the ligand[39].

    2.7 Electrons spin resonance(ESR)

    The ESR spectral data (Table 4)at room temperature for solid copper(Ⅱ)complexes(2),(3),(4)and (5)show the axial type,characteristic of a monomer,d9,configuration with a dx2-y2ground state,which is the most common for copper(Ⅱ)complexes[40].The spectra of these complexes show g∥>g⊥>2.04,indicating a tetragonal distortion corresponding to elongation along the four fold symmetry axis z[36,41-42].The g-values are related by the expression

    G=(g∥-2)/(g⊥-2)[43].If G >4.0,then the local tetragonal axes are aligned parallel or only slightly misaligned,ifG <4.0,the significantexchange coupling is present.The complexes show G value<4.0(Table 4)indicating spin exchange interactions through hydrogen bonding.Also,these complexes show g∥≤2.3,suggesting considerable covalent bond character around the copper(Ⅱ) ion[43-44].Also,the inplane-covalence parameter α2(Cu)was calculated by

    The calculated values(Table 4)suggest covalent bond character[36,45-46].The g∥/A∥is taken as an indication for the stereochemistry of the copper(Ⅱ)complexes.Addison[47]has suggested that this ratio may be an empirical indication of the stereochemistry of copper(Ⅱ) complex.The value g∥/A∥quotient in the 105 ~135 cm-1range is expected for copper(Ⅱ)complexes within perfectly square based geometry and those higher than 150 cm-1for tetragonally distorted octahedralcomplexes.The valuesforcopper (Ⅱ)complexes(2),(3),(4)and(5)are within the range expected for tetragonally distorted complexes.For copper(Ⅱ)complexes with2B1ground state,the gvalues can be related to the parallel (K∥)and perpendicular (K⊥)componentsofthe orbital reduction factor(K)as follows[34-45].

    where λois the spin orbit coupling of free copper ion, ΔExyand ΔExzare the electronic transition energies of2B1→2B2and2B1→2E,respectively.For the purpose ofcalculation,itis assumed thatthe maximum in the band corresponds to ΔExy,and ΔExzcan be taken from the wavelength of these bands.From the above relations,the orbital reduction factors(K∥,K⊥and K),a measure of covalency,can be calculated.For an ionic environment K=1,and for a covalent environment K<1;the lower the value of K(Table 4)shows considerable covalent bond character.The in-plane and out-of-plane π-bonding coefficients(β12and β2)are dependent upon the values of ΔExyand ΔExzin the following equations[44]:

    In this work,the complexes show β12values(Table 4),indicating a moderate degree of covalent character in the in-plane π-bonding,while β2(Table 4),indicating ionic character in the out-of-plane πbonding except that complex (5)shows covalent character[48-49].It is possible to calculate the approximate orbital population for d orbital using the following equations[40].

    where 2B°is the calculated dipolar coupling for unit occupancy of the d orbital.When the data of complexes are analyzed,the results suggest an orbital population close to 67.6% ~59%range of d-orbital spin density (T able 4)clearly,the orbit of the unpaired electron is a dx2-y2orbit[19].The ESR spectra for manganese(Ⅱ) complexes (13)~(15)and cobalt(Ⅱ)complexes (10)~(12)show isotropic type indicating octahedral geometry around Mn(Ⅱ) and Co(Ⅱ) ions,respectively[50].

    2.8 Thermal analysis(DTA)

    Since the IR spectra indicate the presence of water molecules,thermal analysis (Table 5)was carried out to ascertain their nature.The DTA curves in the temperature 27~800 ℃ range for complexes(2)~(20)show that the complexes are thermally stable up to 60℃.Also,the results show that,the complexes loose hydrated water molecules in the 60~90 ℃ range,this process is accompanied by an endothermic peak.The coordinated water molecules are eliminated at relatively highertemperature than those ofthe hydrated water molecules (135~265 ℃)(Table 5),which are accompanied by endothermic peaks[33,49,51-52].The removal of acetate ion as CH3COOH molecule accompanied by an endothermic peak is observed for complexes(2),(10)and(19)in the 300~352 ℃ range.Complexes(3),(12),(18)and(20)lose chloride ion as HCl with endothermic peak in the 265~325 ℃ range.However,complexes(4),(9),(11)and(17)lose nitrate group as HNO3with endothermic peak in the 260~350 ℃ range.The complexes show an endothermic peak within 200~340 ℃ range is due to melting of the complexes.The complexes show exothermic peaks within 350~670 ℃ range (Table 5)corresponding to oxidative thermaldecompositions,which proceeds slowly with a final residue,leaving metal oxides[52].The thermal decomposition of complex (2)can be represented as follows:

