• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-solid Anaerobic Co-digestion of Food Waste and Rice Straw for Biogas Production

    2014-07-02 01:20:16PeiZhanjiangLiuJieShiFengmeiWangSuGaoYabingandZhangDalei

    Pei Zhan-jiang , Liu Jie, Shi Feng-mei, Wang Su, GaoYa-bing, and Zhang Da-lei

    1 College of Engineering, Shenyang Agricultural University, Shenyang 110161, China

    2 Rural Energy Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

    3 Liaoning Institute of Energy Resource, Yingkou 115003, Liaoning, China

    Introduction

    Food waste (FW), mainly coming from residential,restaurants, school cafeterias and factory lunchrooms,is expected to increase continuously in the next decade due to increasing population and improved standards of living (Dai et al., 2013). In China, the production of FW attained 10 million tons/year and occupied 50% of the municipal solid waste, almost 60% of FW has not reached necessary stabilization (Lin et al., 2011). Most of FW is landf i lled or untreated and may cause many environmental problems in the transportation and storage, such as contamination of soil and groundwater, generating greenhouse gases and odor due to volatile organic compounds of FW rapid decomposition (Zhang et al., 2011).

    Anaerobic digestion (AD)of FW has been proven to be an eff i cient and green technology for solids reduction and biogas production in recent years (Shahriari et al., 2012; Zhang et al., 2013). However, anaerobic digestion was found unstable, when FW was used as mono-substrate due to high moisture, organic contents and biodegradability, which may encounter various potential inhibitors, including fast VFAs production from starch and free ammonia from protein (Liu et al.,2009; Chen et al., 2014). The main components of rice straw (RS)are lignin, cellulose and hemicellulose and it is difficult to degrade as mono-substrate (Gu et al., 2014). Recently, more researchers turned to study anaerobic co-digestion. Anaerobic co-digestion is simultaneous digestion of a mixture of two or more substrates and can enhance volumetric biogas production, improve system stability, dilute toxic chemicals, provide a better nutrient balance, manage mixed wastes easily and improve fertilizer value of digested residues (Shi et al., 2014; Zhu et al., 2014).The main purpose of this work was to study the effect of FW and RS co-digestion on biogas production and stability of the anaerobic co-digestion system, with TS contents ranging from 8% to 15%. Co-digestion of FW and RS was carried out under mesophilic conditions with six different mixing ratios and the effects of FW to RS ratio were investigated.

    Materials and Methods

    Feedstocks and eff l uent

    FW was collected from Jinquan Environmental Protection Co., Ltd. FW was cut into particles with average size of 6.0 mm using a kitchen blender(ML-C620). The pieces of FW were flushed with nitrogen gas and stored in 20 L plastic containers at–20℃ until thawed and kept at 4℃ for use as a feedstock (Shin et al., 2010; Frigon et al., 2012). FW mixture consisted of (75%of wet weight)35% vegetable roots, 6% meats, 20% rice, 8% flour and 31%others (Table 1). RS was obtained from a local farm in Minzhu District, Harbin, and ground through a 10-mm sieve with a grinder. The ground RS was stored in air tight containers until use. The anaerobic seeding sludge, used as inoculum for the experiments,was collected from an anaerobic fermentation tank of rural energy institute of Heilongjiang Academy of Agricultural Sciences. The inoculum was incubated at 35℃ and an agitation at 2 Hz with no substrate for 48 h prior to the start-up of the assays (Frigon et al., 2012).

    Co-digestion of FW and RS

    Batch anaerobic digestion (AD)with complete premixing was carried out at six FW/RS (1 : 0, 4 : 1,3 : 1, 2 : 1, 1 : 1 and 0 : 1), which referred to as T1 to T6. Each batch AD system consisted of a 5 L digestion glass bottle (4 L reactive volume), a 5 L gas collection glass bottle (filled with saturated salt water)and a 5 L liquid collection beaker. The batch AD systems were operated at (35±1)℃. All the tests were run with duplicate reactors.

