郝修清, 李俊民
(西安電子科技大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,陜西 西安 710071)
近幾年來,復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)成為了一個(gè)研究熱點(diǎn),許多自然系統(tǒng)和人工系統(tǒng)都可以描述為復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)[1-2].在復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的研究中,同步是受到極大關(guān)注的一個(gè)問題[3-13],具有重要的現(xiàn)實(shí)意義和廣泛的應(yīng)用前景.各種不同的控制方法被用于復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的同步,如脈沖控制[3]、非脆弱控制[4]、牽制控制[5]和自適應(yīng)控制[6]等.
從研究對(duì)象來看,復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的同步已經(jīng)從一致性節(jié)點(diǎn)和線性耦合發(fā)展到非一致節(jié)點(diǎn)[7-9]和非線性耦合[9-11].同時(shí),關(guān)于耦合時(shí)滯和耦合強(qiáng)度的問題也在復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的研究中引起了重視[6,11-13].例如,文獻(xiàn)[9]研究了一類非線性耦合的具有非一致節(jié)點(diǎn)和耦合時(shí)滯的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的同步問題;文獻(xiàn)[10]對(duì)非線性耦合的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)進(jìn)行了自適應(yīng)牽制控制;文獻(xiàn)[11-13]對(duì)復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)中的時(shí)變時(shí)滯和時(shí)變耦合強(qiáng)度進(jìn)行了討論,采用自適應(yīng)律對(duì)未知的參數(shù)進(jìn)行了辨識(shí),實(shí)現(xiàn)了對(duì)復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的自適應(yīng)同步.可見,對(duì)復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的研究越來越接近于現(xiàn)實(shí)環(huán)境.值得注意的是,目前對(duì)復(fù)雜網(wǎng)絡(luò)是未知的情形考慮得很少.
另一方面,李雅普洛夫穩(wěn)定性理論被廣泛用于系統(tǒng)的鎮(zhèn)定和跟蹤問題[14-15].對(duì)于具有周期特性的信號(hào),可設(shè)計(jì)自適應(yīng)學(xué)習(xí)律對(duì)其進(jìn)行估計(jì),進(jìn)而實(shí)現(xiàn)對(duì)系統(tǒng)的自適應(yīng)學(xué)習(xí)控制[16-17].在文獻(xiàn)[17]中,考慮一種周期時(shí)變時(shí)滯非線性參數(shù)化系統(tǒng)的自適應(yīng)學(xué)習(xí)控制,運(yùn)用對(duì)系統(tǒng)重構(gòu)的方法,很好地解決了對(duì)周期參考信號(hào)的跟蹤問題.
由N個(gè)非一致節(jié)點(diǎn)耦合組成的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)系統(tǒng)為
(1)
其中,xi(t)=[xi1,xi2,…,xin]T∈Rn,表示第i個(gè)節(jié)點(diǎn)在t時(shí)刻的狀態(tài)向量;fi和gij是未知的、光滑的連續(xù)向量值函數(shù);矩陣A= (aij)n×n,表示復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)或鄰接矩陣,若aij≠ 0,則表示節(jié)點(diǎn)j對(duì)節(jié)點(diǎn)i的動(dòng)力學(xué)行為有影響;hj(t)是未知的周期時(shí)變時(shí)滯,但其周期是已知的.
假設(shè)1 對(duì)于式(1)中的未知非線性向量值函數(shù),假設(shè)存在li>0,cij>0,使得
假設(shè)3 對(duì)于式(1),假設(shè)鄰接矩陣A的元素滿足|aij|0.
(2)
其中,ui(t)表示每個(gè)節(jié)點(diǎn)的輸入,此時(shí)誤差方程為
(4)
容易證明,Θ(t+T)=Θ(t).由Θ(t)的定義,可得,Θ(t)是以T為周期的周期連續(xù)向量值函數(shù).