    Table 5 Thermal analysis(DTA)of complexes

    Continued Table 5

    2.9 In-vitro cytotoxicity

    The in-vitro cytotoxicity properties of the oxime thiosemicarbazone ligand (1)and its metal complexes(2),(3),(10),(13),(16)and (19)were evaluated against MCF-7 and HePG-2 tumoral cell lines.The ligand (1)shows a weak inhibition effect at ranges of concentration used,however,the complexes show moderate and almost similar behavior.This property may be due to the same coordination sites (N,O and S donor atoms)and the same geometry(octahedral)around the metal(Ⅱ) ion.The data indicate that the surviving fraction ratio against MCF-7 or HePG-tumor celllines increases with the increase ofthe concentration.Also,the complexesshow a high potency around 80%inhibition at 50 μg·mL-1against MCF-7,or HePG-2 compared with standard drugs(Tamoxifen and Sorafenib).It seems that the change in the anion and the nature of the metal ion has effect on the biological behavior in complexes,which could be explained by Tweedy′s chelation theory[53-58].To understand the mechanism involved in these processes.Copper(Ⅱ) complexes would cause intracellular generation of hydroxyl radical OH from H2O2produced during normal cellular activities by the reduction of Cu(Ⅱ) to Cu(Ⅰ) ion leading to growth inhibition on tumor cell[59].The decomposition of H2O2in the presence of Cu(Ⅱ)complex may be represented as follows[60].

    Moreover,Gaetke and Chow[61]reported that copper facilitated oxidated tissue injury through a free-radical mediated pathway analogous to the Fenton reaction.By applying the ESR-trapping technique,evidence for copper-mediated hydroxyl radical formation in-vivo has been obtained[61].Radicals are

    produced through a Fenton-type reaction as follows:

    where L=organic ligand

    Scheme 2 Suggested mechanism for OH radicals attack on DNA sugars and bases

    Fig.4 Cytotoxicity of standard,ligand(1)and complexes(2),(3),(10),(13),(16)and(19)against HEPG-2 liver cell

    Fig.5 Cytotoxicity of standard,ligand(1)and complexes(2),(3),(10),(13),(16)and(19)against MCF-7 cell

    Also,copper could act as a double-edged sword by inducing DNA damage and also by inhibiting their repair[62].The OH radicals react with DNA sugars and bases,and the most significant and well-characterized OH reactions are hydrogen atom abstraction from the C4on the deoxyribose unit to yield sugar radicals with subsequentβ-elimination (Scheme 2).By this mechanism,strand breakage occurs as well as the release of the free bases.Another form of attack on the DNA bases is by solvated electrons,probably via a similar reaction to those discussed below for the direct effects of radiation on DNA[62].

    The cytotoxicity of a standard drug,ligand and its complexes at the range of concentrations used against human HePG-2 cell lines and MCF-7 breast cancer are shown in Figures(4)and(5).

    3 Conclusions

    New copper(Ⅱ),nickel(Ⅱ),cobalt(Ⅱ),manganese(Ⅱ),zinc(Ⅱ) and cadmium(Ⅱ) of ethyl-3-(2-carbamothioylhydrazono)-2-(hydroxyimino)butanoate have been designed, synthesized, and characterized using differentspectroscopic and analyticaltechniques.Comparison of the IR spectra of the ligand and their metal complexes indicate that the oxime acts as monobasic tridentate,monobasic bidentate,neutral bidentate,neutral tridentate,monobasic tetradentate or dibasic tetradentate bonded to the metal ions via azomethine nitrogen atom, nitrogen atom of thiosemicarbazide moiety,nitrogen atom of oxime moiety and thione sulphur atom forming octahedral or square planar geometry around the metal ions.The invitro cytotoxicity activities of the ligand and its complexes against the growth tumor cell lines MCF-7 and HePG-2 tumoral cell lines indicate that the ligand shows weak inhibition effect at ranges of concentration used,however,the complexes show moderate and almost similar behavior.This cytotoxicity activities may be due to the same coordination sites(N,O and S donor atoms)and the same geometry(octahedral)around the metal(Ⅱ)ion.