    Table 1 Characteristics of food waste, rice straw and seeding sludge

    Analytical methods

    Biogas was collected daily by saturated salt water displacement method (Zhang et al., 2013). The content of CH4, CO2and H2S in biogas was analyzed by gas chromatography (GC-7890A, Agilent in USA). GC applied two thermal conductivity detectors (TCD).Argon and nitrogen were used as carrier gas at pressure of 0.2 MPa and a flow rate of 20 mL · min-1. The temperatures of injection port, column oven,front TCD and back TCD were 125, 50, 150 and 150℃, respectively. VFAs content of effluents was analyzed by gas chromatography (GC-6890A, Agilent in USA), which applied a flame ionization detector(FID)and equipped with a 30 m×250 μm×1.4 μm capillary column (Agilent, DB-624UI). Nitrogen was used as carrier at a pressure of 25 kPa and an injection rate of 400 mL · min-1. The oven temperature was programmed to rise from 40℃ to 200℃ at a rate of 10℃ · min-1. COD, total ammonia nitrogen (TAN), VS and TS were measured according to the procedures outlined by APHA Standard Methods (APHA, 1995).For sodium determination, the samples were digested with HNO3, followed by elemental analysis using inductively coupled plasma optical emission spectrometry(Optima2100 DV, PerkinElmer, US)(Da et al., 2013).

    Results

    Effect of FW/RS ratios on biogas production yields and CH4 content

    The batch anaerobic digestion test was carried out efficiently and stably at six different FW/RS mixture ratios (1 : 0, 4 : 1, 3 : 1, 2 : 1, 1 : 1, and 0 : 1). The biogas production and CH4content at different time are summarized in Figs. 1 and 2, respectively. It can be seen that FW/RS ratio had a signif i cant effect on biogas yields and CH4contents. The maximum production yield of the biogas was 60.55 mL · g · VS-1· d-1with the mixture ratio of 3 : 1 (T3), which were 178% and 70%higher than those of mono-digestion FW (T1)and RS(T6), respectively. Fig. 1 showed that the daily biogas yield of T2 to T5 increased rapidly in the initial eight days, and 75% of the final biogas production was produced in the initial 10 days. After 60 days of the digestion, the maximum biogas yield of T2, T3, T4 and T5 were 50, 60.55, 55.25 and 47.36 mL · gV · S-1·d-1, respectively. From Fig. 2, the maximum CH4contents of T2, T3, T4 and T5 were 62, 70, 67 and 58,respectively. For the reactors with 100% of FW, the failure of the anaerobic digestion could be observed after the 6th day. While the biogas yield of monodigestions RS stayed stable at a low level during the 60-day digestion, and CH4contents were the lowest of all the tested ratios except T1. Compared with monodigestions of T1 and T6, CH4contents of the codigested reactors (T2, T3, T4, and T5)were all enhanced. The results showed that system stability and biogas yield of co-digestions of FW and RS were improved. It had been widely reported that anaerobic co-digestion of two or more substrates could improve system stability and increase total biogas production yield (Zhang et al., 2013). For instance, at levels up to 60% of the initial volatile solids, adding the food waste into a manure digester signif i cantly increased the methane yields for 20 days of the digestion (El-Mashad,2010). A methane yield of 0.85 L CH4· L-1· d-1at 36℃and 0.82 CHH4· L-1· d-1at 55℃ were obtained in continuously stirred-tank reactors containing 70%cattle manure, 20% food waste and 10% sewage sludge(Quiroga et al., 2014). Anaerobic co-digestion of the food waste and yard waste at specif i c ratios could improve digester operating characteristics (Brown, 2013).

    Fig. 1 Daily biogas yield based on VS

    Fig. 2 CH4 content in biogas

    Concentrations of VFAs in biogas slurry

    The variation of the effluent concentration of VFAs with time during the anaerobic co-digestion period is shown in Fig. 3. VFAs concentration of T1-T6 increased and then decreased rapidly during the initial 5 days except mono-digestion of FW (T1), in which the maximum VFA concentration (35 600 mg · L-1)was obtained at the 5th day. During the initial 5 days of fermentation stage, the total VFAs concentration of T2-T5 reached 28 000 mg · L-1. VFAs concentration of T2-T5 was slightly lower than that of T1. Fig. 3 also revealed that the eff l uent concentration of VFAs increased smoothly with the increase concentration of FW, accordingly, resulting in acidification when the concentration of FW was too high in the system.FW contained soluble materials and biodegradable matter, such as proteins, starches and lipids and so on. It meant that FW had more acidogenic organic materials. During anaerobic mono-digestions of FW,biodegradable organic materials could be microbiologically degraded rapidly. It could be concluded that the hydrolysis of FW was the main reason for VFAs concentration increase (Zhang et al., 2013).Nagao et al. (2012)also found that the rate of methanogenesis would be lower than the rate of acidogenesis, acetogenesis in mono-digestion of FW,leading to VFAs accumulation.