(5)
對(duì)式(5)求導(dǎo),可得
由Young不等式和假設(shè)1,可得
將上面兩個(gè)不等式代入式(6),同時(shí)由假設(shè)1~3可得
取足夠大的L,滿足Na2c2-L<0,有
(8)
設(shè)計(jì)控制輸入和周期自適應(yīng)律為
(11)
注在整個(gè)同步方案的設(shè)計(jì)中,對(duì)誤差方程進(jìn)行了重構(gòu),采用信號(hào)置換的思想,將耦合部分、周期時(shí)變時(shí)滯以及給定的周期參考信號(hào)整合為一個(gè)未知的周期時(shí)變向量Θ(t),在采用周期自適應(yīng)律對(duì)Θ(t)進(jìn)行估計(jì)的基礎(chǔ)上,設(shè)計(jì)了簡單的反饋控制.
這里通過一個(gè)定理,說明復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)能夠?qū)崿F(xiàn)自適應(yīng)同步,并且所有的信號(hào)都是有界的.
(1) 計(jì)算W(t)在1個(gè)周期上的差分,即
(12)
利用周期自適應(yīng)律式(10),經(jīng)過運(yùn)算,式(12)的最后一項(xiàng)可以表示為
(13)
將式(9)和式(10)代入式(8),再將式(13)代入式(12),可得
(14)
(15)
(16)
利用Young不等式,可得
(17)
把式(17)代入式(16),可得
(18)
(19)
下面將給出仿真實(shí)例,以驗(yàn)證所設(shè)計(jì)的同步方案的有效性.
例 在系統(tǒng)式(2)中,取節(jié)點(diǎn)數(shù)N=3,每個(gè)節(jié)點(diǎn)狀態(tài)的維數(shù)n=3,已知的周期T=2π,同步目標(biāo)為:s(t)= (s1(t),s2(t),s3(t))T= (2+0.3 sint,-1-0.5 sint,0.6 cost)T,復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)各個(gè)節(jié)點(diǎn)處的狀態(tài)方程為
(20)
其中,時(shí)變時(shí)滯h1(t)=1-0.4 sin2t,h2(t)=0.8-0.5 sin2t,h3(t)=0.7-0.6 sin2t,而非線性向量值函數(shù)為
選取系統(tǒng)初始狀態(tài)為x1(0)=[1,0,-1]T,x2(0)=[2,1,3]T,x3(0)=[-0.5,1.2,-3]T.設(shè)計(jì)控制輸入和周期自適應(yīng)律為
將控制輸入式(21)和周期自適應(yīng)律式(22)代入復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)式(20),圖1~3為復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)中各個(gè)節(jié)點(diǎn)的狀態(tài)xi(t)= [xi1,xi2,xi3]T對(duì)s(t)的跟蹤情形.可見,即使在每個(gè)節(jié)點(diǎn)選取不同的初始狀態(tài),受控系統(tǒng)式(20)都可以做到同步于給定的周期軌跡s(t).
圖1 x1(t)和s(t)的軌跡(從左到右分別表示3個(gè)分量的軌跡)
圖2 x2(t) 和s(t)的軌跡(從左到右分別表示3個(gè)分量的軌跡)
圖3 x3(t) 和s(t)的軌跡(從左到右分別表示3個(gè)分量的軌跡)
考慮了非一致節(jié)點(diǎn)、非線性耦合、多重時(shí)變時(shí)滯的未知復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的同步問題,通過信號(hào)置換技術(shù)對(duì)系統(tǒng)進(jìn)行重構(gòu),設(shè)計(jì)自適應(yīng)學(xué)習(xí)控制使其能夠同步于任意給定的周期參考信號(hào).將非線性和時(shí)滯等問題加入所討論的復(fù)雜系統(tǒng),同時(shí)考慮到復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的未知性,使其更接近真實(shí)環(huán)境,具有一定的現(xiàn)實(shí)意義.
[1] Strogatz S H. Exploring Complex Networks [J]. Nature, 2001, 410(6825): 268-276.
[2] Newman M E J. The Structure and Function of Complex Networks [J]. SIAM Review, 2003, 45(2):167-256.