    [1]Kurtolu M,Dadelen M M,Torlu S.Trans.Met.Chem.,2006,31(3):382-388

    [2]Hsieh W Y,Liu S.Inorg.Chem.,2006,45:503-504

    [3]Aly M M,El-Said F A.J.Inorg.Nucl.Chem.,1981,43(2):287-292

    [4]El-Tabl A S,Ayad M I.Synth.React.Inorg.Met.Org.Chem.,2003,33:369-385

    [5]Kasuga N C,Onodera K,Nakano S,et al.J.Inorg.Biochem.,2006,100(7):1176-1186

    [6]Otero L,Folch C,Barriga G,et al.Spectrochem.Acta Part A,2008,70(3):519-523

    [7]Offiong O E,Martelli S.Trans.Met.Chem.,1997,22(3):263-269

    [8]Scovill J P,Klayman D L,Lambros C,et al.J.Med.Chem.,1984,27(11):87-91

    [9]Scovill J P,Klayman D L,Franchino C F.J.Med.Chem.,1983,25(10):1261-1264

    [10]Rasman J,Heinisch G,Holzer W,et al.J.Med.Chem.,1992,35(17):3288-3296

    [11]Dobek A S,Klayma D L,Dickson E T,et al.Antimicrob.Agents Chemother.1980,18(1):27-36

    [12]Shetti S N,Murty A S.Trans.Met.Chem.,1993,18(5):467-472

    [13]Reddy K H,Reddy D V.Anal.Lett.,1984,17(11):1275-1291

    [14]?zcan E,Karapinar E,Demirtas B.Trans.Met.Chem.,2002,27(5):557-561

    [15]Vogel AI.A Text Book of Quantitative Inorganic Analyses.2nd Ed.,London:Longman,1951.

    [16]Lewis J,Wilkins R G.Modern Coordination Chemistry.New York:Interscience,1960:403

    [17]Skehan P,Storeng R.J.Natl.Cancer Inst.,1990,82:1107-1112

    [18]Geary W J.Coord.Chem.Rev.,1971,7:81-122

    [19]El-Tabl A S,El-Saied F A,Al-Hakim A N.Trans.Met.Chem.,2007,32(6):689-701

    [20]Aly M M,Imam S M.Monatsh.Chem.,1995,126(2):137-147

    [21]Aly M M,Baghlaf A O,Ganji N S.Polyhedron,1985,4(7):1301-1309

    [22]Aly M M,Al-Sharri N I.Trans.Met.Chem.,1998,23(4):361-369

    [23]Plass W,El-Tabl A S,Pohmann A.J.Coord.Chem.,2009,62(10):258-372

    [24]El-Tabl A S.Trans.Met.Chem.,2002,27(2):166-170

    [25]El-Tabl A S,Kashar T I,El-Bahnasawy R M,et al.Polish J.Chem.,1999,73(2):245-254

    [26]Nakamoto K.Infrared Spectra of Inorganic and Coordination compounds.New York:Wiley,1970.

    [27]Abu El-Reash G M,Ibrahim K M,Bekheit M M.Trans.Met.Chem.,1990,15(2):148-151

    [28]Youssef N S,Hegab K H.Synth.React.Inorg.Met.Org.Nano-Met.Chem.,2005,35(5):391-399

    [29]El-Tabl A S,El-Bahnasawy R M,Shakdofa M M E,et al.J.Chem.Res.,2010,49:88-91

    [30]Al-Hakimi A N,Shakdofa M M E,El-Seidy A M,et al.J.Korean.Chem.Soc.,2011,55(3):418-429

    [31]Dongli C,Handong J,Hongyun Z,et al.Polyhedron,1994,13(1):57-62

    [32]El-Motaleb A,Gaber M.Trans.Met.Chem.,1997,22(3):211-215

    [33]El-Tabl A S.J.Chem.Reas.,2002(11):529-531

    [34]Bao S Q,Lin L Z,Li W X,et al.Trans.Met.Chem.,1994,19(5):503-505

    [35]Sreeja P B,Kurup M R P,Kishore A C.Polyhedron,2004,23(4):575-581

    [36]Bigatto A B,Costa G,Galasso V,et al.Spectrochim.Acta,1970,26(9):1939-1949

    [37]Mohamed G G,Omar M M,Hindy A M M.Spectrochim.Acta,Part A,2005,62(4):1140-1150