    The composition of VFAs was important as it could provide useful information regarding the degree of the hydrolysis and fermentation (Wang et al., 2014). VFAs were mainly composed of the acetate, propionate and butyrate. The content of acetate played a dominant role during anaerobic digestion (Zhang et al., 2013). Fig. 4 indicated that the contents of the acetate of all the treatments increased rapidly at the initial 5 days. The highest acetate concentrations of T2-T5 were 15 000,13 560, 12 480 and 9 800 mg · L-1, respectively. Therefore, it hinted that the higher FW concentration,the higher content of the acetate. The content of the acetate of T2-T5 decreased smoothly after the 6th day. The content of acetate of T2 to T5 was more than 2 000 mg · L-1after the 6th day in mono-digestions of FW and it was the result of the failure of anaerobic digestion. It could be explained that FW contained much more biodegradable matter and more acidogenic bacteria under anaerobic condition, leading to acidification of the system. It was disadvantageous to biogas production because methanogens were inhibited under acidic conditions (Wang et al., 2014).

    Fig. 3 Variation of eff l uent content of VFAs

    Fig. 4 Variation of eff l uent content of acetate

    Propionate was a main intermediate in the stage of hydrolysis and it was an unfavorable substrate for the anaerobic digestion due to it was difficult to be directly decomposed into biogas (Meng et al., 2013).So the content of the propionate was very important during the anaerobic digestion. The concentration of propionate is shown in Fig.5. The propionate concentration of T2-T6 had been rose slowly at the initial 5 days and then maintained between 3 000 and 4 000 mg · L-1. The biogas productions of all the treatments were also relatively stable except that of T1, which showed that no acidification occurred when the pro-pionate concentration below 4 000 mg · L-1. Qiao et al.(2013)also confirmed that propionate accumulation could result in the system unstable due to a drop in pH,if the digester was not managed properly and carefully.

    Butyrate, another component of the main VFAs, was converted into acetate during the anaerobic digestion production, which was considered the rate-limiting step of the anaerobic digestion. The concentration of butyrate is shown in Fig. 6. Compared to the variation of propionate with time, the content of butyrate increased dramatically and higher than that of the propionate.But the concentration of the butyrate in the reactors was stable from startup and throughout the period except T1. The highest butyrate concentration of T2-T5 were 7 850, 7 468, 6 850 and 6 047 mg · L-1, respectively.After startup, the contents of a butyrate of T2-T5 decreased smoothly between 3 000-4 000 mg · L-1, due to butyrate decomposed by methanogenic bacteria.

    Fig. 5 Variation of eff l uent content of propionate

    Fig. 6 Variation of eff l uent content of butyrate

    Concentrations of ammonia nitrogen

    Ammonia played a vital role on the performance and stability of anaerobic digestion of organic feedstock especially FW (Rajagopal et al., 2013). Yenigün(2013)pointed out proper content of ammonium was beneficial for methanogenic bacterial growth,but undesirably excessive ammonia nitrogen may be reached and may inhibit biogas production during the breakdown of proteins available in the substrate.Optimal ammonia concentration was usually used to evaluate the degree of the protein degradation optimal ammonia concentration and ensure sufficient buffer capacity on the system of the anaerobic digestion and resulted in increasing of the biogas production in the digestion process. The contents of ammonia nitrogen in different reactors are presented in Fig. 7. It was very similar in the variation of ammonia nitrogen concentration in eff l uent for all the treatments during fermentation. The contents of ammonia nitrogen increased linearly with fermentation time for initial 5 days. After the 6th day, NH4+-N concentrations decreased smoothly then remained between 900-1 500 mg · L-1and kept stable. From Fig. 7 it could be also founded that the more RS percent content, the higher content of ammonia nitrogen. It was clear that co-digestion of FW and RS could enhance the system stability of high-solid anaerobic digestion. The results suggested that co-digestion of FW and RS reduced concentrations of ammonia, thus better system stability could be achieved.