[3] Zhang Qunjiao, Chen Juan, Wan Li. Impulsive Generalized Function Synchronization of Complex Dynamical Networks [J]. Physics Letters A, 2013, 377(39): 2754-2760.
[4] 李俊民, 曹夢(mèng)濤, 沈思. 時(shí)變復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)非脆弱同步算法[J]. 西安電子科技大學(xué)學(xué)報(bào), 2012, 39(5): 119-125.
Li Junmin, Cao Mengtao, Shen Si. Non-fragile Synchronization Algorithm for Complex Time-varying Dynamical Networks [J]. Journal of Xidian University, 2012, 39(5): 119-125.
[5] Wu Xiangjun, Lu Hongtao. Hybrid Synchronization of the General Delayed and Non-delayed Complex Dynamical Networks via Pinning Control [J]. Neurocomputing, 2012, 89: 168-177.
[6] Guo Xiaoyong, Li Junmin. A New Synchronization Algorithm for Delayed Complex Dynamical Networks via Adaptive Control Approach [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(11): 4395-4403.
[7] Fan Yongqing, Wang Yinhe, Zhang Yun, et al. The Synchronization of Complex Dynamical Networks with Similar Nodes and Coupling Time-delay [J]. Applied Mathematics and Computation, 2013, 219(12): 6719-6728.
[8] Wu Xiangjun, Lu Hongtao. Projective Lag Synchronization of the General Complex Dynamical Networks with Distinct Nodes [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(11): 4417-4429.
[9] Wang Yangling, Cao Jinde. Cluster Synchronization in Nonlinearly Coupled Delayed Networks of Non-identical Dynamic Systems [J]. Nonlinear Analysis: Real World Applications, 2013, 14(1): 842-851.
[10] Jin Xiaozheng, Yang Guanghong. Adaptive Pinning Synchronization of a Class of Nonlinearly Coupled Complex Networks [J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(2): 316-326.
[11] Wang Tengfei, Li Junmin, Tang Shu. Adaptive Synchronization of Nonlinearly Parameterized Complex Dynamical Networks with Unknown Time-Varying Parameters [J]. Mathematical Problems in Engineering, 2012, 2012: 592539.
[12] Ji D H, Jeong S C, Park J H, et al. Adaptive Lag Synchronization for Uncertain Complex Dynamical Network with Delayed Coupling [J]. Applied Mathematics and Computation, 2012, 218(9): 4872-4880.
[13] Guo Xiaoyong, Li Junmin. Stochastic Adaptive Synchronization for Time-varying Complex Delayed Dynamical Networks with Heterogeneous Nodes [J]. Applied Mathematics and Computation, 2013, 222: 381-390.
[14] Rao Ruofeng, Wang Xiongrui, Zhong Shouming, et al. LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion [J]. Journal of Applied Mathematics, 2013, 2013: 396903.
[15] Rao Ruofeng, Zhong Shouming, Wang Xiongrui. Stochastic Stability Criteria with LMI Conditions for Markovian Jumping Impulsive BAM neural Networks with Mode-dependent Time-varying Delays and Nonlinear Reaction-diffusion [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1): 258-273.
[16] Xu Jianxin, Tan Ying. A Composite Energy Function-based Learning Control Approach for Nonlinear Systems with Time-varying Parametric Uncertainties [J]. IEEE Transactions on Automatic Control, 2002, 47(11): 1940-1945.
[17] 陳為勝, 王元亮, 李俊民. 周期時(shí)變時(shí)滯非線性參數(shù)化系統(tǒng)的自適應(yīng)學(xué)習(xí)控制 [J].自動(dòng)化學(xué)報(bào), 2008, 34(12): 1556-1560.
Chen Weisheng, Wang Yuanliang, Li Junmin. Adaptive Learning Control for Nonlinearly Parameterized Systems with Periodically Time-varying Delays [J]. Acta Automatica Sinica, 2008, 34(12): 1556-1560.