    [38]Parihari R K,Patel R K,Patel R N.J.Ind.Chem.Soc.,2000,77:339-341

    [39]Krishna C H,Mahapatra C M,Dush K C.J.Inorg.Nucl.Chem.,1987,39:1253-1258

    [40]El-Tabl A S.Trans.Met.Chem.,1997,22(4):400-405

    [41]Lever A B P.Inorganic Electronic Spectroscopy.New York:Elsevier,1968:335

    [42]Figgs B N,Lewis J.Prog.Inorg.Chem.,1967,6:37-39

    [43]El-Tabl A S,Plass W,Buchnolz A,et al.J.Chem.Res.,2009:582-587

    [44]E-Tabl A S.Trans.Met.Chem.,1996,21(1):1-4

    [45]Procter I M,Hathaway B J,Nicholls P.J.Chem.Soc.A,1969:1678-1684

    [46]Kivelson D,Neiman R.J.Chem.Phys.,1961,35(1):149-155

    [47]El-Tabl A S,Shakdofa M M,El-Seidy A M A,et al.J.Korean Chem.Soc.,2010,55(1):19-27

    [48]Addison A W.Copper Coordination Chemistry:Biochemical,Inorganic Perspectives.New York:Adenine Press,1983.

    [49]Shauib N M,Elassar A Z,El-Dissovky A.Spectrochim.Acta,Part A,2006,63(3):714-722

    [50]Kuska H A,Rogers M T.Coordination Chemistry.Martell A E,Ed.New York:Van Nostrand Reinhold,1971.

    [51]Bhadbhade M M,Srinivas D.Inorg.Chem.,1993,32(24):5458-5466

    [52]El-Tabl A S.Bull.Korean Chem.Soc.,2004,25(12):1757-1763

    [53]El-Tabl A S,Abou-Sekkina M M.Polish J.Chem.,1999,73(12):1937-1953

    [54]Illan N A,Garcia A R,Moreno M,et al.J.Inorg.Biochem.,2005,99(8):1637-1645

    [55]Hall I H,Leem C C,Ibrahim G,et al.Appl.Oranomet.Chem.,1997,11(7):565-575

    [56]Feng G,Mareque-Rivas J C,Rosales R T,et al.J.Am.Chem.Soc.,2005,127(39):13470-13471