    Fig. 7 Variation of eff l uent contents of ammonia nitrogen

    Conclusions

    From the results obtained, it could be concluded that the anaerobic co-digestion of FW and RS not only improved system stability but also greatly enhanced volumetric biogas production in comparison with mono-digestions. The highest methane yield of 60.55 mL · gV · S-1· d-1VS was obtained with a FW to RS of 3 : 1 based on total solids (TS), which was 178% and 70% higher than that of the mono-digestions of FW and RS, respectively. A high VFAs production could be obtained during anaerobic co-digestion, which increased smoothly with the increase of FW content,accordingly, resulting in acidification when FW content was too high.

    APHA AWWA WEF. 1995. Aggregate organic constituents. In:Eaton A D, Clesceri L S, Greenberg A E. Standard methods for the examination of water and wastewater. Washington, DC, USA.pp.1-72.

    Brown D, Li Y B. 2013. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol,127C: 275-280.

    Chen X, Yan W, Sheng K C, et al. 2014. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.Bioresour Technol, 154: 215-221.

    Dai X H, Duan N N, Dong B, et al. 2013. High-solids anaerobic codigestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Manag, 33(2): 308-316.El-Mashad H M, Zhang R H. 2010. Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol, 101(11):4021-4028.

    Frigon J-C, Mehta P, Guiot S R. 2012. Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy, 36: 1-11.

    Gu Y, Chen X H, Liu Z G, et al. 2014. Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour Technol, 158C:149-155.

    Lin J, Zuo J E, Gan L L, et al. 2011. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J Environ Sci, 23(8): 1403-1408.

    Liu G Q, Zhang R H, El-Mashad H M, et al. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour Technol, 100(21): 5103-5108.

    Meng X S, Zhang Y B, Li Q, et al. 2013. Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate. Biochem Eng J, 73: 80-85.

    Nagao N, Tajima N, Kawai M, et al. 2012. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.Bioresour Technol, 118: 210-218.

    Qiao W, Takayanagi K, Niu Q G, et al. 2013. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas. Bioresour Technol, 149: 92-102.

    Quiroga G, Castrillon L, Fernandez-Nava Y, et al. 2014. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresour Technol, 154: 74-79.

    Rajagopal R, Masse D I, Singh G. 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol, 143: 632-641.

    Shahriari H, Warith M, Hamoda M, et al. 2012. Effect of leachate recirculation on mesophilic anaerobic digestion of food waste. Waste Manag, 32(3): 400-403.

    Shi X S, Yuan X Z, Wang Y P, et al. 2014. Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate. Biochem Eng J, 244: 258-263.

    Shin S G, Han G, Lim J, et al. 2010. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Res, 44(17): 4838-4849.

    Wang K, Yin J, Shen D S, et al. 2014. Anaerobic digestion of food waste for volatile fatty acids (VFAs)production with different types of inoculum: effect of pH. Bioresour Technol, 161: 395-401.

    Yenigün O, Demirel B. 2013. Ammonia inhibition in anaerobic digestion: a review. Process Biochem, 48(5/6): 901-911.

    Zhang C S, Su H J, Tan T W. 2013. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system. Bioresour Technol, 145: 10-16.

    Zhang C S, Xiao G, Peng L Y, et al. 2013. The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol, 129: 170-176.

    Zhang L, Lee Y W, Jahng D. 2011. Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements.Bioresour Technol, 102(8): 5048-5059.

    Zhu J Y, Zheng Y, Xu F Q, et al. 2014. Solid-state anaerobic codigestion of hay and soybean processing waste for biogas production.Bioresour Techno, 154: 240-247.