    [57]Mareque J C,Prabaharan R,Parsons S.Dalton Trans.,2004:1648-1655

    [58]Bauer-Siebenlist B,Meyer F,Farakas E,et al.J.Chem.Eur.,2005,11(15):4349-4360

    [59]Kadiiska M B,Mason R P.Spectrochim.Acta,Part A,2002,58(6):1227-1239

    [60]El-Boraey H A,El-Tabl A S.Polish J.Chem.,2003,77(12):1759-1776

    [61]Gaetke L M,Chow C K.Toxicology,2003,189(1/2):147-163

    [62]Rouzer C A.Chem.Res.Toxicol.,2010,23(10):1517-1518

    猜你喜歡
    酸酯胺基丁烯
    胺基聚醚分子量對(duì)鉆井液性能影響研究
    乙醇酸酯制乙醛酸酯的生產(chǎn)方法
    能源化工(2022年3期)2023-01-15 02:26:43
    2-丁烯異構(gòu)化制1-丁烯在煤化工中實(shí)現(xiàn)應(yīng)用
    聚丁烯異相成核發(fā)泡行為的研究
    胺基修飾熒光碳點(diǎn)的合成及其在Hg(Ⅱ)離子分析中的應(yīng)用
    有機(jī)胺基氨基酸鹽混合吸收劑對(duì)沼氣中CO2的分離特性
    抗壞血酸癸酸酯、抗壞血酸月桂酸酯和抗壞血酸棕櫚酸酯的穩(wěn)定性研究
    鎢含量對(duì)W/SiO2/Al2O3催化劑上1-丁烯自歧化反應(yīng)的影響
    歐盟將褐煤酸酯移出許可食品添加劑清單
    丁烯裂解制丙烯反應(yīng)綜合實(shí)驗(yàn)設(shè)計(jì)
    99久久综合精品五月天人人| 制服人妻中文乱码| av欧美777| 国产亚洲欧美精品永久| 久久久水蜜桃国产精品网| 欧美精品高潮呻吟av久久| 手机成人av网站| 水蜜桃什么品种好| 亚洲精品在线观看二区| 亚洲成av片中文字幕在线观看| 黄色视频,在线免费观看| 母亲3免费完整高清在线观看| 国产熟女午夜一区二区三区| 美女扒开内裤让男人捅视频| 在线国产一区二区在线| 热99国产精品久久久久久7| 身体一侧抽搐| 欧美老熟妇乱子伦牲交| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品一区二区三区在线| 女人被狂操c到高潮| 777米奇影视久久| 久久中文字幕一级| 亚洲av片天天在线观看| 亚洲av美国av| 悠悠久久av| 中文字幕精品免费在线观看视频| 熟女少妇亚洲综合色aaa.| 18在线观看网站| 五月开心婷婷网| 人妻 亚洲 视频| 久久久国产欧美日韩av| 国产真人三级小视频在线观看| 成人免费观看视频高清| 日韩有码中文字幕| 免费观看精品视频网站| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线 | 黄色片一级片一级黄色片| 国产精品一区二区免费欧美| 身体一侧抽搐| 久久久久精品人妻al黑| 成人黄色视频免费在线看| www.熟女人妻精品国产| 岛国在线观看网站| 日韩精品免费视频一区二区三区| 亚洲黑人精品在线| 黑人猛操日本美女一级片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 黄色视频,在线免费观看| 国产成人一区二区三区免费视频网站| 男男h啪啪无遮挡| ponron亚洲| 天堂动漫精品| 午夜精品久久久久久毛片777| 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| av欧美777| 亚洲av熟女| 久久草成人影院| 日韩免费高清中文字幕av| 精品人妻1区二区| 成人亚洲精品一区在线观看| 亚洲精品乱久久久久久| 亚洲午夜精品一区,二区,三区| 亚洲国产精品sss在线观看 | 麻豆成人av在线观看| 日韩制服丝袜自拍偷拍| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9 | 久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到| 91老司机精品| av线在线观看网站| 国产男女超爽视频在线观看| 18禁裸乳无遮挡动漫免费视频| 91在线观看av| 亚洲美女黄片视频| 黄色视频,在线免费观看| 国产麻豆69| 国产1区2区3区精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲专区国产一区二区| 国产精品久久久久久人妻精品电影| 精品一区二区三区视频在线观看免费 | 免费在线观看亚洲国产| 国产精华一区二区三区| 十八禁人妻一区二区| 香蕉国产在线看| 午夜精品久久久久久毛片777| 十八禁人妻一区二区| 久久人妻熟女aⅴ| 18在线观看网站| 99久久国产精品久久久| svipshipincom国产片| 我的亚洲天堂| 老司机亚洲免费影院| 12—13女人毛片做爰片一| 国产野战对白在线观看| 亚洲av美国av| 狠狠婷婷综合久久久久久88av| 香蕉国产在线看| 中出人妻视频一区二区| 国产激情欧美一区二区| 在线十欧美十亚洲十日本专区| 国产不卡一卡二| 一夜夜www| 91麻豆av在线| 日本黄色视频三级网站网址 | 亚洲av片天天在线观看| 亚洲精品久久成人aⅴ小说| 麻豆av在线久日| av天堂久久9| 亚洲熟女毛片儿| 亚洲男人天堂网一区| 欧美精品一区二区免费开放| 丝袜美足系列| 日韩成人在线观看一区二区三区| 18在线观看网站| 我的亚洲天堂| 国产一区有黄有色的免费视频| 亚洲一码二码三码区别大吗| 在线播放国产精品三级| 999精品在线视频| 成年人免费黄色播放视频| 视频区图区小说| 午夜91福利影院| 亚洲第一av免费看| 这个男人来自地球电影免费观看| 免费一级毛片在线播放高清视频 | 老鸭窝网址在线观看| 亚洲,欧美精品.