    欧美精品亚洲一区二区| 18禁国产床啪视频网站| 精品国产一区二区三区四区第35| 久久久久国产网址| 丝袜美腿诱惑在线| 免费高清在线观看视频在线观看| 夫妻午夜视频| 97精品久久久久久久久久精品| 99久久精品国产国产毛片| av线在线观看网站| 美女脱内裤让男人舔精品视频| 男女边摸边吃奶| 亚洲国产av新网站| 一级毛片我不卡| 久久精品久久久久久久性| 日韩一区二区视频免费看| av.在线天堂| 日本vs欧美在线观看视频| 啦啦啦在线免费观看视频4| 好男人视频免费观看在线| 亚洲国产成人一精品久久久| 色94色欧美一区二区| 看非洲黑人一级黄片| 观看美女的网站| 性色av一级| 国产成人午夜福利电影在线观看| 亚洲美女黄色视频免费看| 久久ye,这里只有精品| 美女国产高潮福利片在线看| 两个人免费观看高清视频| h视频一区二区三区| 久久精品国产亚洲av高清一级| 十分钟在线观看高清视频www| 亚洲精品av麻豆狂野| 如何舔出高潮| 午夜福利在线免费观看网站| 人人妻人人澡人人看| √禁漫天堂资源中文www| 观看美女的网站| 国产精品久久久久久精品电影小说| tube8黄色片| 国产精品av久久久久免费| 亚洲国产av新网站| 王馨瑶露胸无遮挡在线观看| 国产精品久久久av美女十八| 电影成人av| av网站在线播放免费| 免费在线观看视频国产中文字幕亚洲 | 一区二区三区四区激情视频| 欧美亚洲日本最大视频资源| 免费大片黄手机在线观看| 波多野结衣一区麻豆| 午夜免费鲁丝| 丝瓜视频免费看黄片| 国产在线视频一区二区| 国产一区二区三区av在线| 久久人人爽av亚洲精品天堂| 久久久久久久国产电影| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| 91精品国产国语对白视频| 久久久久久久大尺度免费视频| 不卡视频在线观看欧美| 日韩不卡一区二区三区视频在线| 高清欧美精品videossex| 日本91视频免费播放| 熟女电影av网| www.精华液| 亚洲国产色片| 人妻 亚洲 视频| 电影成人av| 伦理电影免费视频| 欧美成人午夜精品| 久久久久国产网址| 亚洲av男天堂| 九色亚洲精品在线播放| 亚洲视频免费观看视频| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 欧美av亚洲av综合av国产av | 久久久久视频综合| 午夜激情av网站| 少妇被粗大的猛进出69影院| 国产精品一国产av| 热re99久久国产66热| av线在线观看网站| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 三级国产精品片| 国产成人一区二区在线| 国产 一区精品| 看免费av毛片| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 精品久久蜜臀av无| 九色亚洲精品在线播放| 国产成人精品福利久久| 一级毛片 在线播放| 亚洲欧美清纯卡通| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美精品济南到 | 天堂俺去俺来也www色官网| kizo精华| 性少妇av在线| a 毛片基地| 91精品伊人久久大香线蕉| 老熟女久久久| 国产女主播在线喷水免费视频网站| 多毛熟女@视频| 韩国av在线不卡| 精品人妻熟女毛片av久久网站| 美女主播在线视频| 亚洲综合精品二区| 亚洲,欧美精品.| 国产精品一国产av| 国产精品久久久久成人av| 天天影视国产精品| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 天天躁夜夜躁狠狠躁躁| 久久人妻熟女aⅴ| 国产男女内射视频| 国产精品蜜桃在线观看| 亚洲欧美精品自产自拍| 黑人欧美特级aaaaaa片| videos熟女内射| 最近最新中文字幕大全免费视频 | 可以免费在线观看a视频的电影网站 | 国产精品久久久久久久久免| 欧美激情高清一区二区三区 | 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 久久久精品国产亚洲av高清涩受| 美女国产高潮福利片在线看| 欧美人与善性xxx| 国产极品粉嫩免费观看在线| 久久久久网色| 成年人免费黄色播放视频| 一区二区av电影网| 97人妻天天添夜夜摸| 蜜桃在线观看..