| 80岁老熟妇乱子伦牲交| 午夜福利在线免费观看网站| 高清毛片免费观看视频网站 | 大型av网站在线播放| 午夜精品在线福利| 在线观看免费日韩欧美大片| 国产亚洲欧美98| x7x7x7水蜜桃| 欧美久久黑人一区二区| 亚洲色图av天堂| 91成人精品电影| 国产欧美日韩精品亚洲av| 午夜亚洲福利在线播放| 大片电影免费在线观看免费| 久久婷婷成人综合色麻豆| 午夜福利免费观看在线| 少妇的丰满在线观看| 国产精品98久久久久久宅男小说| 黄色视频不卡| 99久久综合精品五月天人人| 精品少妇一区二区三区视频日本电影| 日韩熟女老妇一区二区性免费视频| 在线av久久热| 成人特级黄色片久久久久久久| 成年人免费黄色播放视频| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲熟妇少妇任你| 国产91精品成人一区二区三区| 久9热在线精品视频| 精品国产国语对白av| 国产在线观看jvid| 久久九九热精品免费| 免费一级毛片在线播放高清视频 | 嫩草影视91久久| 亚洲av第一区精品v没综合| 在线播放国产精品三级| 免费看a级黄色片| 啪啪无遮挡十八禁网站| 看黄色毛片网站| 啦啦啦免费观看视频1| 超色免费av| 夜夜躁狠狠躁天天躁| 嫩草影视91久久| 国产成人精品久久二区二区91| 丰满迷人的少妇在线观看| 久久久久久久国产电影| 1024视频免费在线观看| 91av网站免费观看| 久久久国产成人精品二区 | 欧美在线黄色| 亚洲人成电影观看| 国产免费男女视频| 亚洲久久久国产精品| 99久久精品国产亚洲精品| 亚洲国产精品合色在线| 女性生殖器流出的白浆| 成人18禁在线播放| www.自偷自拍.com| 一边摸一边抽搐一进一小说 | 亚洲七黄色美女视频| 国产片内射在线| 精品电影一区二区在线| 亚洲七黄色美女视频| 久久热在线av| 99久久人妻综合| a级毛片在线看网站| 亚洲精品久久午夜乱码| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 极品教师在线免费播放| 黄色丝袜av网址大全| 久久久久久人人人人人| 视频在线观看一区二区三区| 亚洲中文日韩欧美视频| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 女同久久另类99精品国产91| 天天添夜夜摸| 夫妻午夜视频| 亚洲少妇的诱惑av| 18在线观看网站| 王馨瑶露胸无遮挡在线观看| 热99久久久久精品小说推荐| 久久久久国产一级毛片高清牌| 精品一区二区三区视频在线观看免费 | 久热这里只有精品99| 久9热在线精品视频| 99国产精品一区二区三区| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 老汉色∧v一级毛片| 欧美日韩亚洲综合一区二区三区_| 久久ye,这里只有精品| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说 | 中亚洲国语对白在线视频| 在线观看免费高清a一片| 午夜福利欧美成人| 夜夜夜夜夜久久久久| 精品少妇一区二区三区视频日本电影| 亚洲欧美一区二区三区黑人| 午夜日韩欧美国产| 91精品三级在线观看| 亚洲成a人片在线一区二区| 亚洲成人免费电影在线观看| a级片在线免费高清观看视频| а√天堂www在线а√下载 | 91在线观看av| 两性午夜刺激爽爽歪歪视频在线观看 | 极品人妻少妇av视频| 天堂中文最新版在线下载| 丝袜人妻中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 久久精品国产亚洲av香蕉五月 | 欧美不卡视频在线免费观看 | 日韩中文字幕欧美一区二区| a级片在线免费高清观看视频| 一区二区三区精品91| svipshipincom国产片| 女同久久另类99精品国产91| 91麻豆精品激情在线观看国产 | 欧美日韩瑟瑟在线播放| 久久精品人人爽人人爽视色| 两个人免费观看高清视频| 亚洲七黄色美女视频| 高清av免费在线| 欧美不卡视频在线免费观看 | 色老头精品视频在线观看| 国产成人系列免费观看| 18禁美女被吸乳视频| 免费久久久久久久精品成人欧美视频| 成年版毛片免费区| 日韩欧美一区视频在线观看| 中亚洲国语对白在线视频| 国产精品免费大片| 免费黄频网站在线观看国产| 欧美成狂野欧美在线观看| 久久久久国产精品人妻aⅴ院 | 欧美国产精品va在线观看不卡| 亚洲av成人av| xxx96com| 91麻豆精品激情在线观看国产 | 欧美精品啪啪一区二区三区| 美女高潮到喷水免费观看| 国产精品 欧美亚洲| 男女午夜视频在线观看| 制服诱惑二区| 国产一卡二卡三卡精品| 