| 99香蕉大伊视频| 午夜91福利影院| 精品一区二区三卡| 国产精品国产三级专区第一集| 久久久久久久精品精品| 亚洲欧美色中文字幕在线| 一级片免费观看大全| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 91午夜精品亚洲一区二区三区| 久久久久久久精品精品| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 韩国精品一区二区三区| 麻豆av在线久日| 久久精品久久精品一区二区三区| 欧美97在线视频| 日产精品乱码卡一卡2卡三| av国产精品久久久久影院| 日日啪夜夜爽| av网站免费在线观看视频| 我的亚洲天堂| videos熟女内射| 1024视频免费在线观看| 久久午夜福利片| 精品视频人人做人人爽| 哪个播放器可以免费观看大片| 日韩欧美精品免费久久| 国产伦理片在线播放av一区| 少妇的丰满在线观看| 97精品久久久久久久久久精品| 国产欧美亚洲国产| 久久久久国产一级毛片高清牌| 一级黄片播放器| 国产成人精品福利久久| 国产亚洲最大av| 国产一级毛片在线| 肉色欧美久久久久久久蜜桃| 久久精品久久精品一区二区三区| 考比视频在线观看| 亚洲综合色惰| 亚洲av综合色区一区| 大陆偷拍与自拍| 日本猛色少妇xxxxx猛交久久| 国产亚洲一区二区精品| 成人毛片60女人毛片免费| 9色porny在线观看| av在线app专区| 丝袜人妻中文字幕| 超碰成人久久| 国产成人精品福利久久| 国产人伦9x9x在线观看 | 男女边吃奶边做爰视频| 亚洲精品一区蜜桃| 制服诱惑二区| 亚洲欧美中文字幕日韩二区| 午夜福利在线免费观看网站| 人人妻人人添人人爽欧美一区卜| 午夜免费观看性视频| 欧美日韩一级在线毛片| 国产黄色视频一区二区在线观看| 欧美日韩综合久久久久久| 97在线视频观看| 三上悠亚av全集在线观看| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 十八禁高潮呻吟视频| 免费大片黄手机在线观看| 久久久国产一区二区| 国产精品久久久久成人av| 一级爰片在线观看| 一区二区av电影网| 少妇人妻精品综合一区二区| 亚洲第一区二区三区不卡| 国产一区二区 视频在线| 国产乱人偷精品视频| 中文天堂在线官网| 毛片一级片免费看久久久久| 亚洲第一青青草原| 一本—道久久a久久精品蜜桃钙片| 青春草国产在线视频| 国产av码专区亚洲av| 中文字幕最新亚洲高清| videos熟女内射| 制服诱惑二区| 一级黄片播放器| 精品国产乱码久久久久久男人| 精品第一国产精品| 国产精品香港三级国产av潘金莲 | 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 叶爱在线成人免费视频播放| 国产日韩一区二区三区精品不卡| 亚洲国产看品久久| 成人国产av品久久久| 男女无遮挡免费网站观看| 久久精品国产自在天天线| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 少妇猛男粗大的猛烈进出视频| h视频一区二区三区| 国产精品秋霞免费鲁丝片| 国产精品免费视频内射| 国产福利在线免费观看视频| 午夜91福利影院| 人妻一区二区av| 啦啦啦在线观看免费高清www| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 少妇被粗大的猛进出69影院| 高清av免费在线| 亚洲人成网站在线观看播放| 国产精品人妻久久久影院| 久久久久久久国产电影| 一区在线观看完整版| 国产成人aa在线观看| 丝袜美腿诱惑在线| 王馨瑶露胸无遮挡在线观看| 亚洲中文av在线| 国产片内射在线| 一级爰片在线观看| 日韩大片免费观看网站| 欧美成人午夜免费资源| 中文字幕人妻熟女乱码| 韩国高清视频一区二区三区| 亚洲av国产av综合av卡| 亚洲四区av| 久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 深夜精品福利| 欧美精品av麻豆av| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码 | 亚洲精品久久午夜乱码| 国产精品不卡视频一区二区| √禁漫天堂资源中文www| 久久久a久久爽久久v久久| 免费观看a级毛片全部| 日韩 亚洲 欧美在线| 欧美日韩综合久久久久久| 日本爱情动作片www.在线观看| 久久精品aⅴ一区二区三区四区 | 久久久久久人人人人人| 亚洲美女黄色视频免费看| 亚洲欧美一区二区三区国产| 亚洲av欧美aⅴ国产| 99九九在线精品视频| 日韩,欧美,国产一区二区三区| 黑人猛操日本美女一级片| 国产野战对白在线观看| 最黄视频免费看| 一级黄片播放器| 边亲边吃奶的免费视频| 一本大道久久a久久精品| 老汉色av国产亚洲站长工具| 久久综合国产亚洲精品| 亚洲视频免费观看视频| 成人影院久久| av视频免费观看在线观看| 国产精品亚洲av一区麻豆 | 色网站视频免费| 黄色怎么调成土黄色| 午夜福利一区二区在线看| 中国三级夫妇交换| 男人舔女人的私密视频| 一区在线观看完整版| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 男人爽女人下面视频在线观看| 丝袜美腿诱惑在线| 久久午夜福利片| 大香蕉久久网| 国产1区2区3区精品| 亚洲男人天堂网一区| www.熟女人妻精品国产| 国产av一区二区精品久久| 成年女人毛片免费观看观看9 | 久久国内精品自在自线图片| 精品国产国语对白av| 国产精品国产av在线观看| 成人国语在线视频| 麻豆精品久久久久久蜜桃| 国产成人精品在线电影| 一级毛片电影观看| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| 亚洲三级黄色毛片| 免费久久久久久久精品成人欧美视频| 久久婷婷青草| 欧美国产精品va在线观看不卡| 亚洲欧美成人精品一区二区| 久久ye,这里只有精品| 日韩欧美一区视频在线观看| 啦啦啦在线观看免费高清www| 欧美国产精品va在线观看不卡| 亚洲精品第二区| 成人亚洲精品一区在线观看| 色哟哟·www| 777久久人妻少妇嫩草av网站| 国产av一区二区精品久久| 亚洲天堂av无毛| 亚洲国产最新在线播放| 国产深夜福利视频在线观看| 成人毛片60女人毛片免费| 精品国产超薄肉色丝袜足j| 日韩一区二区视频免费看| 观看av在线不卡| 久久久久精品性色| 日韩熟女老妇一区二区性免费视频| 99香蕉大伊视频| 亚洲国产日韩一区二区| 你懂的网址亚洲精品在线观看| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 美女高潮到喷水免费观看| 国产成人免费观看mmmm| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美视频二区| 香蕉丝袜av| 国产综合精华液| 午夜影院在线不卡| 波多野结衣一区麻豆| 在线 av 中文字幕| 精品酒店卫生间| 激情五月婷婷亚洲| 国产乱人偷精品视频| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| 亚洲,欧美,日韩| 亚洲国产欧美在线一区| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 国产成人a∨麻豆精品| 亚洲欧美成人精品一区二区| 亚洲成国产人片在线观看| 亚洲精品国产av蜜桃| av又黄又爽大尺度在线免费看| 99久久综合免费| 国产亚洲精品第一综合不卡| 高清黄色对白视频在线免费看| 最近中文字幕高清免费大全6| 国产淫语在线视频| 免费在线观看黄色视频的| 最近2019中文字幕mv第一页| 久久精品人人爽人人爽视色| 国产成人精品婷婷| 建设人人有责人人尽责人人享有的| 99国产精品免费福利视频| 久久这里只有精品19| 国产精品蜜桃在线观看| 一区二区三区精品91| 久久久久久久精品精品| 最新的欧美精品一区二区| 国产精品三级大全| 国产乱人偷精品视频| 一区二区三区精品91| 久久久久网色| 国产精品一区二区在线观看99| av一本久久久久| 丁香六月天网| 男人操女人黄网站| 国产成人aa在线观看| 一级毛片黄色毛片免费观看视频| 久久青草综合色| 人妻 亚洲 视频| 成人国产av品久久久| 免费观看a级毛片全部| 丝袜脚勾引网站| 美女脱内裤让男人舔精品视频| 久久人人爽av亚洲精品天堂| 999精品在线视频| 9热在线视频观看99| 欧美在线黄色| 中文欧美无线码| 国产精品嫩草影院av在线观看| 看十八女毛片水多多多| 国产精品三级大全| 亚洲国产看品久久| 亚洲av福利一区| 亚洲成人一二三区av| av在线观看视频网站免费| 亚洲国产精品成人久久小说| 日本黄色日本黄色录像| 国产男人的电影天堂91| 女人被躁到高潮嗷嗷叫费观| 一级片免费观看大全| 91精品国产国语对白视频| 久久av网站| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 在线看a的网站| 午夜福利影视在线免费观看| 女人久久www免费人成看片| 美女xxoo啪啪120秒动态图| 精品人妻在线不人妻| 亚洲av福利一区| 新久久久久国产一级毛片| 亚洲欧洲国产日韩| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 不卡av一区二区三区| 亚洲成色77777| 久久97久久精品| 欧美+日韩+精品| 久久久久视频综合| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| 国产色婷婷99| 欧美日韩视频高清一区二区三区二| 黄色一级大片看看| 