99国产精品一区二区三区| 免费一级毛片在线播放高清视频 | 成人三级做爰电影| 中出人妻视频一区二区| 欧美日韩亚洲国产一区二区在线观看 | 国产精品98久久久久久宅男小说| 激情视频va一区二区三区| 欧美亚洲日本最大视频资源| 欧美黑人精品巨大| 久久中文字幕人妻熟女| 久9热在线精品视频| svipshipincom国产片| 脱女人内裤的视频| 国产高清videossex| 亚洲成av片中文字幕在线观看| 18禁观看日本| 人妻久久中文字幕网| 久久久国产成人免费| 久久午夜亚洲精品久久| 大片电影免费在线观看免费| 国产99久久九九免费精品| 欧美国产精品va在线观看不卡| 国产精品久久久久久精品古装| av中文乱码字幕在线| 国产xxxxx性猛交| 精品视频人人做人人爽| 美国免费a级毛片| 亚洲欧美激情在线| 日韩欧美一区视频在线观看| 午夜亚洲福利在线播放| 18禁裸乳无遮挡动漫免费视频| 色播在线永久视频| 757午夜福利合集在线观看| 精品亚洲成a人片在线观看| 日韩欧美三级三区| 69av精品久久久久久| 成熟少妇高潮喷水视频| 老熟妇乱子伦视频在线观看| 国产一区在线观看成人免费| 免费女性裸体啪啪无遮挡网站| 操出白浆在线播放| 亚洲精品久久午夜乱码| 国产99白浆流出| 91成人精品电影| av在线播放免费不卡| 国产深夜福利视频在线观看| 日韩成人在线观看一区二区三区| av国产精品久久久久影院| 国产国语露脸激情在线看| 国产免费av片在线观看野外av| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品第一综合不卡| 亚洲精品美女久久久久99蜜臀| 91精品三级在线观看| 中文字幕精品免费在线观看视频| 一区二区三区精品91| 人人妻人人爽人人添夜夜欢视频| 美女高潮喷水抽搐中文字幕| a级片在线免费高清观看视频| 99re在线观看精品视频| 久久国产精品大桥未久av| 脱女人内裤的视频| av欧美777| 少妇的丰满在线观看| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 91精品国产国语对白视频| 99国产极品粉嫩在线观看| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产| 人妻 亚洲 视频| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 亚洲精品中文字幕一二三四区| 精品久久久精品久久久| 中文字幕人妻丝袜一区二区| 制服人妻中文乱码| 免费少妇av软件| 中亚洲国语对白在线视频| 久久久久国产精品人妻aⅴ院 | 国产成人欧美在线观看 | 69av精品久久久久久| 人妻丰满熟妇av一区二区三区 | 国产成人精品无人区| 91大片在线观看| 亚洲片人在线观看| 国产亚洲欧美98| 欧美+亚洲+日韩+国产| 夜夜爽天天搞| 777久久人妻少妇嫩草av网站| 在线天堂中文资源库| 在线观看日韩欧美| 午夜视频精品福利| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 欧美日本中文国产一区发布| xxxhd国产人妻xxx| 精品视频人人做人人爽| 男女高潮啪啪啪动态图| 99久久人妻综合| 热99re8久久精品国产| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 中文字幕av电影在线播放| av视频免费观看在线观看| 视频区图区小说| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 成人国语在线视频| 久久国产乱子伦精品免费另类| 18禁裸乳无遮挡免费网站照片 | 妹子高潮喷水视频| 精品国产乱码久久久久久男人| 亚洲av片天天在线观看| 国产av一区二区精品久久| 久9热在线精品视频| www日本在线高清视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产男靠女视频免费网站| 亚洲aⅴ乱码一区二区在线播放 | 亚洲avbb在线观看| 99国产精品99久久久久| 天天躁夜夜躁狠狠躁躁| 美女高潮到喷水免费观看| 成人亚洲精品一区在线观看| 久久影院123| 他把我摸到了高潮在线观看| 一进一出抽搐动态| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| 国产精品 欧美亚洲| 亚洲国产精品合色在线| 人人妻人人爽人人添夜夜欢视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 久久人人爽av亚洲精品天堂| 国产精品香港三级国产av潘金莲| www.