美国免费a级毛片| 午夜福利网站1000一区二区三区| 最近的中文字幕免费完整| 成人国产av品久久久| 国产一区有黄有色的免费视频| 桃花免费在线播放| 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区黑人 | 欧美最新免费一区二区三区| 一级毛片电影观看| 国产日韩欧美在线精品| 国产97色在线日韩免费| 自线自在国产av| 免费高清在线观看视频在线观看| 性色avwww在线观看| 亚洲成色77777| 黑人猛操日本美女一级片| 欧美亚洲日本最大视频资源| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频| 国产成人精品在线电影| 久久国产亚洲av麻豆专区| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 老汉色∧v一级毛片| 欧美精品一区二区免费开放| 黄网站色视频无遮挡免费观看| 亚洲av国产av综合av卡| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 国产片特级美女逼逼视频| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 99国产综合亚洲精品| 午夜91福利影院| 欧美激情高清一区二区三区 | 在线观看www视频免费| 男人操女人黄网站| 久久人人97超碰香蕉20202| 日韩精品有码人妻一区| 久久久久久人妻| 日韩精品有码人妻一区| videos熟女内射| 又粗又硬又长又爽又黄的视频| 成年女人在线观看亚洲视频| 日韩av免费高清视频| 国产av一区二区精品久久| 国产精品欧美亚洲77777| 免费看不卡的av| 国产亚洲最大av| 人妻一区二区av| 亚洲精品av麻豆狂野| 久久女婷五月综合色啪小说| 国产成人a∨麻豆精品| 女性生殖器流出的白浆| 午夜日韩欧美国产| 久久人妻熟女aⅴ| 亚洲欧美精品综合一区二区三区 | 国产1区2区3区精品| 国产有黄有色有爽视频| 国产 精品1| 午夜av观看不卡| 亚洲伊人色综图| 777米奇影视久久| 成人午夜精彩视频在线观看| 欧美另类一区| 亚洲图色成人| 自拍欧美九色日韩亚洲蝌蚪91| 赤兔流量卡办理| 久久久久视频综合| h视频一区二区三区| 91久久精品国产一区二区三区| 午夜福利,免费看| 人人澡人人妻人| 成人免费观看视频高清| 亚洲av.av天堂| 男女午夜视频在线观看| 亚洲av男天堂| 国产精品久久久av美女十八| 啦啦啦在线观看免费高清www| h视频一区二区三区| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频| 青青草视频在线视频观看| 亚洲精品美女久久av网站| 在线观看免费高清a一片| 色网站视频免费| 老司机亚洲免费影院| 美女大奶头黄色视频| 国产黄色视频一区二区在线观看| 18在线观看网站| 亚洲成人一二三区av| 最黄视频免费看| videos熟女内射| 国产男女内射视频| 国产乱来视频区| 电影成人av| 亚洲精品中文字幕在线视频| 色婷婷av一区二区三区视频| 国产淫语在线视频| 久久影院123| 欧美人与善性xxx| 久久 成人 亚洲| 狠狠婷婷综合久久久久久88av| 国产老妇伦熟女老妇高清| 99国产综合亚洲精品| 夜夜骑夜夜射夜夜干| 精品福利永久在线观看| 日韩 亚洲 欧美在线| 免费高清在线观看视频在线观看| 热re99久久精品国产66热6| 观看av在线不卡| 国产乱人偷精品视频| 欧美精品国产亚洲| 少妇精品久久久久久久| √禁漫天堂资源中文www| 国产成人一区二区在线| 国产1区2区3区精品| 熟女电影av网| 国产 精品1| 青草久久国产| 纯流量卡能插随身wifi吗| 免费观看a级毛片全部| 十八禁高潮呻吟视频| 一边亲一边摸免费视频| 久热这里只有精品99| 国产一区二区 视频在线| 久久久久久久久久久免费av| 最近手机中文字幕大全| 永久免费av网站大全| 人妻少妇偷人精品九色| 国产精品一国产av| 女人高潮潮喷娇喘18禁视频| 2018国产大陆天天弄谢| 捣出白浆h1v1| av电影中文网址| 18在线观看网站| www.自偷自拍.com| 啦啦啦在线观看免费高清www| 1024香蕉在线观看| 午夜免费鲁丝| 国产精品.久久久| 中文乱码字字幕精品一区二区三区| 制服丝袜香蕉在线| 亚洲五月色婷婷综合| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看| 在线观看免费高清a一片| 母亲3免费完整高清在线观看 | av线在线观看网站| 国产一区亚洲一区在线观看| 亚洲第一av免费看| 成人18禁高潮啪啪吃奶动态图|