熟女人妻精品国产| 人人妻人人爽人人添夜夜欢视频| av网站在线播放免费| 久久久精品免费免费高清| 久久久精品国产亚洲av高清涩受| 涩涩av久久男人的天堂| 成熟少妇高潮喷水视频| 午夜影院日韩av| 中出人妻视频一区二区| 老熟妇仑乱视频hdxx| 男女之事视频高清在线观看| 在线国产一区二区在线| 久久中文字幕一级| 窝窝影院91人妻| 午夜福利一区二区在线看| 电影成人av| 欧美中文综合在线视频| 午夜影院日韩av| 视频在线观看一区二区三区| 久久香蕉精品热| 高清黄色对白视频在线免费看| 国产精品电影一区二区三区 | 精品午夜福利视频在线观看一区| 丝瓜视频免费看黄片| 免费在线观看亚洲国产| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 国产精品九九99| 久久午夜综合久久蜜桃| av在线播放免费不卡| 正在播放国产对白刺激| 日韩欧美一区视频在线观看| 免费观看精品视频网站| 日本欧美视频一区| 亚洲精品中文字幕一二三四区| 免费在线观看黄色视频的| 香蕉国产在线看| 成人三级做爰电影| a级毛片黄视频| 国产蜜桃级精品一区二区三区 | 亚洲精品乱久久久久久| 色婷婷久久久亚洲欧美| 日韩欧美一区二区三区在线观看 | 99香蕉大伊视频| 99国产精品99久久久久| 国产又爽黄色视频| a在线观看视频网站| 激情在线观看视频在线高清 | 亚洲人成电影观看| 又黄又粗又硬又大视频| 91成年电影在线观看| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 精品久久久久久电影网| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 老司机亚洲免费影院| av超薄肉色丝袜交足视频| 免费日韩欧美在线观看| 黄频高清免费视频| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 91九色精品人成在线观看| 大型av网站在线播放| 高清欧美精品videossex| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 亚洲av第一区精品v没综合| 热re99久久国产66热| 亚洲精品国产精品久久久不卡| 国产亚洲精品一区二区www | 国产精品免费大片| 黄片小视频在线播放| 多毛熟女@视频| 国产在线观看jvid| 伦理电影免费视频| 国产精品国产av在线观看| 国产1区2区3区精品| 亚洲成av片中文字幕在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 91在线观看av| 亚洲色图综合在线观看| 国产成+人综合+亚洲专区| 午夜福利一区二区在线看| 首页视频小说图片口味搜索| 亚洲三区欧美一区| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| ponron亚洲| 18在线观看网站| 最近最新中文字幕大全电影3 | 国产精品香港三级国产av潘金莲| 大码成人一级视频| 国产男靠女视频免费网站| 国产成人免费观看mmmm| 国产深夜福利视频在线观看| 91成年电影在线观看| 成人永久免费在线观看视频| 人人妻人人澡人人爽人人夜夜| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| 亚洲一区中文字幕在线| 中文字幕人妻丝袜一区二区| 91老司机精品| 久久久国产欧美日韩av| 国产精品偷伦视频观看了| 又黄又爽又免费观看的视频| 亚洲精品美女久久av网站| 91大片在线观看| 村上凉子中文字幕在线| 18禁美女被吸乳视频| 9色porny在线观看| 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 精品少妇一区二区三区视频日本电影| 岛国毛片在线播放| 国产单亲对白刺激| 丝袜在线中文字幕| 欧美激情极品国产一区二区三区| 欧美另类亚洲清纯唯美| 免费在线观看完整版高清| 欧美大码av| 亚洲熟妇中文字幕五十中出 | 热99re8久久精品国产| 国产淫语在线视频| 欧美另类亚洲清纯唯美| 日韩熟女老妇一区二区性免费视频| 精品第一国产精品| 精品人妻在线不人妻| 99国产精品99久久久久| 亚洲熟妇熟女久久| 色婷婷久久久亚洲欧美| 极品教师在线免费播放| 亚洲va日本ⅴa欧美va伊人久久| 成人手机av| 激情视频va一区二区三区| 国产麻豆69| 国产一区二区三区视频了| 亚洲七黄色美女视频| 亚洲九九香蕉| 久久久久精品国产欧美久久久| 天堂俺去俺来也www色官网| 精品福利永久在线观看| 亚洲欧美一区二区三区久久| 人人妻人人爽人人添夜夜欢视频| 亚洲精品久久午夜乱码| 黄色女人牲交| 91大片在线观看| av欧美777| 伦理电影免费视频| 国产淫语在线视频| 99国产精品99久久久久| 视频区欧美日本亚洲| 丝袜美足系列| 麻豆av在线久日| 国产视频一区二区在线看| 色婷婷av一区二区三区视频| 国产野战对白在线观看| 女人被狂操c到高潮| 黄片小视频在线播放| 黄色a级毛片大全视频| 99re6热这里在线精品视频| 国产在线精品亚洲第一网站| 国产成人精品久久二区二区91| 午夜激情av网站| 国产精品美女特级片免费视频播放器 | 午夜激情av网站| 国产精品 国内视频| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 宅男免费午夜| 精品少妇久久久久久888优播| 亚洲av日韩在线播放| 午夜激情av网站| 啪啪无遮挡十八禁网站| 国产日韩欧美亚洲二区| 久久久久视频综合| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 高清毛片免费观看视频网站 | 欧美乱码精品一区二区三区| 久久久久久久午夜电影 | 国产高清videossex| 欧美日韩乱码在线| 欧美国产精品va在线观看不卡| 国产成人av教育| 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 丝瓜视频免费看黄片|